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Abstract 

Several industrial processes are carried out on moving bed reactors (MBRs), and the 

development of mathematical models plays a fundamental role in designing, optimizing, 

and controlling these processes. Thus, this work initially develops a local solution for a 

linearized vertical MBR model to lumped parameters in the solid and fluid phases. Then, 

a semi-analytical solution (SAS) of the original nonlinear problem is obtained from the 

local solution. The SAS is easy to implement, stable, accurate, and performs fast, making 

it an efficient tool for MBR simulations. Excellent agreement was found comparing the 

SAS results with those of traditional numerical methods. SAS is capable of fast 
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integration of model equations for systems with stiffness ratio SR = 1033. A numerical 

analysis was also carried out, indicating optimal refining parameters in relation to 

linearization error and machine error. The developments carried out can be easily 

extended to systems with multiple first-order reactions. 

 

Keywords: Analytical solution, Heat transfer, Chemical reactor, Numerical solution, 

Numerical analysis, Stiffness  

 

 

1. Introduction 

 

 There are several technological applications for the heat and/or mass transfer between 

a particulate solid phase and one or more fluid phases. We can highlight, for example, the 

pyrolysis of shale oil fines in moving beds (Lisbôa, 1987; Bertoli 1989, 2000), the waste 

tire pyrolysis in moving and fluidized beds (Aylón et al., 2010; Martinez et al., 2013), the 

flash kaolinite calcination in moving and fluidized bed (Teklay et al., 2014, 2015, 2016) 

as well as others industrial processes described in Shirzad et al. (2019).  

 However, these applications require high equipment efficiency levels, making it 

essential to model the phenomena involved for scaling up and process optimization. 

Therefore, several studies in MBR modeling with analytical and/or numerical solutions 

have been carried out, such as: Munro and Amundson (1950), Leung and Quon (1965), 

Lisbôa (1987), Bertoli (1989, 2000), Bertoli and Hackenberg (1990), Fan and Zhu (1998), 

Saastamoinen (2004), Meier et al. (2009), Almendros-Ibáñez et al. (2011), Bertoli et al. 

(2012, 2015a, 2015b, 2017, 2019, 2020, 2022, 2023, 2024), Yang et al. (2015), Isaza et 

al. (2016), Medeiros et al. (2018, 2021), Tribess et al. (2022).  
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 Among these studies, the work of Bertoli et al. (2015a) is directly related to this 

investigation. The authors developed a semi-analytical solution of a lumped parameter 

model (Walas, 1965; Leung and Quon, 1965) to the butane pyrolysis process, with the 

assumed conditions: first-order chemical reaction in gas phase, reactor with adiabatic 

walls, particles considered as spheres and inert. The model solution was developed using 

the concepts of the finite-analytic method (FAM) (Chen and Li, 1980) – with the 

difference that first, through the use of integrating factors, an integral representation of 

the model equations is developed; then, by linearization and discretization of the resulting 

coupled system of integral equations, the interval solution is obtained – and presented a 

very good agreement with the numerical solution by the Runge-Kutta-Felhberg method.  

 Furthermore, the work of Medeiros et al. (2018, 2021) is also directly related to the 

study presented herein. The authors developed a semi-analytical solution for an 

isothermal wall MBR model to distributed parameters in the particles and to lumped 

parameters in the fluid phase, assuming - among other simplifications - irreversible 

chemical reaction occurring uniformly within spherical particles, and constant radiative 

heat transfer coefficient ℎ𝑟 - this hypothesis was mitigated by means of a corrective step, 

in which ℎ𝑟 is taken equal to the arithmetic mean between its value at the reactor inlet 

and its value at the discretization point -.  

 The solution was developed from the analytical solution of the associated 

homogeneous (linear) problem (Meier et al., 2009) and the spectral expansion of the non-

homogeneous vector. The simulations accurately predicted kaolinite flash calcination's 

temperature and conversion profiles Teklay et al., 2016).  

 The main differences between the MBR model studied by Medeiros et al. (2018, 2021) 

and this work, is that, in the latter, the particle is modeled to lumped parameters - which 
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makes the model simpler -, and ℎ𝑟 is calculated only with local values, i.e., from the 

discretization interval - in better correspondence to physical reality -. 

 SAS will be developed using FAM concepts (Chen and Li, 1980): decomposition of 

the problem region into small intervals; maintaining terms as linear and evaluated under 

the conditions at the beginning of each interval; obtaining local analytical solutions in 

these intervals. Although there are studies/applications aiming to generalize the FAM 

(e.g., Civan, 1995, 2009; de Almeida Jr., 2016; de Almeida Jr. et al., 2016; Lemos et al., 

2016), one of the difficulties in applying of the original finite analytical solution method 

is due to the fact that for each case there is a solution. Several applications of the method 

- see, Chen and Li, 1980 - demonstrate this difficulty. Among the applications of FAM 

for chemically reactive systems is the work of Ardestani et al. (2015), who used the 

practical FAM proposed by Civan (1995, 2009) to solve a model to describe the transport 

of contaminants dissolved in groundwater. 

 

2. Mathematical modeling 

 

The heat transfer model of a moving bed reactor was developed based on the mass and 

energy conservation laws using the single particle approach. Fig. 1 shows schematically 

a cocurrent moving bed reactor and the control volume for which the analysis is 

performed. The MBR is modelled to lumped parameters to solid particles and lumped 

parameters to fluid phase; it is considered tubular, vertical and diluted, with each particle 

surrounded only by the dragging fluid; inside the particles a first-order irreversible 

chemical reaction takes place uniformly. Other assumptions are (Bertoli, 1989, 2000, 

2020; Meier et al., 2009; Medeiros et al., 2021): steady state operation; physical and 

transport properties uniform and constant; spherical particles with  uniform and constant 
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radius and uniformly distributed over the cross-section of the reactor; developed flow; 

fluid temperature and velocity profiles considered uniform in the cross-section of the 

reactor (particles and fluid may have different velocities); conveyor fluid transparent to 

thermal radiation; reactor wall considered as an isothermal blackbody; axial heat 

dispersion considered negligible in comparison with the advective energy flux; wall-

particle radiative heat flux described by a linearized form of the Stefan-Boltzmann 

equation; interaction effects between particles and particle-wall, neglected; thermal 

effects due to viscous dissipation or particle friction, neglected. 

 

Insert Figure 1 

Figure 1. Schematic representation of the cocurrent moving-bed reactor and the 

differential control volume considered for the analysis. 

 

2.1 Governing equations    

Considering the previous hypotheses and introducing the dimensionless particle 

residence time 

𝜏 ≡
3ℎ𝑝

𝜌𝑝𝑐𝑝𝑅𝑝
�́� = BipFo′   (1a, b) 

the dimensionless temperatures,  

𝜃𝑓(𝜏) ≡
𝑇𝑓(𝑡1𝜏)−𝑇𝑓𝑖

𝑇𝑝𝑖
  (2) 

𝜃𝑝(𝜏) ≡
𝑇𝑝(𝑡1𝜏)−𝑇𝑝𝑖

𝑇𝑝𝑖
   (3) 

the reactant conversion, and the dimensionless heat source term due to a first order 

irreversible chemical reaction,  

𝑋(𝜏) ≡
𝐶𝐴𝑖−𝐶𝐴(𝑡1𝜏)

𝐶𝐴𝑖
  (4) 
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𝑔(𝜏) ≡ Dadev(1 − 𝑋(𝜏))  (5) 

and finally, the dimensionless groups: 

Py
′ ≡  

3ℎ𝑝

𝜌𝑝𝑐𝑝𝑅𝑝𝐾
  (6) 

𝛽 ≡
�̇�𝑝𝑐𝑝

�̇�𝑓𝑐𝑓
  (7) 

𝜑 ≡ 1 +
ℎ𝑟

ℎ𝑝
         (8) 

𝜔 ≡ 1 + 𝑟𝑤𝑠
ℎ𝑓

ℎ𝑝
  (9) 

Then, considering the differential control volume in Fig. 1, the LPM is 

𝑑𝑋(𝜏)

𝑑𝜏
=
1−𝑋(𝜏)

Py′
  (10) 

1

𝛽

𝑑𝜃𝑓(𝜏)

𝑑𝜏
= 𝜃𝑝(𝜏) − 𝜃𝑝(∞) + 𝜔(𝜃𝑓(∞) − 𝜃𝑓(𝜏))  (11) 

𝑑𝜃𝑝(𝜏)

𝑑𝜏
= 𝜃𝑓(𝜏) − 𝜃𝑓(∞) + 𝜑 (𝜃𝑝(∞) − 𝜃𝑝(𝜏)) + 𝑔(𝜏)  (12) 

subject to the initial conditions (at the reactor’s inlet) presented in Eqs. (13) – (15),  

𝑋(0) = 0  (13) 

𝜃𝑓(0) = 0  (14) 

𝜃𝑝(0) = 0  (15) 

     In the previous equations,  

𝜃𝑓(∞) ≡
𝑇𝑤−𝑇𝑓𝑖

𝑇𝑝𝑖
   (16) 

𝜃𝑝(∞) ≡
𝑇𝑤−𝑇𝑝𝑖

𝑇𝑝𝑖
  (17) 

 

3. Model solution  

 

3.1 Solution procedure 
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 The development of SAS for the Eqs. (14) - (19), proceeds according to the following 

steps: 

i. The reactor is sectioned into a 𝑘𝑚𝑎𝑥  number of intervals. 

ii. In the interval 𝑘, i.e., [𝜏𝑘−1, 𝜏𝑘], 𝐾 and 𝜑 are evaluated at temperature 𝑇𝑝(𝜏𝑘−1), 

and kept constant (𝐾𝑘−1 and 𝜑𝑘−1, respectively), making the model equations 

linear. 

iii. The associated linear problem is solved analytically and locally (i.e., in the 

interval 𝑘).  

iv. The local solution is iteratively regressed to the reactor inlet (𝑘 = 0), thus 

obtaining the SAS. 

v. A representation of the SAS in continuous variables, is obtained through limit 

operations and the definition of integral. 

 In the next sections, this methodology will be developed. It should be noted, however, 

that for the computational implementation of SAS, only the results of step iii are required. 

 Note that this procedure differs from that of Vanti et al. (2008) and Bertoli et al. 

(2015a), because in these works, given the simplicity of the models studied, the SAS in 

continuous variables was obtained directly from the model equations - i.e., without the 

previous steps i-iv - through integrating factors.  

 

3.2 Model linearization 

 Initially the reactor is sectioned into 𝑘𝑚𝑎𝑥  intervals. In the 𝑘 interval, i. e., [𝜏𝑘−1, 𝜏𝑘], 

𝐾 and 𝜑 are evaluated at the temperature 𝑇𝑝(𝜏𝑘−1) and made constant. Then, we can write 

from Eqs. (10)-(12), the following linear system of ordinary differential equations 

(ODEs): 
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𝑑𝑋(𝜏)

𝑑𝜏
= 
1−𝑋(𝜏)

Py𝑘−1
′   (18) 

1

𝛽

𝑑𝜃𝑓(𝜏)

𝑑𝜏
= 𝜃𝑝(𝜏) − 𝜃𝑝(∞) + 𝜔(𝜃𝑓(∞) − 𝜃𝑓(𝜏))  (19) 

𝑑𝜃𝑝(𝜏)

𝑑𝜏
= 𝜃𝑓(𝜏) − 𝜃𝑓(∞) + 𝜑𝑘−1 (𝜃𝑝(∞) − 𝜃𝑝(𝜏)) + 𝑔𝑘−1(𝜏)  (20) 

Where 

𝑔𝑘−1(𝜏)  ≡ Dadev,k−1(1 − 𝑋(𝜏))  (21) 

Subject to the following conditions at the beginning of the interval: 

𝑋(𝜏𝑘−1) = 𝑋𝑘−1  (22) 

𝜃𝑓(𝜏𝑘−1) = 𝜃𝑓,𝑘−1  (23) 

𝜃𝑝(𝜏𝑘−1) = 𝜃𝑝,𝑘−1 (24) 

 

3.3 Local (interval) solution of the linearized model 

 Integrating Eq. (28), and using the boundary condition of Eq. (22), we have 

𝑋𝑘(𝜏) = 1 − (1 − 𝑋𝑘−1)𝑒
−(

𝜏−𝜏𝑘−1
Py𝑘−1
′ )

  (25) 

Thus, substituting Eq. (25) into Eq. (21), the thermal generation rate becomes  

𝑔𝑘−1(𝜏) = Dadev,𝑘−1(1 − 𝑋𝑘−1)𝑒
−(

𝜏−𝜏𝑘−1
Py𝑘−1
′ )

   
(26) 

 As seen, the approach used causes decoupling of reaction kinetics from energy 

balances, but not vice versa. Therefore, isolating 𝜃𝑝(𝜏) in Eq. (19), we have 

𝜃𝑝(𝜏) = 𝜃𝑝(∞) +
1

𝛽

𝑑𝜃𝑓(𝜏)

𝑑𝜏
+ 𝜔(𝜃𝑓(𝜏) − 𝜃𝑓(∞))  (27) 

 Substituting Eq. (27) into Eq. (20), one obtains: 

𝑑𝜃𝑝(𝜏)

𝑑𝜏
= (𝜔𝜑𝑘−1 − 1)(𝜃𝑓(∞) − 𝜃𝑓(𝜏)) + 𝑔𝑘−1(𝜏) −

𝜑𝑘−1

𝛽

𝑑𝜃𝑓(𝜏)

𝑑𝜏
  (28) 

 Deriving Eq. (19) with respect to 𝜏 and substituting Eq. (28) into the result, then 𝜃𝑝(𝜏) 

is decoupled from 𝜃𝑓(𝜏), according to the following equation 
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1

𝛽

𝑑2𝜃𝑓(𝜏)

𝑑𝜏2
+ (𝜔 +

𝜑𝑘−1

𝛽
)
𝑑𝜃𝑓(𝜏)

𝑑𝜏
+ (𝜔𝜑𝑘−1 − 1)(𝜃𝑓(𝜏) − 𝜃𝑓(∞)) = 𝑔𝑘−1(𝜏)  (29) 

     Now, defining 

Θ𝑓(𝜏) ≡ 𝜃𝑓(𝜏) − 𝜃𝑓(∞)  (30) 

then Eq. (29) is rewritten in the form, 

1

𝛽

𝑑2Θ𝑓(𝜏)

𝑑𝜏2
+ (𝜔 +

𝜑𝑘−1

𝛽
)
𝑑Θ𝑓(𝜏)

𝑑𝜏
+ (𝜔𝜑𝑘−1 − 1)Θ𝑓 = 𝑔𝑘−1(𝜏)  (31) 

 The solution of Eq. (31) (inhomogeneous) can be obtained by the Complementary 

Function Method, in the form (see for instance Butkov, 1973) 

Θ𝑓(𝜏) = Θ𝑓(ℎ𝑜𝑚)(𝜏) + Θ𝑓(𝑝𝑎𝑟𝑡)(𝜏) (32) 

Where Θ𝑓(ℎ𝑜𝑚) is the general solution of the associated homogeneous (complementary 

function) and  Θ𝑓(𝑝𝑎𝑟𝑡) is a particular solution. 

     The solution of the associated homogenous Θ𝑓(ℎ𝑜𝑚) - a 2nd order ODE with constant 

coefficients -, is standard (Wylie and Barrett, 1990): 

Θ𝑓(ℎ𝑜𝑚)(𝜏)  = 𝑏1,𝑘−1𝑒
−𝑟1,𝑘−1𝜏 + 𝑏2,𝑘−1𝑒

−𝑟2,𝑘−1𝜏 (33) 

with characteristic equation with the following roots 

𝑟(1,2),𝑘−1 =
−(𝛽𝜔+𝜑𝑘−1)±√(𝛽𝜔−𝜑𝑘−1)2+4𝛽

2
=

−(𝛽𝜔+𝜑𝑘−1)±√(𝛽𝜔+𝜑𝑘−1)2+4𝛽(1−𝜑𝑘−1)

2
  

(34a-d) 

 The solution Θ𝑓(𝑝𝑎𝑟𝑡) is obtained by the method of undetermined coefficients (Jenson 

and Jeffreys, 1963): 

Θ𝑓(𝑝𝑎𝑟𝑡)(𝜏) = 𝑏3,𝑘−1 𝑒
𝑟3,𝑘−1𝜏   (35) 

Where  

𝑟3,𝑘−1 = −
1

Py𝑘−1
′    (36) 

𝑏3,𝑘−1𝑒
𝑟3,𝑘−1𝜏𝑘−1 ≡ 𝑏3,𝑘−1

′ =
𝛽 Dadev,𝑘−1(1−𝑋𝑘−1)

𝑟3,𝑘−1
2 +(𝛽𝜔+𝜑𝑘−1)𝑟3,𝑘−1+𝛽𝜔𝜑𝑘−1−𝛽

  (37a, b) 
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 Thus, substituting the results of Eqs. (33) and (35) into Eq. (32), the general solution 

of Eq. (35) is 

Θ𝑓(𝜏) = ∑ 𝑏𝑙,𝑘−1𝑒
𝑟𝑙,𝑘−1𝜏3

𝑙=1      (38) 

That is, 

𝜃𝑓(𝜏) = 𝜃𝑓(∞) + ∑ 𝑏𝑙,𝑘−1𝑒
𝑟𝑙,𝑘−1𝜏3

𝑙=1      (39) 

 Substituting Eq. (39) into Eq. (27), we obtain the local solution for the particle 

temperature 

𝜃𝑝(𝜏) = 𝜃𝑝(∞) + ∑ (
𝑟𝑙,𝑘−1

𝛽
+ 𝜔)𝑏𝑙,𝑘−1𝑒

𝑟𝑙,𝑘−1𝜏3
𝑙=1   (40) 

 The coefficients  𝑏1,𝑘−1 and  𝑏2,𝑘−1 are determined from Eqs. (39) and (40), and the 

conditions Eqs. (23) and (24), as follows: 

𝑏1,𝑘−1𝑒
𝑟1,𝑘−1𝜏𝑘−1 ≡ 𝑏1,𝑘−1

′ =

𝑏3,𝑘−1
′ (𝑟3,𝑘−1−𝑟2,𝑘−1)+(𝛽𝜔+𝑟2,𝑘−1)(𝜃𝑓,𝑘−1−𝜃𝑓(∞))−𝛽(𝜃𝑝,𝑘−1−𝜃𝑝(∞))

𝑟2,𝑘−1−𝑟1,𝑘
  

(41a, b) 

𝑏2,𝑘−1𝑒
𝑟2,𝑘−1𝜏𝑘−1 ≡ 𝑏2,𝑘−1

′ =

𝑏3,𝑘−1
′ (𝑟3,𝑘−1−𝑟1,𝑘−1)+(𝛽𝜔+𝑟1,𝑘−1)(𝜃𝑓,𝑘−1−𝜃𝑓(∞))−𝛽(𝜃𝑝,𝑘−1−𝜃𝑝(∞))

𝑟1,𝑘−1−𝑟2,𝑘−1
   

(42a, b) 

 

3.4 Difference equations 

 Difference equations to integrate the system of Eqs. (10)-(15) are obtained from Eqs. 

(25), (36), (39) and (40), as follows: 

𝑋𝑘 = 1 − (1 − 𝑋𝑘−1)𝑒
𝑟3,𝑘−1(𝜏𝑘−𝜏𝑘−1)                           (43) 

𝜃𝑓,𝑘 = 𝜃𝑓𝑘−1 + ∑ 𝑏𝑙,𝑘−1(𝑒
𝑟𝑙,𝑘−1𝜏𝑘 − 𝑒𝑟𝑙,𝑘−1𝜏𝑘−1)3

𝑙=1         (44) 

𝜃𝑝,𝑘 = 𝜃𝑝,𝑘−1 +∑ (
𝑟𝑙,𝑘−1

𝛽
+𝜔)𝑏𝑙,𝑘−1(𝑒

𝑟𝑙,𝑘−1𝜏 − 𝑒𝑟𝑙,𝑘−1𝜏𝑘−1)3
𝑙=1           

(45) 

 In the above equations, (𝜏𝑘−1 ≤ 𝜏 ≤ 𝜏𝑘) and (1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥).  
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 Eqs. (43)-(45), together with Eqs. (34), (36), (37), (41) and (42), are used to calculate, 

recursively, the conversion and temperatures along the MBR. Alternatively, and for 

numerical stability purposes, one can rewrite the above equations as follows: 

𝑋𝑘 = 1 − (1 − 𝑋𝑘−1)𝑒
𝑟3,𝑘−1Δ𝜏                           (46) 

𝜃𝑓,𝑘 = 𝜃𝑓,𝑘−1 + ∑ 𝑏𝑙,𝑘−1
′3

𝑙=1 (𝑒𝑟𝑙,𝑘−1Δ𝜏 − 1)  (47) 

𝜃𝑝,𝑘 = 𝜃𝑝,𝑘−1 +∑ (
𝑟𝑙,𝑘−1

𝛽
+𝜔)𝑏𝑙,𝑘−1

′3
𝑙=1 (𝑒𝑟𝑙,𝑘−1Δ𝜏 − 1)  (48) 

Where 𝑏1,𝑘−1
′ , 𝑏2,𝑘−1

′  and  𝑏3,𝑘−1
′ , are respectively given by Eqs. (41), (42) and (37), and 

Δ𝜏 = 𝜏𝑘 − 𝜏𝑘−1  (49) 

 

3.5 SAS (recursive solution) 

  From Eqs. (46)-(48) and using the inlet conditions Eqs. (13)-(15), the SAS is obtained 

by recursion: 

𝑋𝑘 = 1 − 𝑒
∆𝜏∑ 𝑟3,𝑗−1

𝑘
𝑗=1   (50) 

𝜃𝑓,𝑘 = ∑ ∑ 𝑏𝑙,𝑗−1(𝑒
𝑟𝑙,𝑗−1𝜏𝑗 − 𝑒𝑟𝑙,𝑗−1𝜏𝑗−1)3

𝑙=1
𝑘
𝑗=1      (51) 

𝜃𝑝,𝑘 = ∑ ∑ (
𝑟𝑙,𝑘−1

𝛽
+𝜔) 𝑏𝑙,𝑗−1(𝑒

𝑟𝑙,𝑗−1𝜏𝑗 − 𝑒𝑟𝑙,𝑗−1𝜏𝑗−1)3
𝑙=1

𝑘
𝑗=1   (52) 

   

3.6 Modification to the 𝜏-marching procedure 

 The implementation of SAS is performed through a 𝜏-marching procedure using the 

difference equations of Section 3.4. However, once the analytical solution of the linear 

problem is known, one can take advantage of this in favor of accuracy, through the 

following modification: for the 𝑘 interval, instead of 𝐾 and ℎ𝑟 being evaluated at the 

temperature 𝑇𝑝,𝑘−1, as described in Section 3.2, this calculation is now carried out at the 

average temperature of the 𝑘 interval, obtained from Eq. (40), in the following form 
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𝜃𝑝𝑚,𝑘 = 𝜃𝑝,𝑘−1 +
1

Δ𝜏
∑ (

𝑟𝑙,𝑘−1

𝛽
+ 𝜔)𝑏𝑙,𝑘−1

′ (
𝑒𝑟𝑙,𝑘−1∆𝜏−1

𝑟𝑙,𝑘−1
− Δ𝜏)3

𝑙=1           
(53) 

     The results obtained with and without this modification are presented in Section 7. 

 

3.7 SAS in continuous variables 

 A representation of SAS in continuous variables can be obtained from Eqs. (50)-(52) 

by making ∆𝜏 → 0 (i. e. , 𝑘𝑚𝑎𝑥 → ∞), summing the series, and using the definition of 

definite integral. Proceeding in this way, one obtains: 

𝑋(𝜏) = 1 − 𝑒∫ 𝑟3
𝜏
0 𝑑𝜏  (54) 

𝜃𝑓(𝜏) = ∑ ∫ 𝑏𝑙𝑟𝑙𝑒
𝑟𝑙𝜏𝑑𝜏

𝜏

0
3
𝑙=1       (55) 

𝜃𝑝(𝜏) = ∑ ∫ (
𝑟𝑙

𝛽
+ 𝜔)𝑏𝑙𝑟𝑙𝑒

𝑟𝑙𝜏𝑑𝜏
𝜏

0
3
𝑙=1       (56) 

Where  

𝑟(1,2) =
−(𝛽𝜔+𝜑)±√(𝛽𝜔−𝜑)2+4𝛽

2
   (57a, b) 

𝑟3 = −
1

Py′
  (58) 

𝑏1 =
𝑏3(𝑟3−𝑟2)𝑒

𝑟3𝜏+(𝛽𝜔+𝑟2)(𝜃𝑓(𝜏)−𝜃𝑓(∞))−𝛽(𝜃𝑝(𝜏)−𝜃𝑝(∞))

𝑟2−𝑟1
𝑒−𝑟1𝜏  (59) 

𝑏2 =
𝑏3(𝑟3−𝑟1)𝑒

𝑟3𝜏+(𝛽𝜔+𝑟1)(𝜃𝑓(𝜏)−𝜃𝑓(∞))−𝛽(𝜃𝑝(𝜏)−𝜃𝑝(∞))

𝑟1−𝑟2
𝑒−𝑟2𝜏  (60) 

𝑏3 =
𝛽Dadev(1−𝑋(𝜏))

𝑟3
2+(𝛽𝜔+𝜑)𝑟3+𝛽𝜑𝜔−𝛽

𝑒−𝑟3𝜏   (61) 

     In Eqs. (54-61), the parameters 𝑟𝑙, 𝑏𝑙 (𝑙 = 1, 2, 3), Dadev, Py′ and 𝜑, are now 

continuous functions of 𝑇𝑝(𝜏). Thus, the SAS in continuous variables is expressed by a 

system of coupled implicit integral equations. In Appendix A, it is shown that SAS in 

continuos varables satisfies the model equations and, therefore, is an exact representation 

of the model.  
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4.  Residence time scales  

 

To deepen the physical understanding of the results, the following particle residence 

time scales (see also, Bertoli et al., 2012, 2016, 2017, 2019, 2022; Tribess et al., 2022) 

are introduced in Table 1.  

 

Table 1 - 𝒕′ scales of phenomena for co-current vertical MBR 

 

Insert Table 1 

 

Once these scales are defined, is interesting to note that: 

Bip =
𝑡1

𝑡2
, Bir =

𝑡1

𝑡3
, DaIV =

𝑡1

𝑡6
, Dadev =

𝑡2

𝑡6
,   Fo′ =

𝑡′

𝑡1
, Py =

𝑡7

𝑡1
  (62a-f) 

Py′ =
𝑡7

𝑡2
, Th2 =

𝑡1

𝑡7
,  𝛽 =

𝑡2

𝑡4
, 𝜑 ≡ 1 +

𝑡2

𝑡3
, τ =

𝑡′

𝑡2
, 𝜔 = 1 +

𝑡4

𝑡5
   (63g-h) 

In addition to enabling a clear physical understanding of the system parameters, scale 

analysis is also useful in the preliminary model selection. This analysis is postponed to 

Section 7.4.  

 

5. Case studies  

 

 The same case studies seen by Medeiros et al. (2021) were chosen for analysis, for 

comparison purposes: 

 

a) Heat transfer in a moving bed of oil shale fines (Lisbôa, 1987) 

Oil shale fines are a residue from moving bed pyrolysis of oil shale. One solution for 

using these residues is pyrolysis in co-current MBR (Lisbôa, 1987). Thus, the heating of 
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a mixture of oil shale fines and air, in a co-current moving bed, is chosen as case study a, 

and represented by thermal test (TT) nº 4 of Lisbôa (1987) - also described in Bertoli 

(2000) and Bertoli et al. (2019) -. 

 

b) Flash calcination of kaolinite in a moving bed (Teklay et al., 2016) 

 The flash calcination of kaolin-rich clays is an important aspect in the metakaolin 

production. The process is carried out in moving bed reactors (Teklay et al., 2015) or 

fluidized bed reactors (Salvador, 1995), at temperatures between 450 and 750 ºC, 

producing only water vapor (Salvador, 1995; Sperinck et al., 2011; Teklay et al., 2016) 

and metakaolin, according to the reaction (Bridson et al., 1985; Slade et al., 1992) 

Al2Si2O5(OH)4  
   ∆   
→   Al2O3 . 2 SiO2 + 2 H2O   

(64) 

In this work, kaolinite calcination kinetics is selected as case study b, and will be 

represented in a simplified way by the kaolinite dehydroxylation step. The conditions, 

properties and correlations are those used by Teklay et al. (2014) - also described in 

Medeiros et al (2021) -. The specific heat of the granular solids (𝑐𝑝) was calculated 

iteratively at an average temperature between the inlet and outlet, based on the method 

described by Waples and Waples (2004). Air is chosen as the dragging fluid. 

 

6. Methodology  

 

6.1 SAS verification and relative performance 

The SAS is initially verified by comparison with the linear model solution. 

Nonlinearities are removed from the model, making constants 𝐾 and ℎ𝑟, evaluated at an 

average temperature along the reactor. Two discretization levels,  𝑘𝑚𝑎𝑥 = 1 and 𝑘𝑚𝑎𝑥 =

𝑁, are considered. The discretization of the SAS with 𝑘𝑚𝑎𝑥 = 1 is particularly important 
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since it represents the exact linear problem solution. Moreover, the linearized solution 

allows a comprehensive investigation of the error sources in the SAS, as described in 

Section 6.2.1. Then, we proceed by considering 𝑇𝑝 varying in the calculation of 𝐾 and ℎ𝑟 

and comparing the SAS results with other numerical methods: explicit Euler, Heun, 

Ralston, and Runge-Kutta of 3rd, 4th and 5th order. All calculations are performed on a 

computer with Intel® Core™ i5-9400F (10400F?) CPU @ 2.90 GHz, 64 GB RAM, and 

MS Windows 10 x 64 operating system. 

 

6.2 Model validation  

The model validation (at least partial) is made by comparing the thermogravimetric 

analysis (TGA) data (Teklay et al., 2014) - see case study b - with model predictions. 

Validation is said to be partial because the TGA only partially represents the conditions 

of a MBR. For the SAS to mimic the operating conditions of the TGA, the following 

settings are made (see Medeiros et al., 2021): 𝜏 = TGA clock time; 𝑣𝑝 = 𝑣𝑓; ℎ𝑓 and ℎ𝑟 

low enough to nullify thermal exchanges with the wall; 𝑐𝑓 sufficiently high so that 𝑇𝑓 does 

not change; 𝑇𝑔 a linear function of the heating rate and particle residence time; and  𝑇𝑤 is 

changed to the equilibrium temperature 𝑇𝑒𝑞,𝑘, calculated for each 𝑘 section.  

 

6.3 Stability 

 Given the semi-analytical character, the roots (eigenvalues) and form of the SAS are 

known. Thus, SAS stability analysis can be carried out in a simple way, by analyzing the 

signal of the roots and inspecting its implementation. 

 

6.4 Consistency and convergence 
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    To test consistency, a methodology similar to that for verifying an analytical solution 

is introduced: SAS in continuous variables is substituted into the model equations; then, 

if the system is satisfied, consistency is demonstrated. This methodology is more general 

than that of Vanti et al. (2008) and Bertoli et al. (2015a), since in these works, given the 

simplicity of the models studied, the SAS in continuous variables can be obtained directly 

from the model equations (see comments in Section 3.1) - and consequently, consistency 

is ensured.  

 If stability and consistency are demonstrated, SAS consistency is automatically 

guaranteed. (Ref.?) 

 

6.5 SAS error analysis 

 Initially, we define 𝜁 as a generic variable that represents 𝑇𝑓, 𝑇𝑝 or 𝑋. Then, for 𝜁 

calculated with 𝑘𝑚𝑎𝑥  intervals, the following SAS error expressions are written: 

𝐸𝜁;𝑘𝑚𝑎𝑥
𝑇 (𝜏) ≡ 𝜁𝑘𝑚𝑎𝑥(𝜏) − 𝜁(𝜏) = 𝐸𝜁;𝑘𝑚𝑎𝑥

𝑅 (𝜏) + 𝐸𝜁;𝑘𝑚𝑎𝑥
𝐿 (𝜏)  (65) 

RMSE𝜁;𝑘𝑚𝑎𝑥 ≡ √∑
1

𝑀
𝑀
𝑗=1 (𝐸𝜁;𝑘𝑚𝑎𝑥(𝜏𝑗))

2
  (66) 

Where, 𝐸𝜁;𝑘𝑚𝑎𝑥
𝑇  is the total error, given by the sum of the machine rounding error, 𝐸𝜁;𝑘𝑚𝑎𝑥

𝑅  

(roundoff error) with the error due to model linearization, 𝐸𝜁;𝑘𝑚𝑎𝑥
𝐿  (linearization error), 

and RMSE𝜁;𝑘𝑚𝑎𝑥 is the Root Mean Squared Error (RSME). The following presents the 

analysis methodology for these types of error. 

 

6.5.1 Roundoff error  (𝐸𝜁;𝑘𝑚𝑎𝑥
𝑅 )  

 In this work, roundoff errors are estimated using two independent methods: the first - 

known from the literature - is based on accounting for floating point operations; and the 
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second - developed here - makes use of characteristics of SAS. These methods are 

described respectively below. 

• Method A -  Estimation based on expressions from the literature  

 The randon and non-randon round-off errors in the calculation of 𝜁 can be estimated 

as a function of number of intervals from assessment of the number of arithmetic 

operations of each calculation. The MATLAB code developed by Qian (2023) was used 

to calculate the number of arithmetic operations (FLOPS) for the SAS, considering an 

average (and constant) 𝑇𝑝 in the calculation of ℎ𝑟 and 𝐾, for each 𝑘𝑚𝑎𝑥  tested. Then, 

estimates of random and non-random round-off errors were performed by multiplying the 

machine precision (𝜖𝑀 =  2.220446049250313 × 10
−16) by FLOPS at the power ½ 

and 1, respectively (Ref?).  

 

• Method B - Estimation based on SAS characteristics 

 SAS can provide an excellent estimate of this error if we consider that: the linearized 

model solution is exact; (if 𝐾 and ℎ𝑟 are made constant - e.g., at an average temperature 

along the reactor -, SAS can be used to solve the linear problem; estimating 𝐾 and ℎ𝑟 at 

an average temperature, one has approximately the same order of magnitude for the 

arguments of the exponential functions and for the coefficients of the solution, in 

comparison with the non-linear problem; for the same number of intervals, the SAS can 

be programmed to perform approximately the same number of operations both on the 

linear problem and on the corresponding non-linear problem; for a given τ, the difference 

between the results of the linear problem, using 𝑘𝑚𝑎𝑥 = 1 and 𝑘𝑚𝑎𝑥 = 𝑁,  is due only to 

the roundoff error. As a result of the previous considerations, it is concluded that an 

excellent estimate of 𝐸𝜁;𝑘𝑚𝑎𝑥
𝑅  can be obtained from the difference between the results of 

the SAS for the linear problem with 𝑘𝑚𝑎𝑥 = 1 and with 𝑘𝑚𝑎𝑥 = 𝑁. 
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6.5.2 Linearization error (𝐸𝜁;𝑘𝑚𝑎𝑥
𝐿 )  

 To evaluate the linearization error, the following iterative procedure is adopted:  

(a) A set 𝑆 = {𝑘𝑚𝑎𝑥1,  𝑘𝑚𝑎𝑥2,⋯ , 𝑃} of increasing 𝑘𝑚𝑎𝑥  intervals is composed, assuming 

that for each element  𝐸𝜁;𝑘𝑚𝑎𝑥
𝑅 ≪ 𝐸𝜁;𝑘𝑚𝑎𝑥

𝐿 , and  that  𝐸𝜁;𝑃
𝐿 ≪ 𝐸𝜁;𝑘𝑚𝑎𝑥≠𝑃

𝐿 ; 

(b) the 𝐸𝜁;𝑘𝑚𝑎𝑥
𝐿 for calculations with 𝑘𝑚𝑎𝑥 intervals is given approximately by the 

following expression 

𝐸𝜁;𝑘𝑚𝑎𝑥
𝐿 (𝜏𝑗) ≅ 𝜁𝑘𝑚𝑎𝑥≠𝑃(𝜏𝑗) − 𝜁𝑃(𝜏𝑗)  (67) 

(c) the RMSE for calculations with 𝑘𝑚𝑎𝑥 intervals is given approximately by the 

following expression 

RMSE𝜁;𝑘𝑚𝑎𝑥 ≅ √∑
1

𝑀
𝑀
𝑗=1 (𝜁𝑘𝑚𝑎𝑥≠𝑃(𝜏𝑗) − 𝜁𝑃(𝜏𝑗) )

2
  (68) 

 

(d) the linearization error trend line is plotted as a function of  𝑘𝑚𝑎𝑥; 

(e) if the results agree with the assumptions in (a), the procedure ends, otherwise a new 

choice of  𝑆 is made and the procedure is restarted. 

 

6.6 Stifness 

 Stifness is a characteristic of interest in the integration of an ODE system, and is 

normally quantified by the stiffness ratio (SR) (Davis, 1984). In the present study, the SR 

for the linearized model can be defined in the following form  

SR ≡
max
𝑖
|𝑟𝑖|

min
𝑖
|𝑟𝑖|
 ,  𝑖 = 1,2,3 (69) 

 Although the model under study is a nonlinear system of ODEs, whose stiffness may 

vary over time (Davis, 1984), SAS is based on "interval solutions of the linearized model" 

whose form is independent of them. Therefore, if for a given SR (say SR1) it is possible 
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to integrate the model equations keeping 𝐾 and ℎ𝑟 constant - i.e., the linear problem -, 

then, the integration of the nonlinear problem can be guaranteed as long as SR(𝜏) < SR1 

for (0 ≤ 𝜏 ≤ 𝜏𝐿). Therefore, to evaluate SAS in relation to system stiffness, the SR is 

varied over several orders of magnitude and the performance of SAS is compared to that 

of conventional ODE integrators. The variation in the order of magnitude of the SR is 

achieved through the variation of the pre-exponential factor (𝐴).. 

 This artificial variation can generate non-physical results - for example, negative 

absolute temperatures -, however, this does not interfere with this numerical analysis. 

 

7.  Results and discussion 

 

7.1 Model verification 

 

SAS is verified by comparison with the analytical solution of the linear (and simpler) 

model, and with results from other numerical methods. Case study a (Section 5) is used 

in the comparison, with the following modifications: ℎ𝑟 and 𝐾 evaluated at a constant 

temperature of 597.2035 K ??? and inclusion of the hypothetical kinetic data...  .  

Thus, following the methodology of Section 6.1, two discretization levels are considered, 

𝑘𝑚𝑎𝑥 = 10
4 and  𝑘𝑚𝑎𝑥 = 1. As illustrated in Fig. 2, excellent agreement was obtained 

for 𝜁 at the reactor outlet, for the different discretization levels studied. 

 

Insert Figure 2 

Figure 2. 𝜁 at 𝐿, calculated with 𝑘𝑚𝑎𝑥 = 10
4 and  𝑘𝑚𝑎𝑥 = 1, for case study a, with the 

following modifications: ℎ𝑟 and 𝐾 evaluated at a constant temperature of 597.2035 K 

??? and inclusion of the hypothetical kinetic data...   
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 Then, we proceed to investigate the SAS performance considering variable 𝑇𝑝 in 

calculating ℎ𝑟 and 𝐾.  Fig. 3 shows the predictions for 𝜁 profiles - numerical solutions of 

Eqs. (10)-(15) - from SAS and the ........... methods. 

 

Insert Figure 3 

Figure 3. 𝜁 profiles calculated with SAS (𝑘𝑚𝑎𝑥 = 10
4) and 4th order Runge-Kutta 

method, for case study a, with the following modifications: .....  .  

 

 As can be seen, excellent agreement was found between the different solution methods. 

 In Fig. 4, further comparisons for the conditions described for Fig. 3, with other 

numerical methods (explicit Euler, Heun, Ralston, and Runge-Kutta of 3rd and 5th order), 

also show excellent agreement. For the relative difference defined by Eq. (70), a 

maximum of 𝒪(10−1)% was found for 𝑇𝑓 and 𝑇𝑝, 

 ∆𝜁% =
𝜁OM−𝜁SAS

𝜁SAS
× 100 (70) 

Insert Figure 4 

Figure 4.: 𝜁 profiles (A) − (J); ∆𝜁% profiles (L,K).  Profiles for case study a, with the 

following modifications:... . For SAS, 𝑘𝑚𝑎𝑥 = 10
4, and for the other methods the 

sectioning was....   

 

 Fig. 5 presents a comparison of the computation time of different numerical methods, 

for integrating the model equations over the length of the reactor, under the conditions 

described in Fig. 4.  

Insert Figure 5 
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Figure 5.  Computation time for integrating the model equations over 𝐿, under conditions 

described in Fig. 4.  

 

 As indicated in Fig. 5, the SAS calculation time is approximately half that observed in 

the solution by the explicit Euler method. The advantage of the SAS is therefore evident: 

not only is it unconditionally stable - unlike the explicit Euler method that can diverge 

depending on the step size -, but it also requires significantly less computation time when 

compared with the other numerical methods.  

 

7.2 Model validation 

 Following the methodology described in Section 6.2, the (partial) validation of this 

model is performed by comparison with TGA data from Teklay et al. (2014) - case study 

b. For a heating rate of 40 K/min, Fig. 6 shows the SAS results using the dehydrolyxation 

kinetic parameters (KP) from Table 2 and the TGA data from Teklay et al. (2014). 

` 

Table 2. Kinetic parameters for kaolinite dehydrolyxation from different sources. 

 

Insert Table 2 

 

Insert Figure 6 

 

Figure 6.  Comparison of model predictions with TGA data (Teklay et al., 2014) at the 

heating rate of 40 K/min.   
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 As seen in Fig. 6, despite the simplification in the kaolinite calcination kinetics - 

reduced in the analysis, to the kaolinite dehydroxylation step -, for sets K1 − K3 there is 

a reasonable agreement between the model predictions and the TGA data, (partially) 

validating the model. Full validation however requires comparison with MBR data. 

 

 Figs. 7A and 7B show a comparison between results of the present model and more 

complex models, for particle temperature as a function of residence time, at a heating rate 

of 40 K/min........  

Insert Figure 7 

 

Figure 7. (A) Particle temperatures predicted by the present model and the model of 

Teklay et al. (2014), at a heating rate of 40 K/min.; (B) Particle temperatures predicted 

by the present model and the model of Medeiros et al. (2021), at a heating rate of 40 

K/min. 

 

 As can be seen, the results agree satisfactorily, enabling cross-validation between the 

present model and the others mentioned. Note, however, that the model by Teklay et al. 

(2014) - more complex in the description of the phenomena in the solid phase and the 

chemical kinetics of the flash calcination of kaolinite - is intended for the simulation of 

the calcination of kaolinite in a fluidized bed reactor (for which τ should be interpreted as 

the “clock” team). Medeiros et al. (2021). 

 This good prediction capacity in relation to the more complex models analyzed is 

discussed in Section 7.4. 

 

7.3  Numerical analysis 
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 In this section, a numerical analysis of the SAS is developed, aiming at the following 

aspects: stability, consistency and convergence, round-off and linearization errors, as well 

as the ability to solve stiff problems. 

 

7.3.1 SAS stability 

 By definition, 𝜑𝑘−1 > 1 and Py𝑘−1
′ > 0. Thus, from Eqs. (34c,d) and (36), we have 

𝑟𝑙,𝑘−1 < 0  (𝑙 = 1 − 3). Therefore, following the methodology in Section 6.3,  it can be 

concluded that the implementation of SAS in the form of Eqs. (46)-(48) is unconditionally 

stable, since a perturbation on a single value of 𝜁𝑘−1 produces a variation in subsequent 

values that does not increase step by step, regardless of the value of Δ𝜏  (Gear, 1971?).  

 

7.3.2 Consistency and convergence 

 Following the methodology of Section 6.4, the SAS in continuos variables - Eqs. (54)-

(61) - is substituted into the model equations, Eqs. (10)-(15). It is shown in Appendix A 

that by carrying out this substitution, each equation in the model is satisfied. Thus, for 

∆𝜏 → 0, SAS converges to the exact solution and therefore consistency is demonstrated.  

 Since the stability of SAS has already been demonstrated, these results allow us to 

conclude - according to Section 6.4 - that SAS is a consistent and convergent numerical 

scheme. 

 

7.3.3 Round-off error  

 Fig. 8(A) presents the estimates of absolute round-off error for 𝜁, as a function  

of 𝑘𝑚𝑎𝑥 , for case study a, with the following modifications: .................., .  
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The results are presented according to the methods described in Section 6.5.1: A 

(markers), and B (solid and dashed lines for random and non-random round-off errors, 

respectively). Using method B, the round-off error was estimated by comparing the SAS 

at each 𝑘𝑚𝑎𝑥  considered (101 to 108) with the exact solution when 𝑘𝑚𝑎𝑥 = 1. These 

calculations were carried out considering an average (and constant) 𝑇𝑝 in ℎ𝑟 and 𝐾.  

 

Insert Figure 8(A) 

 

Figure 8 (A). Estimates of absolute round-off error for 𝜁 (markers), at 𝑧 = 𝐿

2
 , as a function  

of 𝑘𝑚𝑎𝑥 , for case study a, with the following modifications: ..................,, solid and dashed 

lines for random and non-random round-off errors, respectively.  

 

As can be seen, for 𝑘𝑚𝑎𝑥 > 10
4 the values obtained with method B are located at 

intermediate points to those obtained with method A, thus demonstrating consistency. 

 

 Figs. 8(C)-(E) presents the 𝜁 profiles for the conditions described for Fig. 8(A) as a 

function of 𝑘𝑚𝑎𝑥 . 

Insert Figures 8(C)-(E) 

 

 Interestingly, in Figs. 8(C)-(E) the estimated round-off error presents regular behavior, 

only when 𝑘𝑚𝑎𝑥  > 104. This is due to the fact that for 𝑘𝑚𝑎𝑥 > 10
4, SAS maintains a 

pattern in the 𝜉 profile, that is refined as 𝑘𝑚𝑎𝑥  increases.  

 

7.3.4 Linearization error 

 Fig. 8(B) presents the estimates of the linearization error for 𝜁, as a function of 𝑘𝑚𝑎𝑥 ,  
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for case study a, with the following modifications: .................., . The results were 

obtained according to the methodology in Section 6.5.2, considering 𝑃 = 108. 

 

Insert Figure 8(B) 

 

Figure 8 (B). Estimates of linearization error for 𝜁 (markers), at 𝑧 = 𝐿

2
 , as a function  of 

𝑘𝑚𝑎𝑥 , for case study a, with the following modifications: .................., 

  

 Fig. 9(A) presents the root mean squared linearization error for 𝑇𝑓 as a function of  

𝑘𝑚𝑎𝑥
−1  for the conditions described for Fig. 8(B). The calculations were performed  

following the methodology described in Section 6.5.2, considering 𝑃 = 108 and variable 

𝑇𝑝 in ℎ𝑟 and 𝐾.  

Insert Figure 9(A) 

 

 Figs. 9(B)-(D) details in a semilogarithmic scale, the behavior of the linearization error 

for large values of 𝑘𝑚𝑎𝑥 .  

 

Insert Figures 9(B)-(D) 

 

 As discussed in Appendix B, for very large values of 𝑘𝑚𝑎𝑥 , exact knowledge of this 

behavior is only accessible through theoretical analysis. However, observing the behavior 

of RMSE𝜁;𝑘𝑚𝑎𝑥 in these figures, we can consistently infer the theoretical results Eqs. (B1) 

and (B2). 

 Among the various functions proposed (see Supplementary Material) to adjust  

RMSE𝜉;𝑘𝑚𝑎𝑥 as a function of 𝑘𝑚𝑎𝑥−1, the hyperbolic sine function  
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𝑓(𝑘𝑚𝑎𝑥
−1 ) = 𝑎 sinh(𝑘𝑚𝑎𝑥

−1 )  (71) 

showed an 𝑅2 = 0.9999 for all 𝜁, with RMSE𝜁;𝑘𝑚𝑎𝑥 of  5.606 × 10−6,  

8.074 × 10−6 and  3.441 × 10−7 for 𝜁 = 𝑇𝑓, 𝑇𝑝 and 𝑋, respectively. When compared  

with other proposed functions, this function does not present the smallest RMSE, 

however, it is of interest because it has the theoretical properties 𝑃1  and 𝑃2  (Appendix 

B), as well as it presents the expected increase in RMSE𝜁;𝑘𝑚𝑎𝑥 for 𝑘𝑚𝑎𝑥
−1  approaching 1 - 

with the exception of 𝑘𝑚𝑎𝑥 < 10
2, as will be seen below -. 

 In Figs. 9(B)-(D) the solution when 𝑘𝑚𝑎𝑥 < 10
2 does not represent the physical 

behavior of the problem under study. For 𝑘𝑚𝑎𝑥 > 10
2 the phenomena are properly 

described and refinement is obtained as 𝑘𝑚𝑎𝑥  increases. Moreover, a limiting 

discretization level with  𝑘𝑚𝑎𝑥 = 10
7  should be adopted considering an error control 

strategy with the machine error three orders of magnitude lower than the linearization 

error.  

From the previous results and Figs. ???, it can be concluded that the analysis meets  

item (e) of the methodology in Section 6.5.2 and therefore can be completed. 

 As an application, the exact solution for the position in the middle of the reactor will 

be estimated for case study??, with the following modifications:......... Thus, considering 

𝑘𝑚𝑎𝑥 = 10
2 - the lower limit of the linear region in Fig.??-  the absolute linearization 

errors for 𝑇𝑝, 𝑇𝑓 and 𝑋 are 1.67447, 1.59637 and 0.00143172, respectively. On the other  

hand, the corresponding round-off errors at the same discretization level are 

2.27374 × 10−13, zero and zero, respectively. Therefore, at 𝐿
2
, the exact solution can be 

estimated as (696.774 ±  1.67447) K, (723.847 ± 1.59637) K and (0.486343 ±

0.00143172) for 𝑇𝑝, 𝑇𝑓 and 𝑋, respectively,  

                                                                              

7.3.5 Stiffness ratio (SR)  
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 Following the methodology of Section 6.6, Table 3 lists the order of magnitude of SR 

that the different numerical methods were able to integrate for the case study??, with the 

following modifications:......... 

 

Insert Table 3 

 

Table 3. Performance of different ODE solvers at different SR, for integration of model 

equations along the length of the reactor, for case study ??, with the following 

modifications...  

 

 Table 3 clearly shows the superior performance of SAS, followed by the variable-step 

methods - ODE23s and ODE15s - and the other methods

 

Insert Figure 10 

 

Notably, SAS was able to integrate for all tested SRs  (i.e., up to SR = 1035). Also, the 

implicit variable step methods - ODE23s and ODE15s - stand out for solving very stiff 

systems, with SR = 1016.  

 Figure 10 illustrates, the computation time as a function of the stiffness ratio, for 

ODE23s and ODE15s for the conditions described for Table 3. 

 

Figure 10. Computation time as a function of SR, for ODE23s and ODE15s, for the 

conditions described for Table 3. 
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 Depending on the SR, the calculation time for ODE solvers can become very high. 

This can be easily seen in Fig. 10 where the ODE15s calculation time presents an 

exponential behavior.  

In Tests 10, 11 and 12, with SR 1 × 1030, 1 × 1031 and 1 × 1032, respectively, the 

ODE15s computation time was 0.179294, 0.624987 and 9.581942 s, respectively. In order 

to make the behavior of computation time clear, Test 13 (SR =  1 × 1033) was not shown 

in Fig. 10, however, its calculation time was 676.732586 s with 5,735,317 steps. It should 

then be considered notable that for SR =  1 × 1033, SAS integrated the system in 

5.514555 s with 100,000 intervals. 

 The exceptional performance of SAS can be explained based on its unconditional 

stability (Section 6.1) together with a relatively small number of operations in each 

interval. Hence, SAS has the capability to address stiff problems both numerically and 

computationally. 

 

7.4  Scale analysis for MBR model selection  

Model selection must consider accuracy and required resources; thus, the simplest 

model with sufficiently accurate results is indicated (Çengel and Ghajar, 2011). In the 

literature, there are several detailed studies on lumped model selection criteria for 

different types of moving bed heat exchangers (Depew and Farbar, 1963; Kern and 

Hemmings, 1978; Fan and Zhu, 1998; Saastamoinen, 2004; Haim and Kalman 2008; 

Bertoli et al., 2017, 2020). In the present work, a rough analysis, based only on scale 

analysis, will be sufficient to understand the model selection. 

Thus, based on the scales in Table 1 and the assumptions made, it can be said that the 

present model - to lumped parameters in both phases - is more suitable for systems with 

negligible mass transfer effects, and small Bi and small DaIV.  
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7.5   SAS selection criteria - quantitative analysis 

  

 To verify the previous statements based on scale analysis, as well as to obtain some 

quantitative information about the SAS selection criteria, a comparative analysis of SAS 

was developed with a distributed parameter model (DM) in the solid phase - Medeiros et 

al. (2021) -, described in Appendix C for completeness. 

Insert Table 4 

Insert Figure 11 

 

8.  Conclusion 

 

The continuous search for improving and optimizing reaction processes in moving 

beds motivates research in modeling and simulation. Thus, this work could contribute in 

the following ways: 

• Develops a local analytical solution for a kinetic and heat transfer lumped model of a 

tubular MBR, with a first-order chemical reaction occurring uniformly in the particles. 

• Implements the local solution in the FAM framework. 

• Develops an unconditionally stable,  consistent and convergent  numerical scheme for 

a kinetic and heat transfer lumped model of a tubular MBR, with a first-order chemical 

reaction occurring uniformly in the particles. 

• Develops a numerical scheme capable of fast integration of model equations, for 

systems with stiffness ratio SR = 1033 (highest SR tested). 

• Demonstrates the accuracy of the SAS in comparison with other methods, with the 

advantage of simple programming. 

• Develops a specific methodology for SAS error analysis. 
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• Demonstrates analytically the unconditional stability of SAS in the implemented 

form. 

• Demonstrates analytically the consistency and convergence and of the solution. 

• Generalizes a previous method for proving consistency of SAS. 

• Improves the physical understanding of model parameters through scale analysis. 

• Performs model validation through comparison with experimental data. 

• Presents a solution that can be used as a benchmark for MBR simulations. 

Finally, it is noteworthy that the solution obtained performs stable, fast, and accurate 

with a minimum of computation time and memory. 
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Nomenclature 

 

𝐴  pre-exponential factor, (
1

s
) 

𝐴𝑝  particle area = 4𝜋𝑅𝑝
2, (m2) 

𝑎1  wall area per unit volume of the reactor =
2

𝑅
, (

1

𝑚
) 

Bi  compound Biot number = Bi𝑝 + Bi𝑟 , (−) 

Bi𝑝 particle Biot number for convection heat transfer =
3ℎ𝑝𝑅𝑝

𝑘𝑝
, (−) 

Bi𝑟  particle Biot number for radiation heat transfer =
3ℎ𝑟𝑅𝑝

𝑘𝑝
, (−) 
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𝐵  =
Bi

3
= 𝐵𝑝 + 𝐵𝑟, (−) 

𝐵𝑝  =
Bi𝑝

3
, (−) 

𝐵𝑟  =
Bi𝑟

3
, (−) 

𝑏𝑙,𝑘−1  SAS coefficient defined by Eqs. (37a), (41a) and (42a), (−) 

𝑏𝑙,𝑘−1
′   modified SAS coefficient defined by Eqs. (37b), (41b) and (42b), (−) 

C =  cooling 

𝐶𝐴 concentration of species A, (
mol

m3
) 

𝑐  specific heat at constant pressure, (
J

kg·K
)  

DPM MBR distributed parameter model of Medeiros et al.,  

DaIV    

 

Damkӧhler fourth number for a first order irreversible chemical reaction 

=
(−∆𝐻𝑅)𝐾𝐶𝐴𝑖𝑅𝑝

2

𝑘𝑝𝑇𝑝𝑖
, (−) 

Dadev external thermal Damkӧhler number for pyrolysis/devolatilization, for 

convection heat transfer =
(−∆𝐻𝑅)𝐾𝐶𝐴𝑖𝑅𝑝

3ℎ𝑝𝑇𝑝𝑖
, (−) 

Dadev,𝑘−1 =
(−∆𝐻𝑅)𝐾𝑘−1𝐶𝐴𝑖𝑅𝑝

3ℎ𝑝𝑇𝑝𝑖
, (−)  

𝐷𝑝  solids thermal diffusivity =
𝑘𝑝

𝜌𝑝𝑐𝑝 
, (
𝑚2

s
) 

𝑑𝑝  particle diameter, (m) 

𝐸  activation energy, (
J

mol
) 

𝐸𝜉;𝑘𝑚𝑎𝑥 error for 𝜉 calculated with 𝑘𝑚𝑎𝑥 intervals, (−) 

𝐸𝑃%  relative error between SAS and DM, defined by Eq. (72), (−) 

FAM = finite-analytic method 

Fo′   modified Fourier number =
𝐷𝑝�́�

𝑅𝑝
2 , (−) 
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𝑔  dimensionless heat source, defined by Eq. (5), (−) 

𝑔𝑘−1  linearized dimensionless heat source defined by Eq. (21), (−) 

H  =  heating 

∆𝐻𝑅  enthalpy of reaction, (
J

mol
) 

ℎ𝑓  fluid-wall convective heat transfer coefficient, (
W

m2·K
) 

ℎ𝑝 fluid-particle convective heat transfer coefficient, (
W

m2·K
) 

ℎ𝑟  wall-particle radiative heat transfer coefficient = 𝜎𝜖𝑝(𝑇𝑤
2 + 𝑇𝑝

2)(𝑇𝑤 +

𝑇𝑝), (
W

m2·K
) 

ℎ𝑟,𝑘−1 = 𝜎𝜖𝑝(𝑇𝑤
2 + 𝑇𝑝,𝑘−1

2 )(𝑇𝑤 + 𝑇𝑝,𝑘−1), (
W

m2·K
) 

𝐾  reaction rate constant = 𝐴𝑒
−

𝐸

𝔑𝑇𝑝, (
1

s
) 

𝐾𝑘−1 = 𝐴𝑒
−

𝐸

𝔑 𝑇𝑝,𝑘−1, (
1

s
)  

𝑘    interval index 

𝑘𝑚𝑎𝑥  number of intervals in which the reactor is axially sectioned 

𝑘𝑝  solids thermal conductivity, (
W

m2·K
) 

LHS = left-hand side 

𝐿  reactor length, (m) 

MBR  = moving bed reactor 

�̇�𝑓  fluid mass flow rate = 𝜌𝑓𝑣𝑓𝜋𝑅
2, (

kg

s
) 

�̇�𝑝 solids mass flow rate = 𝜌𝑝𝑣𝑝(1 − 𝜀)𝜋𝑅
2, (

kg

s
) 

𝑛𝑣  particle number density =
6�̇�𝑝 

𝜌𝑝𝑣𝑝𝜋2𝑅2𝑑𝑝
3 =

1−𝜀

𝑉𝑝
,  (

1

m3
) 

ODE = ordinary differential equation 
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𝒪(𝑎) order a 

𝑃  largest element of 𝑆, (−) 

Py pyrolysis first number =
𝑘𝑝

𝜌𝑝𝑐𝑝𝑅𝑝
2𝐾
= Th−2, (−) 

Py′ pyrolysis second number for convection heat transfer =
3ℎ𝑝

𝜌𝑝𝑐𝑝𝑅𝑝𝐾
, (−) 

Py𝑘−1
′   =

3ℎ𝑝

𝜌𝑝𝑐𝑝𝑅𝑝𝐾𝑘−1
, (−) 

RHS = right-hand side 

RMSE  = root mean squared error    

𝑅  reactor inner radius, (m) 

𝔑  gas constant = 8.314 (
J

mol·K
) 

𝑅𝑝  particle radius, (m) 

𝑟  radial position within the particle, (m) 

𝑟𝑙,𝑘−1  root defined by Eqs. (34) and (36), (−) 

𝑟𝑤𝑠  wall area / particulate phase area =
2𝑅𝑝

3𝑅(1−𝜀)
, (−) 

SAS  = semi-analytical solution 

SR  = stiffness ratio 

𝑆   set defined in Section 6.2.2  

TGA = thermogravimetric analysis 

𝑇  temperature, (K) 

Th thermal Thiele modulus = 𝑅𝑝√
𝐾

𝐷𝑝
, (−) 

�́� particle residence time =
𝑧

𝑣𝑝
, (s)    

𝑡2   �́� scale defined in Table 1, (s) 

𝑉  reactor volume, (m3) 
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𝑉𝑝  particle volume =
4

3
𝜋𝑅𝑝

3, (m3) 

𝑣𝑓  superficial velocity of the conveyor fluid, (
m

s
) 

𝑣𝑝 particle axial velocity, (
m

s
) 

𝑋  reactant conversion, (−) 

𝑧  axial spatial coordinate, (m) 

 

Greek Symbols 

𝛼  = 𝛼𝑓 + 𝛼𝑝 = 𝛼𝑝𝜔, (−) 

𝛼𝑓 = 𝛼𝑝(𝜔 − 1), (−) 

𝛼𝑝  = Bi𝑝𝛽, (−) 

𝛽  capacity rate ratio =
�̇�𝑝𝑐𝑝

�̇�𝑓𝑐𝑓
=
𝜌𝑝𝑣𝑝𝑐𝑝(1−𝜀)

𝜌𝑓𝑣𝑓𝑐𝑓
, (−) 

∆𝜁%   relative difference of 𝜁 between OM and SAS, defined by Eq. (70),  (−) 

Δ𝜏  dimensionless time step = 
3ℎ𝑝𝐿

𝜌𝑝𝑣𝑝𝑐𝑝𝑅𝑝𝑘𝑚𝑎𝑥
, (−) 

ɛ  void fraction = 1 −
�̇�𝑝

𝜌𝑝𝑣𝑝𝜋𝑅2
, (−) 

𝜖 surface emissivity, (−) 

𝜖𝑀 machine precision = 2.220446049250313 × 10−16, (−) 

𝜁  generic variable = 𝑇𝑓, 𝑇𝑝 or 𝑋, (−) 

𝜃 dimensionless temperature  =
𝑇−𝑇𝑖

𝑇𝑝𝑖
, (−) 

𝜃𝑓(∞) defined by Eq. (16), (−) 

𝜃𝑝(∞) defined by Eq. (17), (−) 

𝜉 dimensionless particle radial coordinate =
𝑟

𝑅𝑝
, (−)  
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𝜌  density, (
kg

m3
) 

𝜎  Stefan-Boltzmann constant = 5.6697 × 10−8 (
W

m2·K4
) 

𝜏  dimensionless residence time =
3ℎ𝑝

𝜌𝑝𝑐𝑝𝑅𝑝
�́�, (−) 

𝜏𝐿  dimensionless residence time at 𝐿, (−) 

𝜑         = 1 +
ℎ𝑟

ℎ𝑝
, (−)  

𝜑𝑘−1 = 1 +
ℎ𝑟,𝑘−1

ℎ𝑝
, (−) 

𝜔 = 1 + 𝑟𝑤𝑠
ℎ𝑓

ℎ𝑝
, (−)  

 

Subscripts 

𝑓  fluid 

ℎ𝑜𝑚 homogeneous 

𝑖  inlet 

𝑗  discrete point 𝑗 in 𝜏  

𝑘  discrete point 𝑘 in 𝜏 

𝑙  root index 

𝑝  particle 

𝑝𝑎𝑟𝑡 particular 

𝑝𝑚  average taken over an interval, for the particle 

𝑝𝑐 particle center 

𝑝𝑠  particle surface 

𝑤  wall 

 

Superscripts 
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𝐿 linearization 

OM other method 

𝑅 machine rounding 

𝑇  total 
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Appendix A – Verification of SAS in continuous variables 

 

     Initially, it is easy to see that the boundary conditions Eqs. (13)-(15) are satisfied by 

Eqs. (54)-(56) and, to verify the governing equations, we substitute into Eqs. (10)-(12) 

the solution in continuous variables, Eqs. (54)-(61): 

•  Substituting Eq. (54) in the LHS of Eq. (10) and developing, we have  

𝑑𝑋(𝜏)

𝑑𝜏
= −𝑟3𝑒

∫ 𝑟3
𝜏
0 𝑑𝜏 = 𝑟3(𝑋(𝜏) − 1) =

1−𝑋(𝜏)

Py′
≡ RHS of  Eq. (10)           (A1a − d) 

• Substituting Eq. (55) in the LHS of Eq. (11) and developing, we have 

1

𝛽

𝑑𝜃𝑓(𝜏)

𝑑𝜏
=
1

𝛽
∑ 𝑟𝑙𝑏𝑙𝑒

𝑟𝑙𝜏3
𝑙=1 =

1

𝛽
(𝑟1

𝑏3(𝑟3−𝑟2)𝑒
𝑟3𝜏+(𝛽𝜔+𝑟2)(𝜃𝑓(𝜏)−𝜃𝑓(∞))−𝛽(𝜃𝑝(𝜏)−𝜃𝑝(∞))

𝑟2−𝑟1
+

𝑟2
𝑏3(𝑟3−𝑟1)𝑒

𝑟3𝜏+(𝛽𝜔+𝑟1)(𝜃𝑓(𝜏)−𝜃𝑓(∞))−𝛽(𝜃𝑝(𝜏)−𝜃𝑝(∞))

𝑟1−𝑟2
+ 𝑟3𝑏3𝑒

𝑟3𝜏) =

𝜃𝑝(𝜏) − 𝜃𝑝(∞) + 𝜔 (𝜃𝑓(∞) − 𝜃𝑓(𝜏)) ≡ RHS of  Eq. (11)  (A2a − d) 

• Substituting Eq. (56) in the LHS of Eq. (12) and developing, we have 

𝑑𝜃𝑝(𝜏)

𝑑𝜏
=
1

𝛽
∑ 𝑟𝑙

2𝑏𝑙𝑒
𝑟𝑙𝜏 +𝜔∑ 𝑟𝑙𝑏𝑙𝑒

𝑟𝑙𝜏 =3
𝑙=1

3
𝑙=1

1

𝛽
∑ 𝑟𝑙

2𝑏𝑙𝑒
𝑟𝑙𝜏 +3

𝑙=1 𝜔
𝑑𝜃𝑓(𝜏)

𝑑𝜏
=
𝑟3
2−(𝑟1+𝑟2)𝑟3+𝑟1𝑟2

𝛽
𝑏3𝑒

𝑟3𝜏 − (𝜔(𝑟1 + 𝑟2) +

𝑟1𝑟2

𝛽
) (𝜃𝑓(𝜏) − 𝜃𝑓(∞)) − (𝑟1 + 𝑟2) (𝜃𝑝(𝜏) − 𝜃𝑝(∞)) + 𝜔

𝑑𝜃𝑓(𝜏)

𝑑𝜏
=

𝑔(𝜏) + (𝛽𝜔2 + 1)(𝜃𝑓(𝜏) − 𝜃𝑓(∞)) + (𝛽𝜔 + 𝜑) (𝜃𝑝(𝜏) − 𝜃𝑝(∞))  +

𝜔 (𝛽𝜔 (𝜃𝑓(∞) − 𝜃𝑓(𝜏)) + 𝛽 (𝜃𝑝(𝜏) − 𝜃𝑝(∞))) = 𝑔(𝜏) + 𝜃𝑓(𝜏) −

𝜃𝑓(∞) − 𝜑 (𝜃𝑝(𝜏) − 𝜃𝑝(∞)) ≡ RHS of  Eq. (12)           (A3a − e) 
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     Therefore, the SAS in continuous variables satisfies the governing equations and the 

boundary conditions, thus constituting an exact representation - in integral form - of the 

system of model equations. This result is therefore a proof of consistency of the solution. 

    

Appendix B – Properties of interest of the SAS inearization error for 𝒌𝒎𝒂𝒙 → ∞ 

 

 As seen in Section 6.5.2, it is of interest to know the behavior of the SAS 

linearization error as a function of the number of intervals. However, for very large values 

of 𝑘𝑚𝑎𝑥 , it is difficult at present - due to the large associated machine error or even 

technological limitations - to know exactly this behavior using only computational 

resources. Thus, the theoretical analysis of the SAS for this limit, reveals the following 

properties of interest: 

𝑃1 : lim
𝑘𝑚𝑎𝑥→∞

𝐸𝜉;𝑘𝑚𝑎𝑥
𝐿 = 0  (B1) 

which follows immediately from the results in Appendix A; and 

𝑃2 : lim
𝑘𝑚𝑎𝑥→∞

𝒪 (
𝑑𝐸𝜉,𝑘𝑚𝑎𝑥

𝐿

𝑑𝑘𝑚𝑎𝑥
−1 ) <𝒪(𝑘𝑚𝑎𝑥

2 )  (B2) 

as a necessary result so that lim
𝑘𝑚𝑎𝑥→∞

𝑑𝐸𝜉,𝑘𝑚𝑎𝑥
𝐿

𝑑𝑘𝑚𝑎𝑥
 can be null in the following derivative 

lim
𝑘𝑚𝑎𝑥→∞

𝑑𝐸𝜉,𝑘𝑚𝑎𝑥
𝐿

𝑑𝑘𝑚𝑎𝑥
= − lim

𝑘𝑚𝑎𝑥→∞
(

1

𝑘𝑚𝑎𝑥
2

𝑑𝐸𝜉,𝑘𝑚𝑎𝑥
𝐿

𝑑𝑘𝑚𝑎𝑥
−1 )  (B3) 

 Note that the previous properties 𝑃1 and 𝑃2  follow, by extension, to RMSE𝜉;𝑘𝑚𝑎𝑥. 

 

Appendix C –  MBR distributed parameter model (Medeiros et al., 2021) 

 

The MBR model studied by Medeiros et al. (2021) (DM) is to distributed parameters 

in the particles and to lumped parameters in the fluid phase, and the assumptions on which 
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it is based are the same as those in Section 2 of this study, except that the thermal 

conductivity of the particle is considered finite. The equations of  DM are written below: 

 Governing equations 

𝜕𝑋

∂Fo′
= Th2(1 − 𝑋)     (C1) 

𝑑𝜃𝑓

dFo′
= 𝛼𝑝 (𝜃𝑝𝑠 − 𝜃𝑝(∞)) + 𝛼(𝜃𝑓(∞) − 𝜃𝑓)  (C2) 

𝜕𝜃𝑝

𝜕Fo′
=

1

𝜉2
𝜕

𝜕𝜉
(𝜉2

𝜕𝜃𝑝

𝜕𝜉
) + 𝐺  (C3) 

Where 𝑋 = 𝑋(𝜉, Fo′), 𝜃𝑓 = 𝜃𝑓(Fo
′), 𝜃𝑝 = 𝜃𝑝(𝜉, Fo

′). 

 Particle boundary conditions  

At 𝜉 = 0, Fo′ > 0:   
𝜕𝜃𝑝

𝜕𝜉
|
(0,Fo′)

= 0 (C4) 

At 𝜉 = 1, Fo′ > 0:   −
𝜕𝜃𝑝

𝜕𝜉
|
(1,Fo′)

= 𝐵 (𝜃𝑝𝑠 − 𝜃𝑝(∞)) − 𝐵𝑝 (𝜃𝑓 − 𝜃𝑓(∞)) (C5) 

 And conditions at the reactor entrance 

At Fo′ = 0, ∀ 𝜉:  𝑋(𝜉, 0) = 0     (C6) 

At Fo′ = 0:  𝜃𝑓(0) = 0 (C7) 

At Fo′ = 0, ∀ 𝜉:  𝜃𝑝(𝜉, 0) = 0 (C8) 

 In the above equations, 𝜃𝑓(∞) and 𝜃𝑝(∞) are given by Eqs. (16) and (17), respectively, 

and 𝐺 is the dimensionless heat source term due to a first order irreversible chemical 

reaction  

𝐺 = DaIV (1 − 𝑋)     (C9) 

Where 𝐺 = 𝐺(𝜉, Fo′), and the reaction rate constant is dependent on the temperature 

within the particle, according to the Arrhenius equation: 

𝐾(𝜃𝑝(𝜉, Fo′)) = 𝐴 exp (
−𝐸

𝔑 𝑇𝑝
) = 𝐴 exp (

−𝐸

𝔑𝑇𝑝𝑖(𝜃𝑝+1)
)  (C10a, b) 

 Medeiros et al. (2021) semi-analytically solved this model introducing the 

additional simplification of constant rate inside the particle in each interval - calculated 

https://doi.org/10.26434/chemrxiv-2024-t30tv ORCID: https://orcid.org/0000-0002-7247-2934 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-t30tv
https://orcid.org/0000-0002-7247-2934
https://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

at the corresponding volumetric average particle temperature -. In the present study, this 

simplification is not made and the model equations are solved using CFD resources, as 

described in Section 7.4. 

 

Table 1 - 𝑡′ scales of phenomena for co-current vertical MBR 

Scale Associated phenomenon 

𝑡1 ≡
𝑅𝑝
2

𝐷𝑝
 heat conduction at a distance 𝑅𝑝 within the particle 

𝑡2 ≡
𝜌𝑝𝑐𝑝𝑅𝑝
3ℎ𝑝

 H of the particle by fluid-particle convection 

𝑡3 ≡
𝜌𝑝𝑐𝑝𝑅𝑝
3ℎ𝑟

 H of the particle by wall-particle radiation heat transfer 

𝑡4 ≡
𝜌𝑓𝑐𝑓𝑣𝑓
𝑛𝑣𝐴𝑝ℎ𝑝𝑣𝑝

 C of the fluid by fluid-particle convection 

𝑡5 ≡
𝜌𝑓𝑣𝑓𝑐𝑓
𝑎1ℎ𝑓𝑣𝑝

 H of the fluid by fluid-wall convection 

𝑡6 ≡
𝜌𝑝𝑐𝑝𝑇𝑝𝑖

(−∆𝐻𝑅)𝐾𝐶𝐴𝑖
 H of the particle by the first-order chemical reaction 

𝜏7 ≡
1

𝐾
 first order chemical reaction in the solid phase 
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