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Abstract

Studying the kinetics of long-timescale rare events is a fundamental challenge in molec-

ular simulation. To address this problem, we propose an integration of two different

rare-event sampling philosophies: biased enhanced sampling and unbiased path sam-

pling. Enhanced sampling methods e.g. metadynamics can facilitate enthalpic bar-

rier crossing by applying an external bias potential. On the contrary, path sampling

methods like weighted ensemble (WE) lack explicit mechanisms to overcome energetic

barriers. However, they can accelerate the exploration of rugged free energy surfaces

through trajectory resampling. We show that a judicious combination of the weighted

ensemble with a metadynamics-like algorithm, can synergize the strengths and mitigate

the deficiencies of path sampling and enhanced sampling approaches. The resulting in-

tegrated sampling (IS) algorithm improves the computational efficiency of calculating

the kinetics of peptide conformational transitions, protein unfolding, and the dissocia-

tion of a ligand-receptor complex. Furthermore, the IS approach can direct sampling

along the minimum free energy pathway even when the collective variable used for bias-

ing is suboptimal. These advantages make the integrated sampling algorithm suitable

for studying the kinetics of complex molecular systems of biological and pharmaceutical

relevance.

1 Introduction

Molecular dynamics (MD) simulations have found widespread applications in Chemistry,

Biology, and Material Sciences due to their ability to study the mechanisms of molecular

processes in atomistic resolution. There are two longstanding challenges in the field of MD

simulations pertaining to the limited timescales and lengthscales accessible to conventional

all-atom MD techniques.1 The timescale problem stems from the presence of high energy bar-

riers preventing transitions between interesting metastable confirmations in computationally

accessible simulation timescales. In addition, the slow diffusion across rugged free energy
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landscapes in systems such as protein folding and ligand-receptor binding also contributes

to the increase of the transition times.

Several importance sampling algorithms have been developed over the past few decades

to address this timescale problem in MD simulation. These methods can be categorized into

two major groups: biased enhanced sampling and unbiased path sampling. In enhanced

sampling approaches, an external biasing potential accelerates the dynamics and the escape

from deep free energy minima.2 Methods in this category include umbrella sampling (US),3

metadynamics (MetaD),4,5 adaptive biasing force (ABF),6 Gaussian Accelerated Molecular

Dynamics (GaMD),7 etc. Contrarily, path-sampling algorithms avoid the application of ex-

ternal bias potential. They use the statistical properties of the unbiased trajectory ensembles

to increase sampling in low-probability regions of the conformational space. Methods in this

category include transition path sampling (TPS),8,9 transition interface sampling (TIS),10

forward flux sampling (FFS),11,12 weighted ensemble (WE),13,14 milestoning,15,16 etc.

Although free energy landscapes provide a thermodynamic perspective, kinetics is often

important to get a complete mechanistic picture of molecular processes e.g. ligand-binding,

enzymatic reactions, heterogeneous catalysis, membrane permeation, and nucleation. The

consideration kinetics is particularly relevant in computational drug design as the efficacy of

small molecule drugs is better correlated with their residence time i.e. unbinding kinetics17–19

than the binding free energy which is usually used to screen lead molecules.20 While biased

enhanced sampling methods can successfully compute free energy landscapes, the external

bias distorts the natural dynamics of the system making it difficult to recover the correct

kinetics. Specialized variants of existing enhanced sampling methods (e.g. infrequent meta-

dynamics21 and GaMD7) have been designed in recent days for calculating kinetics. Such

methods have correctly predicted the kinetics of several molecular systems including drug-

target residence times (see e.g. Ref. 22, 23). However, these methods require one to apply

the bias conservatively to keep the transition states bias-free, a necessary condition for re-

covering the unbiased timescales.21 It therefore requires one to compromise significantly on
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the simulation efficiency.

Path sampling methods, contrarily, are unbiased by design and therefore the kinetics can

be directly recovered. Except for TPS and TIS which initiate trajectories from transition

regions, path sampling methods, in general, do not provide any explicit mechanism to over-

come high enthalpic barriers to escape from deep free energy minima. Consequently, the

overall computational costs of these methods are quite high. Therefore, one requires sev-

eral microseconds of MD simulation to compute unbinding rate constants of realistic drugs

molecules using either path sampling24–29 or enhanced sampling22,30–36 methods.

The fields of biased enhanced sampling and unbiased path sampling have developed inde-

pendently over the past few decades. In this work, we introduce an integrated sampling (IS)

approach that combines weighted ensemble with the enhanced sampling method on-the-fly

probability enhanced sampling (OPES).37 Specifically, we use the flooding variant38 of the

OPES algorithm as it is designed for calculating kinetics. The objective of this merger is to

combine the strengths and mitigate the deficiencies of individual algorithms and to increase

the efficiency of kinetics calculation from MD simulations. In our integrated approach, bias

potential and trajectory resampling are performed simultaneously. The external bias po-

tential facilitates the crossing of high energy barriers while the path sampling component

accelerates the diffusion across the rugged free energy landscape often encountered in bio-

physical systems. This allows one to apply the bias potential conservatively to avoid biasing

the transition state without having to compromise the efficiency of the simulation. It also

provides a mechanism to accelerate the dynamics in the transition region which can be quite

broad in many biophysical processes like protein folding and ligand binding. In the following

sections, we describe the theoretical underpinnings of OPES flooding, weighted ensemble,

and our integrated sampling algorithms, followed by the demonstration of our approach to

peptide conformational transitions, protein unfolding, and ligand-receptor unbinding.
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2 Theory

2.1 OPES-Flooding

OPES-flooding (OPESf) is an enhanced sampling algorithm for calculating kinetics of molec-

ular rare-events.38 It is based on the OPES algorithm37 which leads to a quicker convergence

of the bias deposited in the initial state compared to its predecessor, metadynamics.4,5 In

OPES, the bias potential V (s) is built along a low-dimensional collective variable space s

which is designed to encode the slow modes of the system. V (s) is constructed from an

on-the-fly estimate of the unbiased probability distribution P (s):

V (s) = − 1

β
ln

ptg(s)

P (s)
. (1)

where ptg(s) is the target distribution sampled in biased simulation. As the target distri-

bution we use the well-tempered distribution ptg(s) ∝ P (s)1/γ, where γ = β∆E. The ∆E

parameter dictates the maximum amount of bias that can be deposited during an OPES

simulation. The bias potential in the n-th iteration is given by

Vn(s) = (1− 1/γ)
1

β
ln

(
Pn(s)

Zn

+ ϵ

)
, (2)

where Pn(s) is the estimated unbiased marginal probability distribution along s at step n:

Pn(s) =
∑n

k wkGk(s, sk)/
∑n

k wk. Here Gk(s, sk) are Gaussian Kernels and wk is the weight

of k-th kernel computed as wk = exp(βVk−1(sk)). The Z and ϵ are a normalization factor and

a regularization term, respectively. They are introduced to ensure numerical stability. In

OPESf simulation, the ∆E is set to be lower than the barrier height one wishes to overcome.

In addition, an excluded region χexc(s, sexc) parameter is used to avoid biasing beyond the

threshold of s = sexc A careful choice of the ∆E and sexc parameter ensures that no bias is

deposited in the transition state. Under these conditions, unbiased transition time τ can be
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obtained by rescaling the biased simulation timescales:

τ =
Ntot∑
i

∆t exp(βV (si)) (3)

where ∆t is the integration timestep, si is the location of the system in the CV space at step

i, and Ntot is the total number of steps propagated to observe the transition.

2.2 Weighted Ensemble

Weighted ensemble (WE) is a path-sampling algorithm that accelerates the simulation of

rare events through statistical resampling of the trajectory ensemble. In this approach, one

stratifies the configuration space into multiple bins. Several trajectories (say N) are initiated

at the starting configuration. An initial weight (w1) of 1/N is assigned to each trajectory

segment. The progress of the simulation is monitored at a fixed time interval δt by projecting

the trajectory along a ”progress coordinate” which is equivalent to the CV (s) in enhanced

sampling. If a trajectory segment reaches a new bin it is stopped and some new trajectories

are initiated from its endpoint. The weight of the old (parent) trajectory is distributed

equally among the new (daughter) ones. This resampling is continued such that every

occupied bin contains exactly N trajectories. If more than N replicas enter a bin, the excess

ones are terminated and their weights are redistributed among the surviving trajectories.

This ensures that the total probability remains conserved while increasing sampling in less

probable regions of the conformational space. As no external bias is applied, the natural

dynamics of the system is preserved, making it possible to recover kinetic properties directly.

Unlike enhanced sampling where weights are assigned to configurations, WE method assigns

weights to trajectory segments making it possible to calculate the properties of the trajectory

ensemble through appropriate reweighting. However, the kinetics are computed, in general,

by establishing a non-equilibrium steady state by recycling trajectories from the target state.

The rate constant k and mean first passage time (MFPT) can be estimated by the “Hill
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relation”:39

k =
1

MFPT(A → B)
= flux(SS,A → B) =

∑
k wk

t
(4)

where SS refers to steady state, A and B are the initial and target states respectively, wk is

the weight of the k-th reactive trajectory and t is the simulation time. More sophisticated

algorithms such as the history-augmented Markov state modeling (haMSM)40 and the rate

from event durations (RED) scheme41 can provide a better estimation of the kinetics.

2.3 Integrated Sampling

Here we re-iterate our motivation behind integrating path sampling and enhanced sampling

algorithms. Enhanced sampling methods are efficient in crossing enthalpic barriers due to

their bias deposition protocol which elevates the potential energy of the metastable states

and helps escape free energy minima. However, they are not ideal for accelerating diffusive

processes on a free energy plateau. Methods like weighted ensemble perform well in ac-

celerating diffusive processes as demonstrated in its successful application to many protein

folding processes. However, they do not have any explicit mechanism to overcome enthalpic

barriers, making them suboptimal for escaping deep free energy minima, where the potential

energy increases sharply as a function of the progress coordinate (Fig. 1).

The OPES-flooding algorithm, in particular, has another limitation. As no bias should

be deposited in the transition state region one needs to have pre-existing knowledge about

the free energy landscape which can be very expensive to compute. This can be particularly

challenging in the case of a multi-state system or a process that involves escaping a deep

energy minimum followed by diffusion across a rough landscape. The latter situation is

pervasive in biomolecular processes. In such situations, the only option is to deposit bias in

the initial state minimum and wait for the system to cross the barrier and diffuse toward the

final state. This can be inefficient with large biomolecules where the transition time, despite

being small compared to the total first passage time, can be in the beyond microsecond

7

https://doi.org/10.26434/chemrxiv-2024-qr6kv ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qr6kv
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc-nd/4.0/


regime and computationally unaffordable. Furthermore, when the transition state region is

broad and diffusive, more time is spent traversing through the TS region than sampling in the

initial state basin. Such dynamics, however, cannot be accelerated through metadynamics-

like methods when one needs to ensure that no bias is deposited in the TS.

To overcome these issues we propose an integrated sampling scheme where OPES-flooding

and WE are performed simultaneously. The OPES-flooding simulation is performed to

converge the bias potential in the initial state free energy minimum. The weighted ensemble

resampling is performed thereafter to accelerate the diffusive dynamics while keeping the

OPESf bias (V (s)) constant (Fig. 1). The time rescaling procedure from Eq. 3 is then

performed on the trajectory traces of successful transitions (Fig. 2). A weighted average of

these rescaled transition times is computed from the trajectory ensemble as:

⟨τ⟩ =
∑M

k wkτk∑M
k wk

, (5)

where M is the total number of successful transitions sampled, τk is the rescaled time for the

k-th transition and wk is the corresponding weight. The mean first passage time (MFPT) is

estimated to be equal to this weighted average. The Eq. 5 is different from the Hill relation

(Eq. 4), commonly used to compute rate constants from WE simulations. As the transition

times are rescaled in our integrated sampling approach, two trajectory segments reaching the

final state in the same iteration can have vastly different τ based on their splitting-merging

history. Therefore, it is difficult to estimate the flux from the WE iterations alone. Further-

more, the rescaled transition times are dominated by the biased portion of the trajectory

as the rescaling factor scales exponentially with the bias. Our integrated scheme, therefore,

can be understood as a modified form of OPES-flooding where the weighted ensemble al-

gorithm is used only to accelerate the diffusive part of the dynamics. So, the kinetics can

be estimated with reasonable accuracy by performing a weighted average over the rescaled

transition times of all successful events.
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Unbiased
Simulation

Enhanced
Sampling

(OPES-flooding)

Path Sampling
(Weighted
Ensemble)

Integrated
Sampling

Figure 1: Schematic of different approaches of rare event sampling in molecules. The ob-
jective is to calculate the kinetics of going from state A to state B. In enhanced sampling
approaches such as OPES flooding, external bias (solid green shade) is deposited in the initial
state basin. In path sampling methods like weighted ensemble multiple trajectory segments
(blue arrows) are generated through a resampling procedure. In the integrated sampling
method, both are performed simultaneously.

Initial
State
A

Final
State
B

Trace

Figure 2: In weighted ensemble, many trajectory segments sample the conformational space.
In integrated sampling, the kinetics is only computed by tracing a successful transition back
to its origin in the initial state. One of the two such traces is depicted in a gray dashed
line. The unbiased transition time is then obtained by reweighting the timescale of the trace
based on the external bias deposited along its path.
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3 Results

In this section, we demonstrate the application of the integrated sampling algorithm on the

conformational transition of alanine dipeptide, unfolding of the chignolin mini-protein, and

the ligand unbinding from the calixerene host.

3.1 Alanine Dipeptide

First, we tested our integrated sampling algorithm on the C7eq to C7ax conformational tran-

sition in Alanine dipeptide with a simulation setup identical to Ref. 38. A periodic function

of the ϕ torsion angle is used as the CV for OPES-flooding and the progress coordinates for

WE simulation. We applied the bias conservatively and avoided biasing the TS through an

appropriate choice of the barrier parameter (∆E) and excluded region sexc. OPESf simula-

tions are conducted until we observe the system to escape the initial state (C7eq) minimum.

Then the OPESf bias is used as a static bias to perform weighted ensemble simulations.

Trajectories are terminated and recycled when they reach the C7ax state.

The estimated Mean First Passage Time (MFPT) is ⟨τ⟩ = 0.84 ± 0.29 µs after 500

iterations, and ⟨τ⟩ = 1.02 ± 0.35 µs after the complete run (1000 iterations) (SI Table S1).

These results are in agreement with the unbiased estimate of ⟨τ⟩unbiased = 1.28µs.38 The

timescales converged within 500 iterations of the integrated sampling (Fig. 3). The first

500 iterations required ∼21.6 ns of total simulation time (including all WE segments) for

each independent run resulting in 165, 119, and 112 transitions respectively. In comparison,

OPESf simulations with identical conditions required ∼10.9 ns of total simulation time to

observe 30 transitions. However, the transitions observed in the WE method are correlated

as the trajectory traces share some portions of their propagation history. The free energy

surface of alanine dipeptide is rather simple with a single barrier-crossing event with no

requirement for traversing a rugged free energy landscape. Therefore, simple OPES flooding

is sufficient for this problem and the computational gain for the integrated sampling method
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is not apparent. Nevertheless, this proof of concept example demonstrates that the IS

algorithm can predict the correct unbiased kinetics.

Figure 3: Convergence of the mean first passage time of C7eq to C7ax transition in alanine
dipeptide. The uncertainty (light blue shade) is computed as the 95% confidence interval
from three independent sets of integrated sampling (IS) simulations.

3.2 Chignolin

Next, we tested our method on the unfolding of the chignolin mini-protein. Chignolin is

a 10-residue polypeptide with a free energy landscape resembling typical protein folding

landscapes. In the folded configuration it remains as a β-hairpin which can unfold into a

disordered state in the µs timescale. In previous work, the folding-unfolding dynamics of

Chignolin have been studied using the Anton supercomputer by performing a ∼107 µs un-

biased MD simulation, which predicted the unfolding timescale to be 2.2±0.4 µs.42 In our

previous work,38 we used the OPES-flooding algorithm to study the kinetics of Chignolin

unfolding using simulation conditions identical to Ref. 42 to make a direct comparison with

the unbiased data. We use the same setup in the present study. As the biasing CV and the

WE progress coordinate, we use the Harmonic Linear Discriminant Analysis (HLDA) CV

introduced by Mendels et al.43 It is described by a linear combination of 6 pairwise contacts

between the protein atoms.44 We showed earlier38,45 that the HLDA CV is sub-optimal as

the efficiency and accuracy of the predicted unfolding kinetics was poorer with the HLDA
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CV compared to the neural network based CVs such as Deep Linear Discriminant Analysis

(Deep-LDA),46 Deep Time-lagged Independent Component Analysis (Deep-TICA),47 and

Deep Targeted discriminant Analysis48 . Using OPES-flooding we could obtain an accelera-

tion factor close to 100,38 which is acceptable for fast-folding proteins such as chignolin but

is not adequate for the study of physiologically relevant processes with beyond millisecond

timescales. Therefore, chignolin unfolding with HLDA CV also serves as a good test case

on how our algorithm performs with a sub-optimal CV. Initially, we performed 3 indepen-

dent OPES-flooding simulations to converge the bias in the folded state minimum. These

trajectories did not reach the unfolded state, as that would require significant time to dif-

fuse across the rough free energy landscape. Weighted ensemble simulations were initiated

from the folded state in the presence of the static bias generated in initial OPES flooding

simulations (Fig 4a).

We observed multiple unfolding events during the 1000 iterations of the integrated sam-

pling simulation of the chignolin mini protein system. For computing kinetics, we only

considered transitions for which the final weight is ≥ 10−8. Such transitions only appeared

after ∼300 iterations of IS for all three independent replicas. In Fig 4b, we show that an

integrated sampling trajectory spends less time in the transition region compared to an

OPES-flooding trajectory, before reaching the unfolded state. This acceleration is a result

of the ability of the weighted ensemble algorithm to accelerate diffusive processes. After 800

iterations the predicted ⟨τ⟩unfolding (1.81 ± 0.43 µs) is virtually identical to the unbiased

timescale of 2.2±0.4 µs. However, the unfolding timescales are well within an order of mag-

nitude of the unbiased timescales throughout the entire duration of simulations (Fig. 4c).

The total computational cost of 1000 iterations of integrated sampling simulation is ∼460

ns which is lower compared to the ∼825 ns of OPES-flooding simulation required to observe

15 unfolding events in Ref. 38. But, if we consider the fact that kinetics of similar accuracy

as OPESf
38 could be obtained from the first 300 iterations (∼150 ns) of the IS simulations,

we can appreciate the significant improvement of the computational efficiency of the com-
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bined approach. Notably, similar to the alanine dipeptide, the unfolding of chignolin also

involves a free energy landscape with two prominent minima. Therefore, despite the increase

in complexity, it is still a single barrier-crossing event. Even in this case, we can observe

an improvement in sampling efficiency for our combined algorithm compared to standard

enhanced sampling.

a) b) c)

Figure 4: (a) Bias deposition scheme along the HLDA CV for sampling the unfolding tran-
sitions in chignolin mini-protein. (b) Representative unfolding trajectories, sampled using
OPES-flooding and integrated sampling, projected along the HLDA CV. Representative tra-
jectories were chosen as the ones with rescaled transition time closest to the estimated MFPT
from all trajectories. In case of integrated sampling, the simulation time axis is equivalent
to the molecular time in the weighted ensemble. (c) Convergence of the unfolding time ob-
tained from integrated sampling. The uncertainty (light blue shade) is computed as the 95%
confidence interval from three independent simulations.

3.3 Ligand-Receptor Complex

Next, we studied the unbinding of guest 4 (G4) from the OAMe calixerene host. This system

and similar calixerine-based host-guest complexes have been used to benchmark importance

sampling algorithms for calculating free energy49,50 and ligand residence time.51 The z-

projection of the center of mass distance between the ligand and the binding pocket is used

as CV. Previous studies have indicated that water coordination plays a prominent role in the

ligand unbinding process for this system.50,51 However, we excluded any description of water

coordination to make the CV sup-optimal. Similar to the HLDA CV for chignolin, it allows

us to evaluate this method for situations where the CV is not highly optimized. Out of the

different guest molecules investigated for this specific host, the G4 shows a rather complex
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free energy landscape due to the presence of a metastable intermediate state between the

bound and unbound configuration.50 Therefore, deciding on an optimal excluded region is

difficult even with the knowledge of the complete free energy landscape. In this work, we

took a conservative approach and restricted the bias deposition to only the bound state

minimum (Fig. 5a). In addition to the integrated sampling, OPES-flooding simulations

have been performed to compare the results.

a) b) c)

Figure 5: (a) Bias deposition scheme along the z-axis CV for sampling the dissociation of the
OAMe-G4 host guest complex. The biasing scheme is designed blindly by only depositing
bias in the bound state minimum and not the intermediate. (b) Convergence of the ligand
residence time of G4 obtained from integrated sampling. The uncertainty (light blue shade)
is computed as the 95% confidence interval from the three independent simulations. (c)
Projection of the trajectory with the highest weight on the 2D free energy surface along the
biasing CV (z) and the Deep-LDA CV trained to model the water hydration behavior.50

Although we did not bias the water, the most probable trace of the integrated sampling
algorithm sampled the minimum free energy pathway in the 2D space. Similar plots for the
10 most probable trajectory traces are provided in the supporting information.

Within the first 200 iterations of the integrated sampling, the residence time estimate is

converged in all three independent replicas. The computed values (Fig. 5b and Table S3)

are well within one order of magnitude of the kinetics estimated from OPES-flooding and

Gaussian Mixture Based Enhanced Sampling (GAMBES) simulations.51,52 The cumulative

simulation time of 200 iterations of integrated sampling is less than 100 ns while the OPES-

flooding estimate was obtained from 30 transitions sampled from ∼500 ns of simulation. It

should be noted that the kinetics obtained from IS can be considered converged at any point

beyond the first 100 iterations for all practical purposes. However, we confirmed that the

results truly converged by extending all three replicas to 1000 iterations each (Supporting
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Information Table S7 and Fig. S2).

As we did not use any description of water in the CV space, it is important to verify

whether the unbinding pathways sampled from our IS algorithm are consistent with previous

works. Therefore, we projected the transition paths with the highest weights onto a two

dimensional free energy landscape composed of a distance CV and a water CV. For the

distance CV, we chose the z CV used for biasing while for the water CV we chose the

Deep Linear Discriminant Analysis (Deep-LDA) CV46 trained by Rizzi et al. using the

water coordination of the host and guest atoms as descriptors.50 We observe that the most

probable unbinding transitions obtained from IS simulations follow the minimum free energy

pathway in this 2D space (Fig. 5c). Notably, no bias is applied outside the bound state

minimum. Therefore, the WE resampling is the only driver of the transitions in this region.

The performance of WE sampling is not as sensitive to the choice of CV as the OPES

simulations. So the role of water is correctly recovered even when the water coordination

description is not explicitly included in the CV space.

4 Discussions and Conclusions

The two classes of importance sampling methods: unbiased path sampling and biased en-

hanced sampling, offer unique advantages. But, when combined effectively, they can signifi-

cantly improve the sampling efficiency. In this work, we demonstrate one such scenario for

calculating the kinetics of processes involving one barrier-crossing event followed by a diffu-

sive process. Such a situation is commonly observed in biomolecular processes such protein-

ligand unbinding and protein conformational transitions. Enhanced sampling methods i.e.

metadynamics and OPES can accelerate the enthalpic barrier crossing events but are not as

effective in accelerating diffusive processes. Weighted Ensemble, a path sampling algorithm,

can accelerate diffusive dynamics while being less efficient in sampling barrier crossing transi-

tions due to the absence of external biasing force. We show that a well-designed combination
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of these two techniques can synergize the advantages and mitigate the deficiencies of each

other. We conduct the flooding variant of OPES simulation at the initial state to stimulate

the escape from a deep free energy minimum. The Weighted Ensemble resampling technique

then accelerates the diffusion on this modified potential energy surface (due to the presence

of the OPES bias) and helps the system reach the target state. The unbiased kinetics is re-

covered by appropriately reweighting the biased transition times taking into account both the

external bias potential and the trajectory weights from the WE simulation. This approach

does not need one to reach the nonequilibrium steady state usually required for standard

WE simulations. In this sense, the integrated sampling method is inherently different from

an earlier attempt to combine WE with GaMD by Ahn et al. They performed GaMD to

sample protein conformational landscape for optimal selection of the starting coordinates of

a weighted ensemble simulation.53 Although this approach increased the convergence speed

of the WE simulation, both methods did not contribute simultaneously to the exploration

of the free energy landscape. Combinations of different path-sampling algorithms have also

been shown to increase the computational efficiency in predicting rare event kinetics (see e.g.

weighted ensemble milestoning54 and Markovian weighted ensemble milestoning55). But, our

integrated sampling approach comes with the benefit of sampling continuous pathways from

the initial to the final state, which is inaccessible to milestoning-based methods.

We demonstrated the successful application of our integrated sampling algorithm on a

model system of alanine dipeptide as well as the unfolding of chignolin mini-protein and the

dissociation of a host-guest complex. Despite the apparent simplicity of these systems, we

could observe faster convergence of kinetics in comparison to OPES flooding. We also observe

that the efficiency increases with the increasing complexity of the system, particularly with

the presence of additional kinetic and diffusive bottlenecks outside the initial state minimum.

We envision that the true potential of the integrated sampling approach can be realized

in complex drug-receptor unbinding problems where traversing the free energy landscape

involves both high enthalpic barriers as well as rugged plateaus where the system needs to

16

https://doi.org/10.26434/chemrxiv-2024-qr6kv ORCID: https://orcid.org/0000-0002-7103-0886 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qr6kv
https://orcid.org/0000-0002-7103-0886
https://creativecommons.org/licenses/by-nc-nd/4.0/


diffuse towards the final state (see e.g. Ref. 56). Through the improvement in computational

efficiency, the integrated sampling algorithm will help address the challenge of large-scale

screening of drug candidates based on their ligand residence time, a property that correlates

better with their physiological activity compared to binding affinity. At a fundamental level,

it should also be possible to design alternative schemes of combining weighted ensemble with

metadynamics and related methods to study other challenging problems including confor-

mational exploration and free energy surface reconstruction for highly complex systems with

multiple barriers and a rugged free energy surface. We hope that this work will encourage

future studies in these directions.
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5 Data Availability Statement

The input files for all simulations performed in this work are provided in the GitHub reposi-

tory: https://github.com/dhimanray/Enhanced_Sampling_Path_Sampling.git. The in-

put files will also be made available through the PLUMED NEST repository.57 All simula-

tions are performed with the GROMACS 202158 package patched with PLUMED 2.959 and

WESTPA 2.0.60 These are all open-source software.

Supporting Information Available

Computational details and additional results concerning the convergence and computational

cost of integrated sampling simulations are provided in the supplementary information.
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