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Abstract

Second-order Møller-Plesset perturbation the-
ory (MP2) using the Resolution of the Iden-
tity approximation (RI-MP2) is a widely used
method for computing molecular energies be-
yond the Hartree-Fock mean-field approxima-
tion. However, its high computational cost and
lack of efficient algorithms for modern super-
computing architectures limit its applicability
to large molecules. In this paper, we present
the first distributed-memory many-GPU RI-
MP2 algorithm explicitly designed to utilize
hundreds of GPU accelerators for every step of
the computation. Our novel algorithm achieves
near-peak performance on GPU-based super-
computers through the development of a dis-
tributed memory algorithm for forming RI-
MP2 intermediate tensors with zero inter-node
communication, except for a single O(N2) asyn-
chronous broadcast, and a distributed memory
algorithm for the O(N5) energy reduction step,
capable of sustaining near-peak performance on
clusters with several hundred GPUs. Compar-
ative analysis shows our implementation out-
performs state-of-the-art quantum chemistry
software by over 3.5 times in speed while
achieving an eightfold reduction in computa-
tional power consumption. Benchmarking on
the Perlmutter supercomputer, our algorithm
achieves 11.8 PFLOP/s (83% of peak perfor-
mance) performing and the RI-MP2 energy cal-
culation on a 314-water cluster with 7,850 pri-

mary and 30,144 auxiliary basis functions in
4 minutes on 180 nodes and 720 A100 GPUs.
This performance represents a substantial im-
provement over traditional CPU-based meth-
ods, demonstrating significant time-to-solution
and power consumption benefits of leveraging
modern GPU-accelerated computing environ-
ments for quantum chemistry calculations.

1 Introduction

Second-order Möller-Plesset perturbation the-
ory (MP2) has long been a prominent method
for calculating molecular energies, incorporat-
ing dynamic correlation effects beyond the
Hartree-Fock (HF) mean-field approximation.1

The capabilities and limitations of MP2 are
well-characterized. MP2 generally provides
accurate equilibrium energies for large-gap,
closed-shell systems,2,3 though it tends to over-
estimate binding in dispersion-dominated sys-
tems.3–10 Furthermore, MP2 often fails to ac-
curately predict the energetics and geometry of
transition metal and open-shell systems com-
pared to more advanced methods.11–14 Due to
its O(N5) computational scaling, MP2 becomes
quickly computationally impractical with grow-
ing molecular sizes.

Despite the advent of less computation-
ally demanding density functionals14–20 within
the Kohn-Sham density functional theory
(KS-DFT) framework,21 which have partly
eclipsed the utility of traditional MP2 calcu-
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lations, MP2 remains foundational for more
accurate quantum chemical methods. Var-
ious approaches have been explored to en-
hance MP2’s performance. Orbital Optimized
MP2 (OOMP2) yields improved energetics for
spin-unrestricted reference wave functions.22–25

Spin-Component-Scaled MP2 (SCS-MP2) pro-
vides major improvements in accuracy and
robustness for closed-shell systems.12,22,26–30

Regularized MP2 methods,31–35 such as κ-
MP2,24,36 significantly improve accuracy for
noncovalent interactions and radical systems.
Double-hybrid (DH) density functionals,19,37–40

combining hybrid meta-GGA exchange and
correlation with second-order Görling–Levy
perturbation theory, are considered the most
accurate functionals in the KS-DFT frame-
work.41–48

However, the practical application of these
methods to large molecules is hindered by the
steep O(N5) computational scaling of their un-
derlying MP2 calculations. Consequently, sig-
nificant research effort has focused designing
faster MP2 algorithms.49–63

Each of these methods comes with its own
approximations and errors compared to the ex-
act, approximation-less application of MP2 the-
ory. Without a doubt, one of the most success-
ful method for accelerating MP2 calculations
is using resolution-of-the-identity (RI)64–66 to
yield the RI-MP2 method. Extensive bench-
marks with correlation consistent basis sets
have demonstrated that the RI approximation
introduces errors smaller than the primary basis
set incompleteness errors, making them negligi-
ble relative to the original MP2 method.67

The main advantage of RI-MP2 is that its
primary bottlenecks can be reduced to a se-
ries of matrix multiplications. Compared to the
original semi-direct MP2 algorithm,68 which
is computationally inefficient due to the need
for repeated disk- and memory-bound opera-
tions, this feature allows a well-implemented
RI-MP2 algorithm to run close to the theoret-
ical floating-point peak performance of the un-
derlying computing system, achieving O(10×)
speeds-ups compared to traditional MP2.

RI-MP2’s algorithmic features have made
it suitable for high-performance computing

(HPC) implementations. The first large-scale
parallel RI-MP2 implementation, developed by
Bernholdt and Harrison in 1996, used 70 nodes
of the Kendall Square Research KSR-2 to study
the binding of K+ to 12-crown-4 ether.69 Since
then, the advent of petascale parallel computers
has spurred multiple parallel MP2 implementa-
tions.70–79 A notable achievement was Katouda
et al.’s 2016 algorithm, which computed the
RI-MP2/cc-pVTZ energy of a molecule with
240 atoms on the K supercomputer in under
5 minutes.75 In 2017, Kjærgaard et al. de-
veloped a parallel RI-MP2 algorithm based on
a divide-expand-consolidate scheme, enabling
calculations of supramolecular wires with 2,440
atoms and 6,800 electrons on the Titan super-
computer.80 Using fragmentation methods, the
largest RI-MP2 calculations were performed by
some of us, modelling the energetics of a pep-
tide with 180,000 electrons and 45,000 atoms81

and a crystal lattice cut of the ionic liquid
1-ethyl-3-methylimidazolium tetrafluoroborate
with 623,016 electrons and 146,592 atoms.82

While fragmentation and local-RI-MP2 meth-
ods offer fast and efficient approaches for large
molecular systems, there remains a critical need
for approximation-free RI-MP2 calculations.
This is particularly true for generating high-
accuracy reference data needed to benchmark
the approximations inherent in these lower-
scaling MP2 approaches. Moreover, full-system
RI-MP2 calculations serve as a robust starting
point for more accurate coupled-cluster meth-
ods (with or without the RI approximation)
and as a key component of the aforementioned
double-hybrid density functional approaches.
This article addresses the demand for efficient,
full-system RI-MP2 calculations by presenting
a distributed, many-Graphics Processing Units
(GPU) algorithm optimized for such tasks.

The shift from petascale to exascale comput-
ing has been primarily driven by the integration
of GPUs as the leading source of computational
floating-point throughput. To fully capitalize
on exascale hardware, quantum chemistry pro-
grams must evolve to accommodate both hard-
ware and software advancements. The effort
to harness the computational power of GPUs
in quantum chemistry began with Yasuda’s pi-
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oneering work on accelerating two-electron in-
tegrals.84 Since then, significant progress has
been made, leading to the development of GPU-
accelerated algorithms for Hartree-Fock (HF)
and RI-MP2.85–94

However, exploiting GPUs fully involves
many complexities, as exemplified by Katouda
et al.’s work,75 the only known paper describ-
ing a distributed many-GPU RI-MP2 routine.
They achieved 514 TFLOP/s, 9.3% of peak
on 1349 nodes of the TSUBAME 2.5 super-
computer, compared to 42% peak performance
for their CPU-only implementation in RI-MP2
energy calculation. This discrepancy is due
to GPUs’ superior computational density, re-
quiring algorithms with a higher FLOP-to-data
transfer ratio to avoid data transfer overheads.
Challenges such as Host ↔ Device data transfer
and asynchronous GPU scheduling also compli-
cate GPU utilization.

In contrast to Katouda et al., we present
a novel RI-MP2 algorithm designed from the
ground up for near-peak performance on GPU-
based supercomputers. The novel contributions
from this work are:

• A distributed memory algorithm for the
formation of the RI-MP2 intermediate
tensors with zero inter-node communica-
tion besides a single O(N2) asynchronous
broadcast.

• A distributed memory algorithm for the
O(N5) energy reduction step of the RI-
MP2 algorithm which is capable of sus-
taining near-peak performance on clusters
with several hundred GPUs.

All distributed memory operations are imple-
mented using the Message Passing Interface
(MPI).

A noteworthy result of our work is the RI-
MP2 computation of a cluster of 314 water
molecules (942 atoms, 2512 electrons) at the cc-
pVDZ/cc-pVDZ-RIFIT level on 180 nodes of
the Perlmutter supercomputer; achieving 11.8
PFLOP/s (83% of peak performance) over a 4-
minute computation.

The paper is organized as follows: In Sec-
tion 2 MP2 theory and the RI approximation

will be introduced. The background section fi-
nalizes with the challenges of high performance
computing oriented to quantum chemistry pro-
gram development. In Section 3 the overall al-
gorithm for the new RI-MP2 algorithm is pre-
sented. Further, in Section 4 the benchmarks
and comparisons against state-of-the-art pro-
grams are discussed. Section 5 concludes.

2 Background

2.1 MP2 and the RI Approxima-
tion

Second-order Møller-Plesset Perturbation The-
ory (MP2)1 is a method which provides a cor-
rection to the Hartree-Fock (HF) energy of a
system by approximating the effects of electron
correlation. The closed-shell MP2 energy cor-
rection is defined by the following sum:

E(2) =
No∑
ij

Nv∑
ab

Gjb
ia(2Gjb

ia −Gja
ib )

ϵi + ϵj − ϵa − ϵb
(1)

Here i and j are indices for the No occupied
molecular orbitals (MOs) {ψi(r)}, while a and
b represent the Nv virtual MOs {ψa(r)}; ϵi, ϵj,
ϵa, ϵb are the MO energies. The fourth-order
tensor Gjb

ia contains two-electron repulsion inte-
grals (ERIs) Gjb

ia ≡ (ia|jb) over the MOs.
The evaluation of Eq. (1) requires the in-

tegrals to either be stored or repeatedly re-
computed. The former imposes an undesirable
O(N4) memory bottleneck,68 while the latter is
computationally inefficient.

The RI approach is a commonly-utilized so-
lution to this problem. The RI method approx-
imates the four-centre integrals (ia|jb) through
linear combinations of three-centre integrals
(ia|P ) between the MOs and the functions of an
auxiliary basis set. The three-centre integrals
can be stored in only O(N3) space, and the
assembly of the four-centre integrals from the
three-centre integrals can be expressed as ma-
trix multiplications which can operate at near-
peak performance on modern hardware. Fur-
thermore, the usage of adequately optimized
auxiliary basis sets allows RI-MP2 to achieve a
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level of accuracy comparable to plain MP2.95,96

In detail, the RI method approximates the
four-centre integrals by the sum

Gjb
ia ≈

Nx∑
PQ

DP
iaJ

−1
PQD

Q
jb (2)

where the third-order tensor DP
ia contains the

three-center two-electron integrals

DP
ia =

∫∫
ψi(r1)ψa(r1)

1

|r1 − r2|
ϕP (r2) dr1r2

(3)
between the MOs and the Nx auxiliary basis
set functions {ϕP (r)}. The matrix J−1

PQ is the
inverse of the matrix whose elements are the
following two-center two-electron integrals

JPQ =

∫∫
ϕP (r1)

1

|r1 − r2|
ϕQ(r2) dr1r2 (4)

The MOs are represented as a linear combi-
nation of N atomic orbital (AO) basis functions
{ϕµ} within a primary basis set

ψm(r) =
N∑
µ

Cmµϕµ(r) (5)

where m is a generic index for either occupied
or virtual MOs, and the Cmµ coefficients are ob-
tained by solving the HF equations. The three-
centre MO integrals DP

ia are evaluated via the
corresponding linear combination of atomic or-
bital integrals,

DP
ia =

N∑
µν

CiµCaνd
P
µν (6)

where the dPµν values are the three-centre inte-
grals of atomic orbitals:

dPµν =

∫∫
ϕµ(r1)ϕν(r1)

1

|r1 − r2|
ϕP (r2) dr1r2

(7)

2.2 Two- and Three-Center Inte-
grals on GPU

As per Eq. (2), the RI-MP2 algorithm requires
the computation of two- and three-centre two-
electron repulsion integrals.

In this work we evaluate the two- and three-
centre integrals via a set of recursion relations
based on the Head-Gordon-Pople (HGP) algo-
rithm.97 The HGP algorithm is based on the
Obara-Saika recursion relations.98 These recur-
rence relations are implemented in a set of effi-
cient GPU kernels analogous to the four-centre
integral kernels presented by Barca et al.99,100

Due the similarity to already-published work,
these kernels will not be discussed in detail in
this paper.

2.3 Algorithmic Features

Of the O(N5) total computational complexity
of RI-MP2, there is only O(N3) computational
work which cannot be performed through effi-
cient level-3 BLAS routines.101

Using vendor-optimized libraries, these BLAS
routines can potentially run at near-peak per-
formance on GPU if the associated data trans-
fers are efficiently hidden. The steps that can-
not efficiently be expressed as BLAS routines
are the inversion of the Coulomb matrix J , the
final accumulation of the energy per Eq. (1),
and the formation of the electronic integrals per
Eqs. (3),(4).

Rather than inverting J explicitly, Eq. (2) is
evaluated by first taking the Cholesky decom-
position J = LLT , where L is lower-triangular.
Eq. (2) then becomes

Gjb
ia ≈

Nx∑
PQK

DP
iaL

−T
PKL

−1
KQD

Q
jb. (8)

This expression can be evaluated in O(N5) time
with level-3 BLAS routines. The Cholesky
decomposition itself is only O(N3) work, and
can be performed efficiently through a vendor-
optimized LAPACK routine. However, this op-
eration scales poorly across many GPUs.

Combining the elements of Gjb
ia with the or-

bital energies as in Eq.(1) requires O(N4) work
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with a small pre-factor and is easily imple-
mented using GPU parallelism through a sim-
ple custom GPU kernel. The calculation of the
electronic integrals, as discussed previously, is
performed in negligible time due to our use of
highly-optimized GPU kernels for integral eval-
uation.100,102,103

In summary, the most computationally signif-
icant components of the algorithm can be ex-
pressed as efficient BLAS calls. As such, the
primary goal of our design is to optimize the
workload scheduling such that all GPUs in the
system can be running BLAS calls for as great
a proportion of the run-time as possible.

With the main computational traits of the al-
gorithm introduced, the following section de-
tails how the relevant challenges have been ad-
dressed in the implementation of the algorithm
in order to achieve near-peak overall perfor-
mance.

3 Algorithm

One more detail must be introduced before we
detail the algorithm. The ERI assembly can be
simplified as per Eq. (2) into a single tensor
contraction by contracting the J−1 matrix with
the MO integrals beforehand via a Triangular
Solve routine. In our work we use the tensor
EP

ia, defined as follows

EP
ia =

∑
Q

J−1
PQD

Q
ia. (9)

The ERI evaluation is then simplified to the
following expression

Gjb
ia =

∑
P

DP
iaE

P
ia. (10)

An alternative approach, common in the litera-
ture,75,104,105 is to calculate the inverse square-
root of the J matrix to obtain a symmetric de-
composition, as follows.

BP
ia =

∑
Q

J
−1/2
PQ DQ

ia (11)

Gjb
ia =

∑
P

BP
iaB

P
jb (12)

1 Compute JPQ on GPU O(N2)

2 Cholesky factor JPQ on GPU

// Form DP
ia tensor, batched over auxiliary orbitals

3 foreach batch P do

4 Compute dP
µν for all µ, ν directly on GPU

5 Compute DP
µa =

∑
ν dP

µνCνa by matrix multiplication

O(N4)

6 Compute DP
ia =

∑
ν DP

µaCµi by matrix multiplication

O(N4)

7 Transfer DP
ia GPU → host

8 end

// Form EP
ia tensor, batched over occupied and virtual

orbitals

9 foreach batch I,A do

10 Transfer DP
IA slice host → GPU

11 Compute EP
IA =

∑
Q J−1

PQDQ
IA by triangular solve with

Cholesky-decomposed JPQ O(N4)

12 Transfer EP
IA slice GPU → host

13 end

Algorithm 1: Formation of the DP
ia and EP

ia

intermediates for the RI-MP2 calculation.
Tensors on the host are stored in shared
memory. This entire algorithm scales as
O(N4) due to the tensor operations on lines
5, 6, and 11. When run on multiple GPUs,
iterations of the “foreach” loops are dis-
tributed across available GPUs.

This approach has the benefit of only requir-
ing the storage of one three-index tensor rather
than two, but the disadvantage of requiring a
matrix inverse square-root computation.

As detailed in this Section, our implementa-
tion requires additional memory to store two
extra tensors for MPI communication. These
additional buffers can be used to store the EP

ia

tensor, meaning the symmetric decomposition
offered by the BP

ia approach would not offer an
improved memory footprint. Thus the EP

ia ap-
proach comes with no downsides unless the al-
gorithm is only being run on only one node (ren-
dering the MPI buffers redundant).

3.1 Single-Node RI-MP2 Algo-
rithm

There are four key steps to the RI-MP2 algo-
rithm:

1. Formation and Cholesky decomposition
of the two-centre integrals JPQ between
the auxiliary basis functions.

2. Formation of three-centre atomic orbital
(AO) integrals dPµν and transformation
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// Compute E(2), batched over occupied orbital

pairs

1 E := 0

2 foreach batch-pair A,B do

3 Transfer DP
iA, EP

jB slices Host → GPU

4 Compute GjB
iA =

∑
P DP

iAEP
jB O(N5)

5 forall a ∈ A, b ∈ B, i, j do

6 E +=
G

jb
ia(2G

jb
ia−Gib

ja)

ϵi+ϵj−ϵa−ϵb
O(N4)

7 end

8 end

Algorithm 2: Final MP2 energy reduction
algorithm. The loop over batch-pairs is dis-
tributed across available GPUs, and also ac-
counts for symmetry between occupied or-
bital batches. The tensor contraction on line
4 constitutes the O(N5) computational bot-
tleneck. Each individual GEMM operation
in this contraction is O(k2N2

oNaux), where
k is the virtual batch size.

into the molecular orbital (MO) basis,
DP

ia.

3. Formation of the transformed RI inte-
grals EP

ia from DP
ia and the Cholesky-

decomposed JPQ matrix.

4. Final energy accumulation using DP
ia and

EP
ia.

The first three steps comprise the interme-
diate tensor formation, which is described by
Algorithm 1. The final energy reduction step
is described by Algorithm 2. The remainder
of this section provides an overview of each of
these steps.

Throughout the algorithm, MPI shared mem-
ory is used to facilitate multi-GPU parallelism.
In the final energy reduction, every slice of DP

ia

and EP
ia is used O(N) times. Storing these ten-

sors in a MPI shared memory window gives
each GPU uniform access to them, avoiding
communication and load-balancing overheads.
MPI shared memory also facilitates parallelism
of the intermediate tensor formation, as tensors
can be formed in independent slices which are
written conflict-free to shared memory.

×N
No

N

N × baux

×N
Nv

N

No × baux

Form 3-centre Integrals dPµν

Contract DP
iν =

∑N
µ Ciµd

P
µν

Contract DP
ia =

∑N
ν CaνD

P
iν

..
.

P

..
.

DP
ia

GPU

Figure 1: Formation of the DP
ia intermedi-

ate, the three-centre integrals in the MO basis.
Given a batch of auxiliary indices of dimension
baux, the formation proceeds as follows: 1) Form
the three-centre integrals dPµν corresponding to
the auxiliary batch through custom GPU inte-
gral kernels. 2) Contract the integrals with the
occupied MO coefficients to form DP

iν . 3) Con-
tract again with the virtual MO coefficients to
form DP

ia. 4) Transfer DP
ia slice into Host shared

memory.

3.1.1 Formation of the DP
ia and JPQ ten-

sors

The DP
ia tensor is formed following the scheme

visualized in Fig. 1. Given an auxiliary in-
dex range, a GPU forms the corresponding
slice of DP

ia (encompassing all i, a indices) and
transfers the slice back to Host shared mem-
ory. Device → Host data transfers are hid-
den by overlapping the formation of each slice
with the transfer of the previous slice to the
Host. Auxiliary index batches are distributed
dynamically across all GPUs to achieve multi-
GPU parallelism. The AO integrals dPµν are
evaluated through custom GPU integral ker-
nels,100,102 while the subsequent tensor contrac-
tions are performed through vendor-optimized
BLAS matrix multiplication (DGEMM) opera-
tions.101 Notably, by forming the O(N2) data
on the GPU and directly performing the MO
transformation, the required Host ↔ Device
data transfer per batch is only O(NoNv), which
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Algorithmic Stages

GPU 1

GPU 2

GPU 3

GPU 4

JPQ

DP
ia

DP
ia

DP
ia

EP
ia Energy Reduction

EP
ia Energy Reduction

EP
ia Energy Reduction

EP
ia Energy Reduction

Time

Figure 2: Timeline of the computational stages
of the algorithm, as described in section 3.1.

in practice is typically 5-20 times smaller than
N2, as visualized in Fig. 1, where blue squares
represent O(NoNv) data and grey square repre-
sent O(N2) data.

The JPQ matrix is formed through custom
GPU integral kernels and is then Cholesky fac-
torized using a vendor-optimized LAPACK rou-
tine, DPOTRF. The DPOTRF routine does not
scale well over multiple GPUs, presenting an
obstacle to parallel efficiency. This problem is
addressed by performing the Cholesky decom-
position on a single GPU, and transferring it to
the other GPUs through Host shared memory.
While this single GPU is working on the JPQ

tensor, all other GPUs begin parallel computa-
tion of DP

ia. Once the Cholesky decomposition
is complete, the responsible GPU joins in on
the computation of DP

ia. A dynamic workload
distribution is used for the computation of DP

ia,
allowing this process to occur seamlessly with
no loss of parallel efficiency. The effect of this
scheme can be seen in Fig. 2, which provides a
timeline of the computational effort of the al-
gorithm.

3.1.2 Formation of EP
ia

This step is a triangular solve of DP
ia with the

Cholesky factored JPQ. Batches of the fused
ia index are distributed dynamically among
the available GPUs. The corresponding blocks
of DP

ia are transferred to the GPU, which
solves the linear system JPQE

P
ia = DP

ia through
vendor-optimized DTRSM calls to produce a
block of EP

ia which is then transferred back to
shared memory. The computation of a slice

is overlapped with the transfer of the previous
slice back to the Host, along with the transfer
of the next DP

ia slice to the GPU.
In the present implementation, this is the

asymptotic GPU-memory-limiting stage of the
algorithm due to the O(N2

aux) requirement in
addition to double-buffered slices of EP

ia and
DP

ia. This bottleneck could be alleviated by
working on the J matrix panel-by-panel, but
this was found to be unnecessary for the tests
in this paper.

3.1.3 Energy Reduction Step

This step is the O(N5) computational bottle-
neck of the algorithm. Pairs DP

ia and EQ
jb of

slices, batched over the virtual orbital indices
a and b, are dynamically distributed across
GPUs, where they are contracted to form a
slice of the two-centre four-electron integrals
Gjb

ia. We choose to batch over virtual orbitals
as it provides a larger space of index pairs to
batch over in comparison to occupied orbitals,
allowing better distribution across GPUs. If the
batch size is k, each individual matrix multipli-
cation is O(k2N2

oNaux), and there are O(N2
v /k

2)
multiplications in total. The contracted slices
are reduced according to Eq. (1) via a cus-
tom kernel to form the energy contribution of
a slice-pair. Finally, the energy contributions
of all slice-pairs are reduced across all GPUs to
form the RI-MP2 energy. From the perspec-
tives of computational complexity and concur-
rent orchestration, this is the most complex step
of the algorithm.

3.2 Distributed RI-MP2

The single-node algorithm is extended to a dis-
tributed algorithm through a series of mild aug-
mentations. The primary concern in the design
of a distributed variant is that the three-index
tensors will be too large to store on a single
node for large inputs, so the formation and stor-
age of these tensors must be distributed. Each
node is assigned a range A of virtual orbitals,
for which it computes the slice DP

iA. That is,
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each node performs the contraction

DP
ia =

∑
µν

CiµCaνd
P
µν

for the virtual orbitals a ∈ A.
The JPQ matrix is handled in a similar man-

ner to the single-node algorithm. A single
GPU on a single node is tasked with its com-
putation. Upon completion, the Cholesky-
decomposed matrix is broadcast into shared-
memory on every node.

It should be noted that in the work of Ka-
touda et al.,75 the JPQ matrix is ultimately
the cause of declining parallel efficiency at
scale. Their approach instead explicitly com-
putes J

−1/2
PQ through matrix inversion following

the Cholesky decomposition. This process is
performed redundantly on each node. Our ap-
proach has two advantages which mitigate the
scalability issue. First, the matrix inversion is
significantly more expensive than the Cholesky
decomposition, so by avoiding this step we re-
duce the required serial workload. Second, we
overlap the Cholesky decomposition with other
distributed computations, preventing compute
time from being wasted on redundant work.

There are three obstacles to the theoretical
scaling of this distribution scheme.

1. Every node must compute the entire dPµν
tensor. This is ultimately insignificant
due to the screening techniques and ef-
ficient kernels used for integral computa-
tion, and presents no real barrier to par-
allel efficiency.

2. As the number of nodes increases, the di-
mension of the involved matrix multipli-
cations decreases (as the virtual orbital
batch size decreases). Performance of ma-
trix multiplication routines typically de-
generates as matrix dimensions decrease,
and this degeneration impacts the scal-
ability of the algorithm. This could be
mitigated by moving to a two-dimensional
data distribution which batches over both
occupied and virtual orbitals, but in this
work we found this to be unnecessary.

3. The JPQ Cholesky decomposition is

not distributed across nodes, making it
a strong-scaling bottleneck. However,
the O(N3

aux) Cholesky decomposition is
dwarfed by the O(N2NoNv) formation of
the DP

ia tensor, meaning the bottleneck
will only manifest in the extreme limit
of parallel scaling where the distributed
DP

ia formation becomes faster than the
Cholesky decomposition.

These problems were accepted as trade-offs in
exchange for minimal inter-node communica-
tion for this stage of the algorithm.

3.3 Intermediate Formation

The Intermediate Formation stage of the algo-
rithm concerns the formation of the DP

ia and
EP

ia tensors in a distributed fashion. The com-
putation is distributed along the virtual orbital
axis a, with each node assigned a block of vir-
tual orbitals. All of the three-centre AO inte-
grals dPµν are calculated independently on each
node, while each node only performs the sec-
tion of the MO contraction corresponding to
its assigned virtual orbital range. Each node
then contracts its DP

ia slice with the Cholesky-
factored Coulomb matrix JPQ to form the cor-
responding EP

ia slice. The only inter-node com-
munication required in this stage of the algo-
rithm is the broadcast of the Cholesky-factored
Coulomb matrix.

The redundant computation of the AO in-
tegrals across all nodes can be eliminated by
instead distributing the work along the auxil-
iary orbital axis P . However, the formation of
EP

ia requires contraction along the P axis, so
this approach would necessitate an expensive
O(N3) distributed tensor permutation which
cannot be efficiently overlapped with compu-
tation. In comparison, the computation of the
AO integrals is computationally light given the
use of screening techniques and efficient GPU-
based integral kernels, so their redundant com-
putation on every node does not present a bar-
rier to scalability.
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Figure 3: Visualization of the final energy re-
duction workflow. The tasks corresponding to
the resident DP

ia and EP
jb slices are dynami-

cally distributed across available GPUs. Con-
currently, the resident EP

jb slice is sent to the
next node in the ring while the subsequent EP

jb

slice is received from the previous node into a
local buffer.

3.4 Energy Reduction Step

For the O(N5) energy reduction step, we have
implemented a sophisticated scheme leveraging
several layers of asynchronism which allows all
of the O(N3) inter-node communication and
Host → Device data transfers to be completely
hidden by the O(N5) computation, given a suf-
ficient problem size for the available computa-
tional resources.

Our system utilizes a ring communication al-
gorithm in which each node stores its own DP

ia

slice locally, while the EP
ia slices are passed

around the ring. This system is visualized in
Fig. 3. In practice the EP

ia slices are large, typ-
ically at least several gigabytes, owing to their
O(N3) space complexity. However, the compu-
tational effort involved with each slice scales as
O(N5), meaning a sufficiently large N allows
any inter-node communication overhead to be
hidden by computation. The same is true for
Host → Device data transfers.

The computational workflow is implemented
through an MPI scheme in which each node
hosts three types of MPI ranks:

1. One Worker rank per GPU, each of which
issues commands to the corresponding
GPU.

2. One Communicator rank, which handles
communication of EP

ia slices with other
nodes.

3. One Coordinator rank, which dynam-
ically distributes tasks to the workers
and coordinates node-local synchroniza-
tion when necessary.

The remainder of this section details the roles
of each of these rank types.

3.4.1 Workers

The core of the energy reduction algorithm is
the GPU-based reduction routine which takes
virtual-orbital slices of DP

ia and EP
jb and com-

putes the energy contribution of the slice pair.
This process has three steps:

1. Copy the DP
ia and EP

jb slices to the GPU.

2. Form Gjb
ia =

∑
P D

P
iaE

P
jb via vendor-

optimized matrix multiplication routine.

3. Calculate energy contribution per Eq. (1)
via custom GPU kernel.

This process is implemented using GPU
Streams and Events, along with double-
buffering to allow the entire computation to
be launched asynchronously. Specifically, a
two-Stream system is employed in which all
data transfers are issued in one Stream and all
computations are issued in the second Stream.
Events are used for cross-stream synchroniza-
tion, allowing the computation Stream to wait
for transfers to complete before beginning the
corresponding computation, and allowing the
memory Stream to delay transfers until the
corresponding buffers are free.

In the distributed energy reduction scheme,
workers behave as simple asynchronous devices
under control of the local coordinator. Workers
repeatedly request tasks from the local coordi-
nator, asynchronously launching given tasks on
the GPU. If a worker ever has more than two
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tasks in-flight at once, it will first wait for one
task to complete before requesting further work.
This behaviour enables dynamic load-balancing
between the workers on a node.

3.4.2 Communicator

The Communicator is the rank which im-
plements the inter-node ring communication
scheme, as in Fig. 3. Each node stores its own
DP

ia slice locally for the duration of the algo-
rithm, while the EP

ia slices are passed around
the ring to be paired with each DP

ia slice. At
each step of the communication algorithm, ev-
ery node sends its locally stored E slice to the
following node while receiving a new E slice
from the previous node. Due to symmetry of
the virtual orbital indices, E slices need only
be passed half way around the ring for the al-
gorithm to complete.

An MPI double-buffering system is employed
to allow overlap between computation and
transfer of E slices. The communication rank is
told by the coordinator when it is safe to begin
overwriting the contents of a buffer.

3.4.3 Coordinator

The Coordinator is the rank responsible for
scheduling inter-node data transfers and dis-
tributing work among local Workers. Given
slices of DP

ia and EP
ia, the coordinator partitions

the available work into tasks and dynamically
distributes tasks between available Workers.

Once all tasks corresponding to the current
E slice are completed, the Coordinator notifies
the Communicator rank that the buffer is now
free for the next asynchronous inter-node data
transfer.

4 Results

In this Section we characterize the performance
of our implementation through wall-times and
FLOP-rate calculations.

Section 4.1 begins with a description of the
supercomputer systems used in the test runs.
Section 4.2 establishes a baseline by compar-
ing the performance of our implementation with

three state-of-the-art quantum chemistry codes,
GAMESS,106 QChem107 and Orca.108

The remaining sections consist of an indepen-
dent evaluation of the performance of our im-
plementation. Section 4.3 presents strong scal-
ing data across multiple GPUs within a node,
while Sections 4.4.1 and 4.4.2 present, respec-
tively, weak and strong scaling data on multiple
nodes. Water clusters are used for all scaling
tests. Only O(N3) work in the RI-MP2 algo-
rithm depends on the details of the input be-
yond the number of basis functions, so the scal-
ing behaviour of water clusters is indicative of
the scaling for practical inputs. For complete-
ness, we also present performance benchmarks
for some chemically interesting systems in Sec-
tion 4.5.

Throughout this section, FLOP rates for our
software are determined by code instrumenta-
tion to count the FLOPs of BLAS calls. All
non-BLAS GPU operations are ignored, pro-
ducing an under-estimate of the true FLOP
count. Each m× k by k× n GEMM is counted
as 2mkn FLOPs, while each n × n by n × k
TRSM is counted as n2k FLOPs.

Unless otherwise specified, RI-MP2 calcula-
tions are performed using the cc-pVDZ and cc-
pVDZ-RIFIT as the primary and auxiliary ba-
sis set, respectively.

All RI-MP2 calculations do not adopt the
frozen core approximation, thereby using all oc-
cupied and virtual molecular orbitals.

4.1 The Perlmutter and Gadi Su-
percomputers

The multi-node scaling data presented in this
paper was gathered on the Perlmutter super-
computer at the National Energy Research Sci-
entific Computing Center (NERSC), while the
single-node data was gathered on the Gadi su-
percomputer at the National Computation In-
frastructure (NCI) in Australia.

The standard GPU nodes of Gadi each house
two 24-core Intel Xeon Platinum 8268 CPUs
for a total of 48 CPU cores, in addition to four
NVIDIA V100 GPUs with 32GB of High Band-
width Memory (HBM). Each CPU socket has
a peak performance of roughly 2.1 TFLOP/s
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and a Thermal Design Power (TDP) of 205 W,
while each GPU has a peak performance of 7.8
TFLOP/s and a TDP of 300 W.

Gadi also features nodes with A100 GPUs,
which each house two 64-core AMD EPYC 7742
CPUs for a total of 128 CPU cores, along with 8
NVIDIA A100 GPUs with 80GB of HBM each,
and a peak performance of 19.5 TFLOP/s and
a TDP of 400 W.

Perlmutter consists of 1792 nodes each with a
64-core AMD EPYC 7763 CPU and four A100
GPUs, where 256 nodes have A100’s with 80GB
of HBM while the remaining nodes have 40GB.

4.2 Comparison with Other Soft-
ware

The performance of our implementation is com-
pared with that of GAMESS, QChem, and
ORCA. For these three software packages, we
use a 48-core Gadi Cascade Lake node, with a
peak performance of 4.2 TFLOP/s. We mea-
sure our software with a single NVIDIA V100
GPU with a peak performance of 7.8 TFLOP/s.
Considering the peak performance ratios, the
expected speedup of a V100 against the CPU
node is 1.85.

In these tests, EXESS, ORCA and QChem
are all configured to use Cartesian basis func-
tions, while GAMESS only supports Spheri-
cal Harmonics. This reduces the workload for
GAMESS by 21% for DZ and 36% for TZ basis
sets.

The algorithms are compared using water
clusters of varying sizes. All inputs are evalu-
ated with both the cc-pVDZ/cc-pVDZ-RIFIT
and cc-pVTZ/cc-pVTZ-RIFIT basis sets, ex-
cept for the 75 molecule cluster, where the avail-
able memory is insufficient to run TZ calcula-
tions. The results are presented in Figure 4.

In the DZ tests, the least favourable compar-
ison for EXESS is found in the case of 75 wa-
ter molecules, where EXESS achieves a speedup
of 3.5 over the next best package, GAMESS.
In all other cases, the speedup attained by
EXESS exceeds 3.5, with typical speedups in
the range of 3.5-4.5 times. This exceeds the
expected speedup of 1.85 based on the theoret-
ical peak FLOP rates, indicating that our soft-

ware makes better use of the underlying hard-
ware than the other packages. In the TZ tests,
speedups of 2.8-3.8 are achieved over ORCA
and QChem, while speedups of 1.7-1.9 are
achieved over GAMESS. The favourable per-
formance of GAMESS in comparison to ORCA
and QChem is primarily due to the use of spher-
ical harmonics.

Another noteworthy point of comparison is
the time allocation cost. On Gadi, a nor-
mal 48-core node costs 96 Service Units (SU)
per hour, while a single V100 GPU costs only
36 SU per hour. Accounting for the >2.8
times speedup achieved by EXESS and the>2.6
times cheaper hardware, running the calcula-
tions with EXESS is over 7 times cheaper in
comparison with the other packages (less so
when comparing against spherical harmonics).
The TDP of each alternative is proportional to
the SU cost, so the same factor of 7 applies to
savings in power consumption as well.

With a strong baseline established with re-
spect to state-of-the-art packages, we now
present scaling tests to demonstrate that this
efficiency persists at scale.

4.3 Single-Node Strong Scaling

A strong scaling analysis of the multi-GPU al-
gorithm has been conducted on the Gadi super-
computer, with nodes featuring four NVIDIA
V100 GPU cards as well as nodes with eight
NVIDIA A100 cards. Performance is evalu-
ated using clusters of 40, 80 and 150 water
molecules with the cc-pVDZ/cc-pVDZ-RIFIT
basis sets (the 150 water molecule input is too
large to run on the V100 nodes). These in-
puts require, respectively, approximately 5GB,
40GB and 240GB of Host memory to store
each of the three-index tensors. Strong scal-
ing results for both V100 and A100 GPUs are
shown in Fig. 5. The A100 GPUs with the
(H2O)150 input achieve a parallel efficiency of
97% on 8 GPUs while achieving 86% of theo-
retical peak performance, while the (H2O)80 on
V100 GPUs achieves a parallel efficiency of 98%
while achieving 85% of theoretical peak perfor-
mance. These inputs are both large, with wall-
times on the scale of minutes to hours. The
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Figure 4: RI-MP2 execution times for three software packages in comparison with EXESS, measured
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RIFIT (right) basis sets. The GAMESS, QChem and ORCA packages are run on a 48-core Intel
Cascade Lake node, while EXESS is run on a single NVIDIA V100 GPU.

1 2 3 4
0

5

10

15

20

25

30

35

97.5%

96.2%

98.2%

92.9%

89.9%

87.6%

# of GPUs

T
F

L
O

P
/s

V100 Strong Scaling FLOP Rates

Theoretical Peak
(H2O)80
(H2O)40

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

99.7%

98.3%

98.3%

97.4%

96.7%

96.1%

97.0%

98.8%

95.8%

95.9%

93.0%

91.3%

89.3%

88.5%

92.5%
78.2%

70.7%
60.8%

46.3%
34.2% 29.1%

# of GPUs

T
F

L
O

P
/s

A100 Strong Scaling FLOP Rates

Theoretical Peak
(H2O)150
(H2O)80
(H2O)40

# of GPUs
Input GPU 1 2 3 4 5 6 7 8

(H2O)40 V100 18.5s 10.0s 6.9s 5.3s

(H2O)80 V100 496s 255s 172s 126s

(H2O)40 A100 8.76s 4.70s 3.40s 2.74s 2.51s 2.71s 3.09s 3.17s

(H2O)80 A100 204s 103s 71.0s 53.2s 43.9s 37.3s 32.5s 28.6s

(H2O)150 A100 4310s 2160s 1460s 1100s 887s 741s 640s 559s

Figure 5: Strong scaling data for (H2O)n/cc-pVDZ/cc-pVDZ-RIFIT inputs, each with 5n occupied,
20n virtual and 96n auxiliary orbitals. Percentages at each data point express the parallel efficiency
compared with a single GPU. The table contains wall-times for all test runs. The (H2O)150 input
does not fit in the memory of a V100 node and is thus excluded.

smaller (H2O)40 input achieves less desirable
scaling on the A100 node due to the dearth of
work, namely as the tasks assigned to each GPU

become so small that they cannot be executed
efficiently by A100 GPUs.
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4.4 Distributed Scaling

This section details weak- and strong-scaling
results for multi-node computations on the
Perlmutter system. Results are presented for
both 40GB and 80GB models of NVIDIA A100
GPUs. All scaling tests are carried out with
inputs consisting of water clusters using the cc-
pVDZ/cc-pVDZ-RIFIT basis sets. Results are
shown in Fig. 6, the test cases are described
and discussed in the following subsections.

4.4.1 Weak Scaling

Weak scaling tests were carried out with water
clusters of varying size to maintain a constant
workload per node. The workload associated
with a water cluster is approximated by sum-
ming the theoretical FLOP costs of each of the
main tensor contractions. Inputs were chosen
so that the estimated wall time (obtained by
dividing FLOP count by theoretical peak per-
formance) was no greater than 4 minutes per
input. The chosen input sizes are tabulated in
Table 1.

On the smallest node count, 4 nodes with an
input of 149 water molecules, our code runs at
89% of peak performance on 40GB GPUs and
93% of peak on 80GB GPUs. The largest in-
put, 160 nodes with 314 water molecules, oper-
ates at 71% of peak (8.9 PFLOP/s) on 40GB
GPUs and 86% of peak (10.8 PFLOP/s) on
80GB GPUs.

The algorithm as presented has imperfect the-
oretical weak scaling, as the amount of data
stored on each node shrinks as the node count
increases (due to O(N3) memory compared to
O(N5) computation). This results in a worse
ratio of computation to communication as the
node counts grows even though the amount of
work per node stays constant. This could be
solved by introducing a data replication system
to keep the data per node constant along with
the computation per node, but this is deferred
to future work. Even with this imperfection,
we still achieve good weak scaling up to several
hundred GPUs.

4.4.2 Strong Scaling

Strong scaling tests were performed with a clus-
ter of 314 water molecules, totalling 1570 oc-
cupied, 6280 virtual and 30144 auxiliary ba-
sis functions. The total memory footprint of
this input, including communication buffers, is
6.64TB.

The node counts included in the tests are mul-
tiples of 20, starting at 60. Fewer than 60 nodes
would not provide enough memory to handle
the input. Parallel efficiencies are measured rel-
ative to 60 nodes.

On the 80GB A100 nodes, the code achieves
outstanding parallel efficiency with respect
to the theoretical peak performance. The
(H2O)314 system achieves a 95% parallel effi-
ciency using 640 GPUs, attaining 83% of the-
oretical peak performance. Scalability in the
40GB nodes reaches a maximum parallel effi-
ciency of 96% at 400 GPUs and degrades to
70% for larger node counts.

The greater amount of HBM in the 80GB
GPUs allows each GPU to perform larger ma-
trix multiplications, leading to a better ratio of
Host → Device data transfer to computation.
This is why the 40GB nodes plateau in scaling
before the 80GB nodes.

4.5 Timings and Floating-Point
Performance

The new distributed RI-MP2 algorithm is ap-
plied to two datasets of spherical sections of
crystal lattice structures with either 20 neutral
molecules, namely benzene and paracetamol,
or with 20 ion pairs of ionic liquids, namely
1-ethyl-3-methylimidazolium tetrafluoroborate
([C2mim]+[BF4]

−), ethylammonium nitrate
([EtNH3]

+[NO3]
−), guanidinium tetrafluorob-

orate ([Gdm]+[BF4]
−), guanidinium chloride

([Gdm]+Cl−) and guanidinium ethanesulfonate
([Gdm]+[EtSO3]

−).
Each input was run on both 16 and 32 nodes

of Perlmutter, with four 40GB A100 GPUs
each. Results are tabulated in Table 2. Our
implementation operates at 50-85% of theoret-
ical peak performance for almost all inputs,
demonstrating the applicability of our solution

13
https://doi.org/10.26434/chemrxiv-2024-9091h ORCID: https://orcid.org/0000-0001-5109-4279 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-9091h
https://orcid.org/0000-0001-5109-4279
https://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 4 8 16 32 64 128 256

0.1

1

10

100%

98%

89%

83%

82%
80%

100%

99%

96%

89%

83%

93%

Node Count

P
F

L
O

P
/s

Distributed Weak Scaling FLOP Rates

40GB A100
80GB A100

Theoretical Peak

40 80 120 160 200 240
0
1
2
3
4
5
6
7
8
9

10
11
12

95%

96%

93%

87%

85%
79%

76% 70%

104%

101%

97%
89%

99%

95%

Node Count

P
F

L
O

P
/s

Distributed Strong Scaling FLOP Rates

40GB A100
80GB A100

Theoretical Peak

Figure 6: Strong and weak scaling data for our implementation on Perlmutter, with both 40GB
and 80GB A100 GPUs. The percentages attached to each point present the respective weak/strong
parallel efficiency at the corresponding point relative to the smallest node count (4 for weak, 60 for
strong), where a value of 100% implies perfect linear scaling. The inputs used for weak scaling are
described in Section 4.4.1, while strong scaling is done on a system of 314 water molecules (1570
occupied, 6280 virtual, 30144 auxiliary basis functions). All inputs use the cc-pVDZ/cc-pVDZ-
RIFIT basis sets.

Table 1: Water Cluster Sizes and Estimated Completion Times for the weak scaling inputs.

# Nodes # GPUs Water Cluster Size Est. Completion Time (s)
4 16 149 228s
8 32 172 234s
16 64 198 236s
32 128 227 233s
64 256 261 234s
128 512 300 235s
160 640 314 236s

to practical problems. Of particular note is the
32-node calculation for [Gdm]+Cl−, in which
our implementation sustains just over 52% of
peak performance (1.3 PFLOP/s) with a wall-
time of only 5.267 seconds, demonstrating that
our implementation does not require large in-
puts to achieve good hardware utilization.

5 Conclusion

This paper presented a novel distributed mem-
ory multi-GPU RI-MP2 algorithm, which accel-
erates all steps of the algorithm on GPUs and
has been carefully optimized to improve paral-
lel scaling and performance at the single-node,
and many-node levels. For the single node ver-

sion of the algorithm, we demonstrate near-
optimal parallel scaling and near-peak perfor-
mance on up to 4 NVIDIA V100 GPUs and up
to 8 NVIDIA A100 GPUs on the Gadi super-
computer for large inputs, and slightly worse
but still near-optimal performance and scal-
ing for smaller inputs, as well as favourable
comparisons to state-of-the-art libraries. As a
highlight, over 85% of peak performance (135
TFLOP/s) is achieved on a node with 8 A100
GPUs for the RI-MP2 calculation of a cluster
of 150 water molecules.

The distributed memory version, achieves
outstanding weak and strong scalability on the
Perlmutter supercomputer, achieving 83% of
peak performance (11.8 PFLOP/s) with a 95%
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Table 2: Performance of the distributed RI-MP2 algorithm on a variety of inputs of practical
interest.

Molecule no nv naux Nodes Wall-Time (s) FLOP rate (TFLOP/s) % Peak

(benzene)20 420 1980 9720 16 9.191 799.815 64%
(benzene)20 420 1980 9720 32 5.545 1328.97 53%

(paracetamol)20 800 3400 17220 16 126.136 1051.35 84%
(paracetamol)20 800 3400 17220 32 79.767 1694.21 68%

([C2mim]+[BF4]
−)20 1020 3980 20460 16 325.736 1066.54 85%

([C2mim]+[BF4]
−)20 1020 3980 20460 32 171.209 2066.55 83%

([EtNH3]
+[NO3]

−)20 580 2320 11640 16 25.191 886.5 71%
([EtNH3]

+[NO3]
−)20 580 2320 11640 32 26.221 871.68 35%

([Gdm]+[BF4]
−))20 740 2560 13680 16 52.849 972.056 78%

([Gdm]+[BF4]
−)20 740 2560 13680 32 34.502 1488.27 60%

([Gdm]+Cl−)20 500 1680 8880 16 8.548 791.971 63%
([Gdm]+Cl−)20 500 1680 8880 32 5.267 1302.14 52%

([Gdm]+[EtSO3]
−)20 900 3280 16980 16 146.017 1049.3 84%

([Gdm]+[EtSO3]
−)20 900 3280 16980 32 81.529 1911.56 77%

parallel efficiency using 720 80GB A100 GPUs
over 180 nodes. The weak scaling of the code is
not ideal due to the reduction of data across
nodes compared to the expensive computa-
tional step. However, this could be ameliorated
with further development.

A limitation in the algorithm is imposed by
the steep memory requirement of storing the
three-index tensors in Host memory, and the
reliance on GPUs. For HPC systems with hun-
dreds of gigabytes of available memory and
available GPUs this is not an issue, but this
renders our algorithm inaccessible for ordinary
workstations.

Overall, the new distributed memory RI-MP2
algorithm presented in this paper shows that
GPU oriented design can lead programs to fully
exploit the hardware and provide thereby in-
credible performance and speedups over past
implementations.
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