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Abstract

Acoustic measurements of batteries are known to be correlated to their state-of-charge,
creating opportunities for state estimation that do not rely on electrical signals. State
estimators are typically parametric models fitted from data, often from the broad tool-
box of machine learning. Such models can be easily designed to have millions of tuneable
parameters, which endows them with tremendous but often misinterpreted fitting ability.
The real performance metric, commonly omitted in the battery literature, is a model’s
generalisation performance with respect to a population, which requires successful predic-
tions to be made on data from one or more ‘held out’ cells. This study demonstrates that
regression models based on neural networks can perform highly accurate state estimation
on multiple cells; however, this is shown to be conditional on all cells being represented
in the training dataset. Generalisation to the wider population is shown to be more chal-
lenging than other studies claim; a conclusion which follows from tests on multiple feature
configurations and multiple model variants. It is hypothesized that success on multi-cell
data in the absence of wider generalisation is due to the ability of models to learn cell-
specific patterns implicitly, which is a type of ‘overfitting’. This hypothesis is tested in
two ways. First, classifiers performing a matching operation between acoustic waveforms
and their respective cells are used to show that cell-specific characteristics are present in
the waveforms. Next, unsupervised learning methods are used to perform a projection of
all acoustic signals to two-dimensional latent space. In the latent space it is found that
datapoints cluster according to the cell identity, indicating that the distinctiveness of
cells dominates over any state-related commonalities in the acoustic dataset. The study
highlights the need for caution in how the generalisation of machine learning models (of
any kind) is evaluated in battery research.
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1. Introduction

The properties of acoustic waves, such as their speed and attenuation, are influenced
by the mechanical properties and geometry of the medium they traverse. In the case of
lithium-ion batteries, this manifests as a correlation to the state-of-charge (SoC), since
the mechanical properties and geometry of electrodes vary and evolve with the state.
Demonstrations of this behaviour were made definitively in the past decade [1, 2] and
were followed by attempts to leverage the correlation in constructing state estimators
reliant on acoustic signals. The aim was never to replace conventional methods of SoC es-
timation, which can be highly successful (such as electrochemical-model-based approaches
[3, 4]), but rather to complement and diversify them, targeting improvements in safety
and reliability. The potential for such improvements is based on the independence of the
acoustic signal, which is measured by a dedicated sensor and is also uniquely informed
by the internal structure and chemomechanics of a cell, rather than its aggregate electro-
chemical characteristics. Therefore, acoustic state estimation can be performed separately
from other methods, and can be used to verify them, detect faults, or contribute towards
the quantification of uncertainty.

Much of the existing literature is focused on reducing waveforms to specific features,
investigating their individual dependencies on the SoC, and possibly on additional pa-
rameters such as the temperature and C-rate. Gold et al. [5] performed tests at relatively
low ultrasonic frequencies, near 200 kHz, where they observed the separation of travelling
waveforms into a fast and a slow wave according to Biot theory [6, 7]. They then argued
in favour of using features of the slow wave and demonstrated state estimation by linear
regression. Wei et al. [8] also searched for a feature that would be linear in the SoC, and
their recommendation was termed the ‘initial rise time’ — the time between the front
and the centroid of the transmitted signal.

Zhang et al. [9] developed a methodology to extract six features from a certain interval
of the time domain, where the interval itself was selected based on correlation metrics to
the SoC. Li et al. [10] extracted eleven features using both the time and the frequency
domain, and then downselected seven of those, also based on their correlation and sensi-
tivity to the SoC. Galiounas et al. [11] had previously demonstrated that the frequency
domain contains useful structures and that time-domain features could be filtered down.
In a study on cylindrical cells, Montoya-Bedoya et al. [12] extracted parameters from
the power spectrum, highlighting a particular parameter called the ‘mid-band fit’. This
was computed by performing a line-fitting operation on the normalised power spectrum
which, according to the authors, is a method used in medical applications.

The above studies advocate for their respective feature extraction technique based on
criteria such as stability, monotonicity or linearity of the correlations to the SoC. Such
characteristics have been shown to be present in any one cell; nevertheless, they have not
been shown to be consistent in a population so as to allow a generalised SoC estimator to
be fitted for a specific battery product (i.e. for a catalogue-listed cell). In cases where SoC
models were in fact fitted, the underlying dataset typically consisted of signals obtained
at a single location of a single cell [11, 9, 10, 13, 14, 5, 8]. This monolithic nature of the
datasets has resulted in a variety of modelling techniques being successful in estimating
the SoC of a single cell, and various types of artificial neural networks have performed
particularly well [11, 9, 10, 13]. Nevertheless, in the absence of a benchmark test, different
methods cannot be compared and the accuracies reported by different studies are not
worth noting. Furthermore, single-location testing is prone to producing datasets that
correlate acoustic waveforms to the local SoC of the tested region, instead of the global
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SoC of the whole cell. Spatial variations of the SoC, especially in large-format cells, have
been demonstrated by several diffraction studies [15, 16, 17, 18].

Huang et al. [19] deviated from the single-cell single-location paradigm in two ways.
Firstly, they trained an SoC estimator using waveforms from 150 locations of one cell
and 42 SoCs (that amounts to 6300 waveforms). Secondly, as an assessment of generali-
sation they used their trained estimator to infer the SoC of two other cells, using signals
from 6 different locations on each. A point of novelty is that they did not compare their
predictions to the aggregate SoC of those cells, but to the local SoC of those specific
points, measured destructively by inductively coupled plasma-induced optical emission
spectroscopy (ICP-OES). Although this generalisation test cannot be considered exten-
sive, due to the small number of spectroscopic test points, it would not be practical to
perform ICP-OES much more widely. A complementary assessment could have evalu-
ated the trained model on more locations of the test cells, comparing predictions to the
cell-level SoC. The authors had 141,750 such datapoints from each cell in their disposal
(obtained from 3,375 locations and 42 SoCs), and additional model validation using this
dataset would be useful in the future. Davies et al. [20] also deviated from the single-
cell paradigm by training a Support Vector Machine with acoustic data from 2 cells and
predicting the SoC of a third cell, although the size of the dataset and the number of
training and test samples were not specified in their study.

None of the studies discussed above have published their datasets; therefore, it is
not possible to conduct comparative evaluations or to validate claims. In this work we
share an experimental dataset containing acoustic signals from 7 cells cycled using a
multi-C-rate protocol. We demonstrate visually that acoustic signals from different cells
are heterogeneous when simple features are considered, and proceed to explore whether
different feature configurations can result in greater levels of homogeneity across cells and
lead to state estimators that can successfully generalise. State estimators are constructed
in the form of feedforward neural networks (FNNs) and convolutional neural networks
(CNNs), whose input is a certain feature configuration and whose output is the cell
voltage. This is a regression task. For each feature configuration, estimators with a range
of fitting capabilities are trained and tested.

Generalisation is shown to be challenging, and the study proceeds to investigate why.
It is shown that very simple classification models can correctly identify which cell pro-
duced an acoustic signal, indicating that certain acoustic characteristics are cell-specific.
Lastly, a breadth of unsupervised learning techniques is employed to reduce the dimen-
sionality of acoustic signals to two latent dimensions. This aims to investigate the possible
emergence of clustering-by-cell in the latent space, which would indicate the prevalence
of cell distinctiveness over state-related commonality in the acoustic dataset.

The data and models generated in this work are shared open access [21], as well as
the code used in processing, visualisation and animation of the data. This code is in the
form of a purpose-built python package titled SonicBatt [22]. The reader can follow the
instructions in the SonicBatt repository to reproduce most plots of this study.

2. Experimental methods

2.1. Data generation

A total of seven commercial cells with a nominal capacity of 210 mAh and LiCoO2/Gr
chemistry (Model 651628, AA Portable Power) were used. A complete specification sheet
is provided in the Supplementary Information (SI). The same cell was used in some of

3

https://doi.org/10.26434/chemrxiv-2024-93b2q ORCID: https://orcid.org/0000-0001-7097-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-93b2q
https://orcid.org/0000-0001-7097-3092
https://creativecommons.org/licenses/by/4.0/


the aforementioned acoustic studies [20, 11], including Davies et al. [20] who claim a gen-
eralised state estimator. Cycling was performed with a computer-controlled potentiostat
(Interface 1010E, Gamry instruments, US). The surface temperature was monitored with
an N-type thermocouple, attached to the surface of cells using polyamide adhesive tape,
and using a TC-08 thermocouple interface (Pico Technology, UK). Tests were conducted
on a bench top and the ambient temperature varied according to laboratory conditions.
All cycling was performed between the manufacturer’s stated voltage limits of 2.75 and
4.2 V.

The cycling protocol included five repetitions of the following sequence: (1 × 0.2C),
(3 × 0.5C), (5 × 1C). Therefore, a complete cycling protocol included 45 cycles. Fig. 1a
demonstrates the cycling protocol for Cell 1 out of 7, and the equivalent data for Cells
2–7 can be found in SI Section 1. Acoustic data was acquired using an Olympus Epoch
650 ultrasonic flaw detector and a single 6.35 mm diameter, 5 MHz transducer operating
in pulse-echo mode (M110-RM, Evident Scientific). The transducer was secured by a 200
g weight. The ultrasonic settings used are specific to the Olympus detector and are listed
in Table 1. A small amount of silicon-dioxide-based couplant (H-2, Evident Scientific) was
applied between the transducer and the cell. The shape of the pulsed waveform, obtained
by conducting tests on aluminium, can be found in our previous work [23].

Acoustic waveforms were recorded every 60 seconds while cycling. This produced a
dataset of 66,995 waveforms, with similar contributions from the different cells (Table 2).
An example waveform is shown in Fig. 1b. It comprises a total of 4000 data points which
correspond to a duration of 10 µs. The 9 peaks circled on the waveform are peaks that
could be identified consistently for all cells under all cycling conditions thanks to their
adequate prominence. They will later be used to form certain configurations of acoustic
features. The final peak is widely believed to originate at the posterior side of the cell
[24] and can be termed the ‘back wall echo’ peak. As a convenient feature to visualise,
the time-of-flight (ToF) of this ‘back wall echo’ peak is also plotted in Fig. 1a.

Table 1: Ultrasonic flaw detector settings.

Parameter Value

Energy Gain 300 V
Gain 51 dB
Range 10 µm
Filter 0.5–4 MHz
Pulse Frequency 2.25 MHz

2.2. Dataset visualisation with example acoustic features

Cycling and acoustic information for the entire dataset are plotted in Fig. 2 versus
the cell charge level (Q). Different colours are used for the different C-rates, and lighter
shades represent earlier cycles than deeper shades. Voltage is plotted in the first row
and is representative of the electrochemical characteristics of the cells. The remaining
rows demonstrate acoustic features which characterise the acoustic response. Namely, the
amplitude and the ToF of the second and the last acoustic peaks are shown, as well as the
difference between those values from one peak to the other. The second rather than the
first peak was chosen for visualisation because the first peak saturated in certain cases
(it overshot the maximum value that could be recorded).
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Figure 1: (a) Example cycling protocol for Cell 1 out of 7, including the sensed voltage and temperature
signals, capacity measurements obtained by Coulomb counting, and the ‘back wall echo’ ToF of the
acoustic signals. (b) Example acoustic waveform with identified peaks.

Table 2: Population of acoustic signals in the dataset (per cell and total).

Cell ID Number of signals

1 9,917
2 10,105
3 9,034
4 8,828
5 10,438
6 9,158
7 9,515

Total 66,995

It is worth noting the hysteresis that is present in most acoustic features, which creates
‘boxy’ shapes similar to the voltage plots. Voltage hysteresis is a common phenomenon
in lithium-ion batteries, and is more pronounced at high currents [25, 26]. The acoustic
hysteresis observed here shows a similar dependence on the current as voltage hysteresis,
especially when the acoustic amplitude is concerned. The ToF of the last acoustic peak
(the ‘back wall echo’ peak) exhibits less hysteresis during cycling and is relatively linear,
providing a compelling parameter for state estimation by linear regression or similar
methods [24]. Nevertheless, it is not a consistent feature between different cells, and
would therefore require cell-specific model parameterisation. In fact, none of the other
acoustic features shown are adequately consistent between all cells. This motivates the
use of richer feature configurations for the task of state estimation, together with more
advanced models that are capable of capturing non-linear patterns. The next section will
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Figure 2: Summary plot of entire dataset. Voltage and acoustic data plotted against the amount of cell
charge (Q). Three C-rates: 0.2C, 0.5C, 1C. Light shades indicate early cycles. Darker shades indicate
later cycles. Similar plots for the individual C-rates can be found in SI Section 2.

A challenge revealed by Fig. 2 is the presence of some acoustic instability at the
beginning of each test. Early cycles (light shades) appear in many cases to produce an
acoustic response that rapidly evolves before stabilising. Whether this acoustic instability
implies that a cell’s electrochemical characteristics are unstable should be the subject of
further work, although the investigations of Knehr et al. [27] are instructive and were
conducted on the same cell. Some electrochemical instability can in fact be seen in the
individual cycling profiles of the seven cells (SI Section 1), where capacity measurements
obtained by Coulomb counting indicate that some lithium-consuming processes similar
to formation are still taking place in the early stages of cycling. Consequently, the charge
level (Q) shown as the x-axis in Fig. 2 is not perfectly accurate because Coulomb counting
accounts for all charge passed, including irreversible charge lost to parasitic reactions.
Additionally, Coulomb counting is prone to accumulation of rounding errors over time,
and each experiment had a duration of approximately 1 week which can make rounding
errors problematic. For these reasons, the state estimators trained in the next sections
will use voltage as their target variable — the sole dependent variable in the regression
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tasks.

3. Computational methods

3.1. Feature configurations and data splits

Acoustic waveforms were formulated into seven feature configurations labelled ‘A’ to
‘G’. The feature configurations are described visually in Fig. 3 and verbally in Table 3,
which also lists the number of features in each configuration. Config ‘A’ is the simplest,
capturing the x-y position of the ‘back wall echo’ peak, and will be used as a benchmark.
Configs ‘B’ and ‘C’ contain information from additional peaks. Config ‘D’ uses the entire
time domain of each waveform excluding the first 1.9 µs segment, approximately, which
is invariant in the dataset. Config ‘E’ is obtained by performing an FFT on config ‘D’,
and keeping the magnitude spectrum of the first 300 frequency bins (0.12–37.0 MHz).
This frequency range is slightly different compared to the previous chapter, because of
the cropping of the first 1.9 µs that was applied to the time-domain. Config ‘F’ attempts
to combine time- and frequency-domain information by concatenating configs ‘D’ and
‘E’ into one vector (not visualised in Fig. 3 because the two domains have very different
scales). Config ‘G’ has the same aim, but instead converts waveforms into spectrograms
which reveal frequency changes over time and can be visualised as 2D images.

Spectrograms were computed by performing a Short-Time Fourier Transform (STFT)
over each waveform. This involves windowing the time domain, computing the FFT for the
windowed signal, and then stepping the window across. The following design choices were
made for the creation of spectrograms: A Hann window with a length of 501 datapoints
was used, corresponding to a signal duration of 1.2525 µs (whole signals are 10 µs long).
The step size was 5 data points (12.5 ns) and no padding was used; therefore, the window
was stepped across 549 times. Among the calculated frequency bins only the first 20 were
kept (0.8–16.0 MHz). These design choices produced spectrograms of manageable size
(549 × 20 arrays) for the subsequent training tasks. Also, the resulting spectrograms
were animated and visually inspected, and were found to vary visibly with cycling (bins
of higher frequencies, above 16 MHz, did not). Animations of the spectrograms, and of
the time and frequency domains of all signals and all cells, can be downloaded from the
online data repository [21].

Table 3: Descriptions of the seven feature configurations and the number of features in each.

Feature
config

Description
Number of
features

A ‘Back wall echo’ peak ToF & Amplitude. 2
B 9 peaks ToF. 9
C 9 peaks ToF & Amplitude. 18
D Time domain (except invariant part). 3242

E
Frequency domain obtained from feature config ‘D’.
— First 300 frequencies (0.12–37.0 MHz).

300

F D & E together. 3542
G Spectrograms obtained from feature config ‘D’. 10980

For machine learning tasks, the 7-cell dataset was split into training, validation, and
test sets. This splitting was carried out in two different ways, as outlined in Table 4, in
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Figure 3: Feature configurations used to train machine learning models.

order to separately assess the ability of models to handle data from multiple cells and
their ability to generalise more widely.

• ‘All cells’ data split: The entire dataset was shuffled and then split 60:20:20
between the training, validation and test sets.

• ‘Held out cells’ data splits: To assess wider generalisation, all data from five of
the seven cells were used for training, while a different cell was used for validation
and the remaining cell for testing. The dataset was ‘folded’ in order to allow every
cell to act as test cell once, and also as validation cell once. This resulted in seven
dataset folds (Table 4). Importantly, the data within each fold was shuffled to
remove possible sources of bias due the sequence of measurements or the ordering
of the cells in the dataset.

Feature vectors were standardised prior to model training, i.e. they were scaled ac-
cording to the mean and variance of each feature in the training data. For the folded
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Table 4: Dataset splits

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7
Cell 1 Training
Cell 2 Validation
Cell 3 Test
Cell 4
Cell 5
Cell 6
Cell 7

Training: 60 %
Validation: 20 %

Test: 20 %

'All cells' 
data split

'Held out cells' data splits
(each fold is a split)

cases, where the training data was different for each fold, the scaling was fold-specific.
Scaling transformed each feature to have zero mean and unit variance in the training
dataset. The validation and test datasets were scaled according to the scaling parame-
ters computed on their respective training sets. The same scaling strategy (feature-wise
scaling) was also applied in the case of spectrograms (config ‘G’), although their features
are organised in arrays rather than vectors.

3.2. Models

3.2.1. Regression

The primary model type used with feature configs ‘B’ to ‘F’ was the feedforward neural
network. FNNs have a structure of fully connected layers, also known as ‘dense layers’.
Every node in a dense layer has individual connections to all nodes in the previous layer.
The number of tuneable parameters in a FNN are defined upon model instantiation,
i.e. it is independent of the training process. The more parameters a model has, the
greater its ‘capacity’, meaning that it is capable of fitting a larger set of functions [28].
Nevertheless, high-capacity models are prone to overfitting and require a regularisation
strategy. Overfitting is the learning of specific data sequences or dependencies rather than
general patterns. Two regularisation strategies were used in this work, the main one being
‘early stopping’. An additional set of results was produced by combining early stopping
and ‘dropout’.

Early stopping is the termination of the training process based on a model’s perfor-
mance on the validation dataset. This is the sole purpose of the validation dataset in
our study. A patience of 500 epochs was used in all cases, meaning that model training
stopped once the validation loss had not improved for that long. The best version of the
model parameters, based on the validation loss, was then restored. An upper limit of 8000
epochs was set, to avoid perpetual training due to marginal or random improvements of
the validation loss. Dropout is defined as the random and temporary ‘switching off’ of
neural network nodes at the start of each training epoch. The effect of dropout is to make
each hidden node more robust and drive it towards creating useful features on its own,
without relying on other nodes to correct its mistakes [29]. Essential concepts such as
model capacity and regularisation in artificial neural networks are thoroughly explained
in the textbook of Goodfellow, Bengio and Courville [28].

To assess the accuracy of models with respect to their capacity, models of different
sizes were constructed and tested with each feature configuration. The number of model
parameters in each case is listed in Table 5. The following notation is used in the table
to describe FNN models:

9

https://doi.org/10.26434/chemrxiv-2024-93b2q ORCID: https://orcid.org/0000-0001-7097-3092 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-93b2q
https://orcid.org/0000-0001-7097-3092
https://creativecommons.org/licenses/by/4.0/


Number of hidden layers Nodes in each layer

Networks of various depths, specifically with 1, 2, and 3 hidden layers, were tested.
This is motivated by prior evidence that deep networks can represent certain families of
functions more efficiently (more compactly) than shallow networks [30]. In other words,
model depth can also contribute to model capacity. Layers with 10, 20, 50, 75, and 100
nodes were constructed, and in deep networks the number of nodes was kept the same
for all their layers. FNN models were not trained with feature config ‘A’ as it captures a
very limited feature space that would not justify the model complexity.

Performance benchmarks were set by two classical machine learning methods, using
config ‘A’ as well as configs ‘B’ to ‘F’. The first benchmark is Linear Regression; a
prototypically simple model. The second benchmark is the SVM; chosen because of its
use by Davies et al [20] who claim a generalised state estimator. It should be noted that
in SVMs the concept of model parameters is different from neural networks, and it is not
defined at model instantiation. Instead, the number of learned parameters is determined
during model training. For this reason, Table 5 does not list the number of parameters
for SVMs, but those will be shown in the results section for individual models.

Table 5: Number of model parameters for models used with feature configs A–F.
Feature configuration

A B C D E F

Baselines
Linear Regr. 3 10 19 3243 301 3543
SVM Training-dependent for SVM

1 hidden
layer

FNN 1 × 10 N/A 111 201 32,441 3,021 35,441
FNN 1 × 20 N/A 221 401 64,881 6,041 70,881
FNN 1 × 50 N/A 551 1,001 162,201 15,101 177,201
FNN 1 × 75 N/A 826 1,501 243,301 22,651 265,801
FNN 1 × 100 N/A 1,101 2,001 324,401 30,201 354,401

2 hidden
layers

FNN 2 × 10 N/A 221 311 32,551 3,131 35,551
FNN 2 × 20 N/A 641 821 65,301 6,461 71,301
FNN 2 × 50 N/A 3,101 3,551 164,751 17,651 179,751
FNN 2 × 75 N/A 6,526 7,201 249,001 28,351 271,501
FNN 2 × 100 N/A 11,201 12,101 334,501 40,301 364,501

3 hidden
layers

FNN 3 × 10 N/A 331 421 32,661 3,241 35,661
FNN 3 × 20 N/A 1,061 1,241 65,721 6,881 71,721
FNN 3 × 50 N/A 5,651 6,101 167,301 20,201 182,301
FNN 3 × 75 N/A 12,226 12,901 254,701 34,051 277,201
FNN 3 × 100 N/A 21,301 22,201 344,601 50,401 374,601

Feature config ‘G’ (spectrograms) was used to train CNNs, which are widely used
with images. CNNs are capable of identifying structures in two-dimensional datasets by
performing transformations to their inputs according to filtering operations. Filters are
traversed over the 2D arrays performing a convolution operation, hence the name. Fig. 4
demonstrates at a high level the CNN structure used in this study, which includes two
convolutional layers, each succeeded by a max pooling layer. Filters were set to be 3×3
arrays, and these are model parameters that are learned during the training process.

An attribute of CNNs which is particularly appealing is their ability to exhibit a level
of positional invariance, i.e. patterns in the 2D dataset can be identified regardless of their
exact positions. This is the direct effect of learning the filters after their global application
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to a whole image or array. The final stage of the customised CNN architectures, following
the convolution and pooling layers, is a series of dense layers. These receive a flattened
vector of the filter values as their input, and produce the voltage estimation at the output.
A total of 18 CNN architectures were tested in this study, having different sizes, and are
listed in Table 6.

Spectrogram at a certain voltage

Convolutions and ReLU

Max pooling

Convolutions and ReLU

Max pooling

Filters

Dense layers

V

Figure 4: CNN information flow, showing the outputs (not the filters) of each layer (horizontally). Dia-
gram inspired by LeCun, Bengio and Hinton [31].

FNN and CNN models were created and trained using the Tensorflow Python library.
The Adam optimiser was used and the learning rate was equal to 0.001 for the first 300
epochs, beyond which point it was set to decay linearly, to reach one-fifth of the starting
value on epoch 8000. In cases where dropout was applied, the starting learning rate was set
to 0.0005 because this produced more stable training (with less noisy fluctuations of the
training and validation losses over progressive epochs). The ReLU activation function was
used in all layers of regression models, including the convolutional layers of CNNs. This
excludes the output layer which produces the voltage estimation, where no activation
was applied. The loss function was the mean absolute error (MAE). SVM and Linear
regression models were created and trained using the scikit-learn Python library. In SVM
models the default settings of scikit-learn were used, including the radial basis function
kernel.

A total of 75 FNN models are listed in Table 5 and 18 CNN models in Table 6. As
discussed, all neural networks were trained using the ‘all cells’ data split and also using
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Table 6: Number of model parameters for CNN models used with feature config ‘G’ (spectrograms).

Filters in first
conv. layer

Filters in second
conv. layer

Final dense
layers

Num of
parameters

1 hidden
layer in

dense stage

CNN 1 8 16 1 × 50 325,349
CNN 2 16 32 1 × 50 652,901
CNN 3 32 64 1 × 50 652,901
CNN 4 8 16 1 × 100 649,449
CNN 5 16 32 1 × 100 1,301,001
CNN 6 32 64 1 × 100 2,611,017

2 hidden
layers in

dense stage

CNN 7 8 16 2 × 50 327,899
CNN 8 16 32 2 × 50 655,451
CNN 9 32 64 2 × 50 1,317,467
CNN 10 8 16 2 × 100 659,549
CNN 11 16 32 2 × 100 1,311,101
CNN 12 32 64 2 × 100 2,621,117

3 hidden
layers in

dense stage

CNN 13 8 16 3 × 50 330,449
CNN 14 16 32 3 × 50 658,001
CNN 15 32 64 3 × 50 1,320,017
CNN 16 8 16 3 × 100 669,649
CNN 17 16 32 3 × 100 1,321,201
CNN 18 32 64 3 × 100 2,631,217

the 7 ‘held out cells’ data folds. Additionally, all models were trained with and without
dropout. Therefore, a total of 1488 neural network regression models were created, and
their test scores will be discussed in the results section. The implementation of dropout
was such that 20% of the nodes in each dense layer were randomly switched off at the
start of each training epoch. Dropout was not applied to the input and output layers, or
to convolutional layers. All training was carried out on UCL’s Myriad High Performance
Cluster using Graphics Processing Units (GPUs). Each model ran on a single GPU, i.e. no
parallelisation was set up. However, multiple GPUs were used to run models concurrently.
The cumulative run time for all regression models was approximately 55 days.

We note that the models created have a broad range of capacities, from 3 parameters
to approximately 2.6 million parameters (Tables 5 and 6). Used in combination with the
seven feature configurations, it is believed that the performance of these models will be
highly indicative of the possibilities and limitations of state estimation using acoustic
signals.

3.2.2. Classification

Classification models were trained using the ‘all cells’ data split for the purpose of
recognising the identity of the cell which produced an acoustic waveform. A small number
of simple FNN models, containing a relatively small number of parameters, were trained
and tested (Table 7). The same training settings and termination strategy as in the
regression case were used. Activation functions were again of the ReLU type, except in
the output layer where no activation was used. A softmax operation was applied to the
model outputs at the point of inference to convert logit vectors to probabilities (logits are
the raw, non-normalized predictions). The sparse categorical cross-entropy loss function
was used, therefore, labels representing the cell identity were the integers 0 to 6.
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Table 7: Number of parameters for FNN classification models.
Feature configuration

FNN A B C D

1 hidden
layer

1 × 2 27 41 59 6,507
1 × 5 57 92 137 16,257
1 × 10 107 177 267 32,507

3.2.3. Unsupervised learning

Unsupervised learning models were trained for the purpose of reducing the dimension-
ality of the different feature configurations to a two-dimensional latent space. This aims
to examine whether clusters emerge in the latent space, and if they do, to understand
their characteristics. The following techniques were used:

• Principal Component analysis (PCA).
• t- Stochastic Neighbour Embeddings (t-SNE).
• Autoencoders with 1D input-output.
• A Convolutional Autoencoder (CAE) with 2D input-output for use with spectro-
grams.

PCA is a prototypical linear dimensionality reduction technique with a closed-form
solution (Bishop [32], chapter 12). t-SNE is a non-linear, iterative method which is suc-
cessful at maintaining local structure, meaning that points which are close together in
high dimensional space remain close in the lower dimensional projection [33, 34]. Global
structure is not necessarily preserved, and points that were far apart in high dimensional
space may be brought closer together in projected space. An advantage of this is that
the projections tend to be compact and easy to visualise. PCA and t-SNE were applied
to feature configs ‘B’ to ‘G’, where config ‘G’ was first flattened into a 1D vector. Data
was shuffled to remove order-related biases. PCA and t-SNE were implemented using
scikit-learn.

Autoencoders are symmetrical neural networks which progressively compress their
input down to a bottleneck, before expanding again to the starting dimensions. During
training, an autoencoder aims to reproduce the output from the input and, in this process,
it learns a compressed data representation at the bottleneck. Post-training, the structure
up to the bottleneck, called the encoder, can be isolated to perform dimensionality reduc-
tion by forward pass [28]. Autoencoders were only applied to the richer configurations,
‘D’, ‘F’ and ‘G’ (flattened) using an architecture of dense layers, and config ‘G’ specifi-
cally was also used in its 2D form to train a convolutional autoencoder (Table 8). The
number of parameters of all autoencoders is shown in Table 9.

Table 8: Encoder part of the two autoencoder architectures. The decoder is the symmetric expansion of
the encoder. Left to right indicates moving from the input layer towards the bottleneck. The symbol †

marks layers after which dropout was applied. Dropout was also applied to the input layer itself as a
way of introducing noise.

Nodes in dense layers
Autoencoder
(1D input)

No conv layers
1024 † 512 † 256 † 128 64 32 16 8 2

CAE
(2D input)

32
filters

16
filters

8
filters

Number of 3×3 filters
in conv layers
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Table 9: Number of autoencoder parameters.

Feature
configuration

Autoencoder
(1D)

Convolutional
autoencoder

D 4,726,204 N/A
F 5,033,704 N/A
G 12,677,110 126,026,899

Caution is required when training autoencoders, as given enough model capacity it is
possible for them to just learn the identity function between the input and output layer,
i.e. to predict each feature of the output layer from the same feature in the input layer [35].
This is a trivial mapping that would not reveal anything useful about the nature of the
dataset. Regularisation in autoencoders aims to prevent this type of overfitting; however,
the effectiveness of various regularisation strategies differs from other types of neural
networks. Vincent et al. [36]. showed that forcing an autoencoder to perform a denoising
task as part of the reconstruction process can lead to better learned-representations. Noise
can be added to the input layer in various forms. In this study we introduced noise by
applying dropout to the input layer at a rate of 20%. This is equivalent to the addition
of masking noise to the dataset, which was discussed by Vincent et al. Dropout was also
applied to three additional layers of the encoder and decoder as shown in Table 8.

Autoencoders were implemented using Tensorflow. ReLU activations were used on
most layers, except for the bottleneck and output layers. A linear activation was applied
to the bottleneck to avoid the possibility of one of its two latent dimensions being rectified
to zero. A sigmoid activation was applied to the output layer, which we believe can aid the
training process given the bounded nature of the waveform amplitude. For compatibility
with the sigmoidal output, the input data was first scaled to the [0,1] range.

The training data from the ‘all cells’ data split was used to train all models. In the
case of autoencoders, the validation set was used for early stopping, providing additional
regularisation. After training, the test set was used to produce the 2D projections that
will be discussed in the results section. Visualising projections on the test set, instead
of the whole dataset, provides additional reassurance that any patterns that emerge are
not the result of overfitting to the training data. It should be clarified, however, that it
does not in itself guarantee that the autoencoders have not simply learned the identity
function. The aforementioned denoising strategy is what ameliorated this problem.

4. Results

4.1. Regression

The performance of all regression models at the voltage prediction task, on test data,
is shown in Fig. 5. The left and right columns of the figure stand in contrast, where
the former represents models trained and tested on data from ‘all cells’, and the latter
represents models trained and tested on folds of ‘held out cells’. The results, as a whole,
indicate that no model was able to identify patterns which would correlate acoustic signals
to the voltage in a way that generalises to the cell population. Models trained on ‘all
cells’ can be successful; however, this must be due to the learning of cell-specific patterns.
Specific aspects of the results are discussed next, which reinforce this argument.

Considering the ‘all cells’ data split (Fig. 5a–c), it is evident that neural networks
(FNNs and CNNs) outperformed classical models. In the absence of dropout, this is
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true in all cases (Fig. 5b); and it is also true in most cases using dropout (Fig. 5c).
Dropout has the effect of decreasing a model’s capacity by encouraging the learning of
smoother functions. This smoothness constraint likely inhibits the learning of cell-specific
patterns, which is a form of overfitting, and would explain the higher errors in Fig. 5(c)
compared to (b). In the absence of dropout, increasing the number of parameters or the
depth of the networks produced lower errors. Hashed symbols represent a depth of 3
hidden layers, empty symbols a depth of 2 and filled symbols a depth of 1. It can be
seen that for each feature configuration, deeper networks outperformed shallow networks
with a similar number of parameters. This was not the case when using dropout; depth
did not consistently reduce the test error, and the benefit from increasing the model
capacity was limited. Both these effects are believed to be due to the regularising effect
of dropout, which limited the learning of cell-specific patterns but without equivalent
success in promoting the identification of more generic patterns.

Considering the ‘held out cells’ data splits (Fig. 5d–f), seven times more models are
shown because of the seven data folds. Neural networks did not outperform classical
models in this case. In fact, the lowest error across the board was achieved by linear
regression applied to config ‘A’ — the simplest feature configuration. This benchmark
error is equal to 264 mV, which is too large for any practical application, yet all other
models performed even worse when averaged across folds. To put this into context, an
estimator predicting a constant value of 3.875 V (the average voltage in the dataset) would
result in a MAE of 270 mV, only slightly underperforming the benchmark. Increasing the
number of model parameters does not yield any benefit in this case. On the contrary, more
severe overfitting and extreme errors are observed when using high-capacity FNN models
with some of the richer feature configurations. This is similar to the linear regression case
when applied to high dimensional data, although linear regression was not regularised by
early stopping. The application of dropout does not have any obvious effect in the ‘held
out’ case either, other than slightly limiting the number of extreme errors. This suggests
that the smoothness of the learned functions was irrelevant to their performance on the
test set, and that the learned functions did not generally capture characteristics of the
test sets.

The inability to generalise to ‘held out cells’ warrants an investigation of the learning
process itself. Fig. 6 shows the number of training epochs for models used with different
datasets, with and without dropout. It is reiterated that training was terminated by mon-
itoring the validation loss, with a patience of 500 epochs. Therefore, if a model stopped
training exactly on epoch 500 it would mean that its performance on the validation set
never improved, even though its starting weights were set randomly. If training stopped
soon after epoch 500, then the performance on the validation set either improved very
little in the early epochs, possibly due to random fluctuations, or it improved to an op-
timum very rapidly. Fig. 6b shows that models using a ‘held out’ cell as the validation
dataset stopped training very early in most cases, indicating little or no learning. Exam-
ples of longer training are rarer, found mostly when dropout was applied, but still did not
achieve a good test-set accuracy as discussed. Fig. 6a shows that using a validation set
containing waveforms from all cells (i.e. from the ‘all cells’ data split) extended the train-
ing process significantly, and in some instances training termination was due to reaching
the maximum of 8000 epochs. The improvements that led to prolonged training in this
case were likely due to the continuous learning and fine-tuning of cell-specific patterns.
This process was counteracted when using dropout, resulting in shorter training.
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Figure 5: Error values for regression models evaluated on test data. Left column — ‘all cells’ data split.
Right column — ‘held out cells’ data splits. Filled, empty and hashed symbols are used to distinguish
the depth of the neural networks. Filled: 1 hidden layer. Empty: 2 hidden layers. Hashed: 3 hidden layers.
Linear Regression and SVM do not have the concept of depth and are shown with filled symbols in the
first row, and by lines and shaded regions in the other rows. (a) and (d): Benchmark models. (b) and
(e): Models without dropout. (c) and (f): Models with dropout.

4.2. Classification

The accuracy of classification models at predicting the cell identity (7 classes), on test
data from ‘all cells’ (13,399 samples), is shown in Fig. 7. Perfect classification accuracy,
equal to 1, was achieved by models with a relatively small number of parameters, even
when using simple feature configurations such as ‘B’ and ‘C’. The ease of the classification
task suggests that acoustic signals obtained from different cells contain some distinctly
different characteristics. This in itself does not guarantee the absence of other acoustic
characteristics which could link multiple cells to a common cell state. Nevertheless, it
reinforces the hypothesis that the success of regression models on this dataset is likely
due to the identification of cell-specific patterns.
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Figure 7: Classification accuracy on test data (13,399 samples). Dataset: ‘All cells’.

4.3. Unsupervised Learning

The two-dimensional projections produced by the unsupervised models are shown in
Fig. 8. Latent dimensions 1 and 2 are abstract representations generated by the dimen-
sionality reduction techniques that were used. They capture the most significant variance
or structural patterns in the data, with each axis representing a combination of the orig-
inal features that best separates or organizes the data in a lower-dimensional space. The
projected waveforms are those of the ‘all cells’ test set, and were not used in training.
Datapoints are coloured according to the cell identity to explicitly examine whether clus-
ters of different cells emerge. It is discovered that this is indeed the case, as individual
colours agglomerate together to a large degree in all subplots. This indicates that the
distinctiveness of cells in the acoustic dataset dominates over any common links between
them and a generic cell state. This distinctiveness appears to be dominant in all models,
linear and non-linear, and all feature configurations.
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Figure 8: Two-dimensional projections produced by unsupervised learning. Datapoints are coloured by
the cell ID. PCA and t-SNE subplots use linear scales. Autoencoders are shown on symlog scales.

5. Discussion

A foundational assumption used in the development of machine learning algorithms
is that the samples in a dataset are identically distributed. This means that there exists a
data generating probability distribution that can produce all samples of both the training
and test sets. The learning task is then to characterize this probability distribution within
the structure of a model, allowing useful and accurate predictions to be made on unseen
data.

The models used in the regression analysis constitute an extensive search for a data
generating distribution that is characteristic of the whole cell population (i.e. characteris-
tic of all cells sold by the manufacturer under a specific catalogue name). Experimentation
with a large number of models, having a broad range of model capacities, and using a
variety of feature configurations, is what makes this search extensive. The results suggest
that such a data generating distribution could not be discovered, and the reasons can be
two-fold. Either the dataset itself was insufficient to characterise it; or such a data gen-
erating distribution does not exist (meaning that there are no patterns between acoustic
features and the SoC that are common across many cells). The latter possibility, which
would be an inherent limitation of the acoustic method, should not be readily dismissed.
Cell design, manufacturing, and quality control, generally aim to produce cells with con-
sistent electrochemical characteristics. Although this is achieved by carefully controlling
the geometry and physical properties of all cell components, the effect of any manufactur-
ing tolerance on the cell’s electrochemical characteristics is not necessarily the same as the
effect of that same tolerance on the acoustic characteristics. A discrepancy between these
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two sensitivities might exist, for example, when considering the thickness of electrode
layers, the smoothness of the current collectors and their parallelism, or the amount of
excess electrolyte in a cell. Investigating this possible discrepancy between acoustic and
electrochemical sensitivities to manufacturing would be useful ground for future research.

In the current study, the lack of generalisation to the cell population may put into
question the electrochemical consistency of the cells altogether. Considering the voltage
profiles of Fig. 2, a certain degree of cell-to-cell variation is observed. Some of this,
however, has been visually exaggerated due to the uncertainty of the x-axis values —
the charge level, Q — which experienced drift as discussed. It is reiterated that this
uncertainty of the charge level is the reason our study focused on voltage rather than
SoC estimation. A complementary investigation of the cell-to-cell voltage variation is
provided in SI Section 3, where an additional 10 cells were cycled slowly, at a rate of C/20,
to observe their quasi-OCV (qOCV) profiles. The investigation is based on constructing
qOCV-versus-SoC curves for the 10 cells and overlaying them, where in this case it was
possible to compute the SoC by Coulomb counting because side reactions were minimised
thanks to the low C-rate. It was found that between the 10 cells, and at any SoC, the
qOCV varied by a maximum of ±31 mV between 10 different cells (SI Fig. 11), and by an
average of ±8 mV among all SoCs. It can be concluded that this level of intrinsic cell-to-
cell variation does not justify the complete lack of generalisation of the machine learning
regression models trained in this chapter, where mean absolute errors were higher than
±264 mV (the baseline case).

It should be acknowledged that a more thorough account of cell-to-cell variation would
have also considered the impedimetric profiles of the cells, which affect their overvoltages
at the higher C-rates used in this chapter (0.2, 0.5 and 1C). Nevertheless, the additional
cell-to-cell discrepancies would need to be very large to hinder generalisation to the
extent observed. A more likely explanation for the lack of generalisation is that the
acoustic characteristics of the seven cells in the acoustic dataset are distinctly different,
as discussed. It is also significant to consider that this distinction persists at all three
C-rates — otherwise the classification scores would have been lower, and clusters in the
latent spaces produced by unsupervised learning may have been less pronounced. A final
consideration, with regard to sources of cell-to-cell variation, is the possibility that the
dataset acquired from each cell reflects the local SoC in the tested area, rather than
the global SoC measured electrochemically. However, given the small size of the cells
tested (ca. 4.1 cm2), spatial SoC variations are likely too minor to account for the lack
of model generalisation. Additionally, the transducer used had a contact area of ca. 0.3
cm2, covering a significant portion of each cell (SI Section 4).

Future studies are encouraged to acoustically test a larger population of cells, and
to produce population statistics for their acoustic characteristics in comparison to their
electrochemical characteristics. Inspiration for the electrochemical characterisation of cell
populations can be drawn from Dubarry et al. [37] (100 cells), Rumpf et al. [38] (1100 cells)
and Schindler et al. (408 cells). Given the lack of generalisation shown in our study, it is
recommended that future datasets also aim to minimise sources of variation. For example,
tests at a single slow C-rate are recommended, controlling the cell temperature, and
ensuring cell stability. Temperature in the current study varied with a standard deviation
of 1.6 ◦C (max: 26.8 ◦C, min: 18.7 ◦C), and three different C-rates were tested. The
influence of various C-rates on the acoustic response can be found in our previous work
[23]. Another possible direction for future work is to attempt an extension of the acoustic
feature space, for example, by performing acoustic frequency sweeps. The identification
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of common patterns between cells in the extended feature space, or the lack thereof, can
be evaluated by adapting the code [22] and methods put forward in this work.

Lastly, it is worth noting that state estimation on multiple cells using a common
model was shown to be possible. MAE close to 15 mV in the voltage estimation task was
demonstrated on the seven-cell dataset, and could be further improved by allowing models
to train for longer or by fine-tuning their structure and hyperparameters. However, it is
critical to recognise that this represents a type of overfitting, where the training process
has led to the identification of cell-specific patterns between the acoustic waveforms and
the cell state. The implication is that a battery management system using acoustics for
state estimation would require every cell to undergo prior testing and to contribute some
data for model training. A complementary perspective is to think that the data generating
distribution is strongly multimodal, having a different mode per cell. This also explains
the ease of the classification task, and the strong presence of clustering-by-cell in reduced
dimensions which emerge without supervision.

6. Conclusions

A common pitfall of machine learning applied to battery studies has been demon-
strated using an acoustic dataset. It was shown that models with a large number of
parameters can have a high enough capacity to capture cell-specific patterns implicitly,
without discovering any connecting patterns between cells. This represents a type of over-
fitting that is frequently disregarded in the literature, and a lack of generalisation which
presents a challenge to the wider use of acoustics for battery state estimation. The dataset
is the first of its kind to be made available, alongside the trained models [21], and the
shared code can be used to reproduce the analysis [22].

The pursuit of generalisation presented is extensive but not exhaustive, and future
research can aim to extend the acoustic feature space, and to produce statistics using a
larger population of cells under less varied conditions. A shift in focus is recommended,
away from demonstrating the correlation of specific acoustic features to states of a single
cell, and towards demonstrating the consistency of those features in a population of
multiple cells. The machine learning approaches put forward in this work should be
useful to this end. Alternative statistical metrics of similarity may also be used.
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