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ABSTRACT: Methods that accelerate the evaluation of molecular properties are essential for 
chemical discovery. While some degree of ligand additivity has been established for transition 
metal complexes, it is underutilized in asymmetric complexes, such as the square pyramidal 
coordination geometries highly relevant to catalysis. To develop predictive methods beyond 
simple additivity, we apply a many-body expansion to octahedral and square pyramidal complexes 
and introduce a correction based on adjacent ligands (i.e., the cis interaction model, or cis model). 
We first test the cis model on adiabatic spin-splitting energies of octahedral Fe(II) complexes, 
predicting DFT-calculated values of unseen binary complexes to within an average of 1.4 kcal/mol. 
We next show that the cis model infers both DFT- and CCSD(T)-calculated model catalytic 
reaction energies to within 1 kcal/mol on average. The cis model predicts low-symmetry 
complexes with reaction energies outside the range of binary complex reaction energies. We 
observe that trans interactions are unnecessary for most monodentate systems but can be important 
for some combinations of ligands, such as complexes containing a mixture of bidentate and 
monodentate ligands. Finally, we demonstrate that the cis model may be combined with D-learning 
to predict CCSD(T) reaction energies from exhaustively calculated DFT reaction energies and the 
same fraction of CCSD(T) reaction energies needed for the cis model, achieving around 30% of 
the error from using the CCSD(T) reaction energies in the cis model alone. 
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1. Introduction. 

Transition-metal complexes (TMCs) present unique opportunities and challenges for applications 

across many fields, including medicine,1-3 photonics,4-6 and catalysis.7-9 However, the design space 

of TMCs is quite vast and underexplored. On the order of 10,000 ligands have been structurally 

characterized in octahedral TMCs,10 meaning more than 1021 theoretical combinations of ligands 

could be used to generate novel octahedral TMCs. Nevertheless, the number of TMCs that have 

been characterized is on the order of 100,000.11 Therefore, methods which can identify key TMCs 

from a large chemical space, either directly as leads or those that could be leveraged to infer 

information about many other TMCs, are invaluable.  

 While virtual high-throughput screening (VHTS) with density functional theory (DFT) and 

machine learning (ML) has greatly accelerated the in silico design of molecules12-16 and 

materials,16-21 discovery of molecular catalysts remains an open area of research,11,22,23 including 

for small-molecule activation, such as in the production of hydrogen,24-26 ammonia,27-30 and 

methanol.31-33 Researchers have carried out extensive computational investigations into ligand 

effects on catalytic TMCs in various reactions.34-40 Indeed, both computational41-43 and 

experimental44-46 studies aim to build libraries of ligands10,47 and understand how they influence 

the properties of derived TMCs.48-50 While a number of automated methods exist for ligand 

design,43,51-55 and ML can help target design objectives for the derived TMCs,54-57 it is still 

intractable to perform explicit calculations for the entirety of the TMC design space. 

 While DFT is widely employed in large-scale screening, DFT calculations with open-shell 

TMCs are less precise and more time-intensive than DFT calculations on organic, closed-shell 

molecules, making them intractable for fully exhaustive exploration of transition metal chemical 
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space.58-60 Some improvement in accuracy can be afforded by carefully calibrated61 black-box 

wavefunction theory (WFT) methods such as DLPNO-CCSD(T),62 but most methods are too 

demanding for large-scale screening. Strategies to infer energetics of many TMCs from a few data 

points are necessary to mitigate cost limitations. For example, these points can be used to develop 

Δ-ML63 or semi-empirical corrections64,65, but it is nontrivial to determine which TMCs will 

provide the most information and where ML predictions are erroneous.66,67 Thus, it is attractive to 

develop physical models for relating the properties of TMCs and to identify a minimal set of TMC 

properties that can be used to predict properties of the full space with greater accuracy. 

In organic chemistry, advanced group additivity theories, including those that have 

corrections for functional groups and ring strain,68 have seen resounding success in predicting 

thermochemical properties to within 1 kcal/mol.68,69 In organometallic chemistry, additivity 

models have been considered in the context of ligand-field theory (LFT) and the contribution of 

each ligand to the field that the central metal ion experiences.70 This has typically been applied in 

its simplest form as homoleptic averaging, which estimates the value of a property for a 

heteroleptic complex as the stoichiometric average of the properties of corresponding homoleptic 

TMCs of constituent ligands. Homoleptic averaging has been applied to redox potentials,71-73 

absorption spectra,74,75 and other properties,76-78 but it can have errors exceeding 10 kcal/mol.77 

This motivates more complex LFT models, e.g., by considering the additivity of orbital 

energies.79,80 One drawback of this more complex LFT is that it requires new equations to be 

derived for every symmetry class.70,81,82 Thus, models that can be applied across symmetry classes 

but with the accuracy that can be achieved only via considering more complex interactions are 

desirable.   
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Because homoleptic averaging fails for many systems, we desire ligand additivity 

relationships that incorporate information from heteroleptic TMCs. Beyond additivity, there are 

also LFTs that include non-additive contributions, i.e., those which cannot be separated into 

individual ligand contributions.70,83 We recently presented a model that incorporates heteroleptic 

information for predictions on low-symmetry octahedral TMCs using information from higher-

symmetry octahedral TMCs comprising the same ligand types.77 The previously presented model 

only applies to octahedral TMCs, and thus it is beneficial to develop a framework that may be 

applied to any geometry individually and potentially across multiple geometries. The many-body 

expansion (MBE), which represents the property of a system via contributions of interacting 

subsystems with increasing complexity, represents such a framework. MBE is ubiquitous in 

theoretical chemistry, underpinning many force fields,84-89 fragmentation/embedding methods,90-

96 and correlated wavefunction theory.97-100 The MBE has also been applied for estimating metal–

ligand bonding by considering subsystems of up to three heavy atoms at a time.101,102 

In this work, we consider entire ligands as the smallest subsystems within the MBE to 

derive ligand additivity relationships that describe both the additive and non-additive field 

contributions to some degree. We apply this framework to TMCs with octahedral coordination 

environments and square pyramidal asymmetric TMCs, and we provide guidelines for accurate 

screening of materials and catalysts with minimal data. Finally, we show that the models are highly 

effective in predicting WFT energetics based on learning the difference between WFT and DFT. 

2. Theory 

2a. Many-body expansion for ligand additivity 
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We consider several schemes for estimating the properties of a heteroleptic transition 

metal complex from combinations of representative complexes. In the simplest scheme, 

homoleptic averaging estimates a property, Q, of a heteroleptic complex as a stoichiometric 

weighting of the properties of the corresponding homoleptic (HO) complexes, i.e. 

  (1) 

where ni is the count of ligand type i present in the structure, and n is the coordination number 

of the geometry (e.g., six for octahedral).  

Applying the MBE to ligands, a general quantitative property, Q, of a TMC may be divided 

into interaction terms, q(l), which involve l ligands. We truncate the MBE at order k as 

  (2) 

such that Q(n) is exact for a TMC with coordination number n. Each q(l) may be further decomposed 

by the identities of the ligands involved and the symmetry of each interaction (e.g., cis and trans 

interactions for q(2) in octahedral TMCs). For a given metal center, a TMC may be uniquely defined 

via the symmetry and ligand identities of the q(n) term, so we may assume that each term depends 

only upon the identity of the ligands without loss of generality. That is, Jahn–Teller distortion and 

other asymmetries do not require any special treatment in this formulation. At a given truncation 

order, we may also select which interactions to include in the approximation. Thus, eq. (2) provides 

a robust framework to obtain models for ligand additivity that are adjustable in complexity and 

accuracy. 

 We apply this ligand MBE to mononuclear octahedral complexes to derive simple models 

for ligand additivity relationships. The coordination sites in an octahedral geometry are symmetric, 
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so the first-order term is simply the sum of each ligand’s additive contribution, qi, which is 

equivalent for each ligand of the same type, Li. Thus, 

  (3) 

where ni is the count of Li present in the structure, and N is the number of unique ligand types 

considered. At first order, the ligand MBE for octahedral complexes is equivalent to homoleptic 

averaging upon using the homoleptic properties to solve for each qi. At second order, there are cis 

and trans interactions. We expect the cis interactions to dominate the trans interactions because 

the ligands involved in cis interactions are closer together in space. Additionally, there are 12 cis 

interactions in an octahedral complex but only three trans interactions with at least twice as many 

cis interactions between differing ligand types in each binary configuration (Supporting 

Information Figure S1). For these reasons, we retain only the cis interactions to obtain 

  (4) 

where qij,c is the contribution due to ligands Li and Lj in a cis orientation, and nij,c is the count of 

interactions of this type. The cis interaction model, or cis model, defined by eq. (4) is a linear 

model where the q are unknown parameters, and the n are explanatory variables, or the variables 

which may adjusted via the TMC identity to elicit changes in Q (nij,c for binary octahedral 

complexes are shown in Figure 1). The qij,c values describe ligand–ligand interactions and provide 

a means to quantify the non-additive contribution to ligand additivity relationships.70 Including 

trans and higher-order interactions likewise leads to linear models (Supporting Information Text 

S1). 
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Figure 1. Symmetry classes for octahedral transition metal complexes with up to two unique 
ligands, L1 and L2, are labeled by their name above and corresponding count of the L1–L2 
interactions (n12,c) below. The L1–L1, L1–L2, and L2–L2 cis interactions are respectively indicated 
by gray, light blue, and dark blue lines. 
 

2b. Considerations for application of the ligand MBE models 

The ligand MBE results in linear models with highly structured explanatory variables,  i.e., 

that take on discrete integer values, making them amenable to well-studied linear regression 

methods and applicable to low-symmetry complexes. Due to the finite number of possible TMCs 

with a given set of ligands, the explanatory variables are not necessarily linearly independent. 

However, it is sufficient to use a least-squares solution of minimal norm to deal with dependencies 

between explanatory variables because they are always integers and not subject to measurement 

error. Namely, the unknown parameters in eq. (4) are at most binary (i.e., involve two ligand types) 

and may be determined by measurements of Q for the binary complexes (Figure 1). The q 

parameters evaluated in this way still apply to ternary (i.e., three ligand types) and lower-symmetry 

complexes. Additionally, eq. (4) applies to complexes that belong to special cases of the octahedral 

geometry. For example, square pyramidal complexes may be considered within the octahedral 

model by labeling the empty site as a null “ligand” (Figure 2). This results in separate additive 
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contributions for the ligands adjacent (equatorial) and opposite (axial) to the open site because the 

number of cis interactions with the null ligand is equal to the number of equatorial ligands (Figure 

2 and Supporting Information Text S2). The unknown parameters may be shared between 

octahedral and square pyramidal complexes if the property of interest may be evaluated in both 

geometries (i.e., not for reaction energies), but square pyramidal complexes require extra 

parameters to describe the null ligand. Truncated ligand MBE models of this type still lower 

screening costs by sharing these parameters between octahedral and square pyramidal complexes 

for a given property. In future work, the model could be similarly extended to predictions for 

square planar and seesaw complexes using two null ligands within these models. 

 

Figure 2. Symmetry classes for square pyramidal transition metal complexes with up to two 
unique ligands, L1 and L2, are labeled by their name above and corresponding interaction counts 
nc = (n01,c n02,c n12,c) below.  The open coordinating site is illustrated by a null ligand, L0. The L0–
L1, L0–L2, and L1–L2 cis interactions are respectively indicated in light red, purple, and light blue. 
For each pair of ligands, a total of twelve isomers can be obtained because all complexes are unique 
if the L1 and L2 labels are swapped.  

 

To determine the minimum number of measurements required to specify the unknown 

parameters in our cis model for octahedral complexes, we examine known physical constraints. 

The first constraint is that the sum of the ni always equals the coordination number (i.e., six in this 

https://doi.org/10.26434/chemrxiv-2024-m39d9 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-m39d9
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by-nc/4.0/


9 

 

case). We also obtain a constraint for each ligand type by counting the number of each ligand 

involved in the cis interactions as 

  (5) 

where the multiplicative factor 4 arises because each ligand is involved in 4 cis interactions (see 

Figure 1). We apply these constraints to eliminate q(0) and each qii,c from eq. (4) to obtain 

  (6) 

where the q´ are the set of independent variables that satisfy eq. (4). Similar constraints may be 

obtained for any model by counting ligands or interactions (Supporting Information Text S3). 

Reviewing the form of eq. (6) indicates that the cis model has N(N+1)/2 independent parameters. 

Considering a modest set of N = 12 unique monodentate ligands, this means that we only require 

measurements on 78 of the 82,160 possible octahedral structures77 that the model can describe 

(i.e., less than 0.1%). The percentage of required measurements decreases further as N increases, 

scaling as N−4, representing enormous potential in accelerating the exploration of TMC space. 

 In building a ligand MBE model, there is a choice regarding which set of calculations or 

measurements to incorporate to inform the model. We suggest a minimal set of measurements to 

perform by evaluating the expected uncertainty in model predictions for binary complexes. Given 

that measurement uncertainty (e.g., due to error from the DFT functional) is likely independent of 

the TMC symmetry, we may assume a known variance for the purpose of minimizing errors and 

use standard uncertainty propagation for linear regression. We perform an exhaustive evaluation 

on each set of three out of the ten possible binary octahedral structures and find that the set with 

minimal total uncertainty comprises the mer symmetric (MS) and both octahedral homoleptic (oct) 

complexes. This result implies that the error in homoleptic averaging should be smaller for the 
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monoheteroleptic (5+1), cis symmetric (CS), and fac symmetric (FS) structures, in agreement with 

our previous findings.77 A Mathematica103 script for this calculation is provided on Zenodo.104 

Using this basis to solve for the unknown parameters in eq. (5) gives, 

  (7) 

where superscripts on Q indicate the quantity is measured for that symmetry, and subscripts 

indicate the ligand composition.  

For properties belonging to both octahedral and square pyramidal complexes, it is sufficient 

to include the homoleptic square pyramidal structures to fully specify all unknowns in the cis 

model. Unfortunately, reaction energies cannot be evaluated for an octahedral complex due to the 

lack of an open site, so we require a basis entirely comprising binary square pyramidal structures, 

which we characterize by the location and orientation of the minority ligands, giving five binary 

symmetry classes – equatorial (Eq), axial (Ax), cis-equatorial (CE), trans-equatorial (TE), and 

axial-equatorial (AxE) (Figure 2). Through the same procedure as in the octahedral symmetry 

classes, we determine that the set of four square pyramidal structures that minimizes the total 

expected uncertainty comprises both square pyramidal homoleptic (spy) and both AxE complexes. 

With this, we have now shown how to apply our newly derived ligand additivity models for 

octahedral and square pyramidal TMCs to substantially reduce screening costs. 

3. Methods. 

3a. Data Curation and Reaction Mechanism 

 We calculate reaction energies for the first two steps of the biologically-inspired radical 

rebound mechanism for methane-to-methanol conversion105 by mononuclear Fe(II) catalysts with 
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monodentate ligands (Scheme 1). We compute the oxo formation energy, ΔE(oxo), from the N2O 

terminal oxidant as 

ΔE(oxo) = E(2) + E(N2) – E(1) – E(N2O)   (8) 

where (1) and (2) are in the same spin state. The high-valent Fe(IV)=O intermediate then catalyzes 

hydrogen atom transfer (HAT) from a methane substrate to form a Fe(III)–OH intermediate (3), 

leaving a methyl radical. We compute the reaction energy for the HAT step, ΔE(HAT), as  

ΔE(HAT) = E(3) + E(•CH3) – E(2) – E(CH4)   (9) 

We compute the reaction energetics across four spin surfaces: low-spin (LS), intermediate-spin 

(IS), high-spin (HS), and ground-state spin-allowed (GSSA). The LS, IS, and HS surfaces assume 

a singlet, triplet, and quintet resting state respectively and majority-spin addition for the HAT step 

(i.e., to form a doublet, quartet, or sextet). The GSSA surface uses the ground state spin of (1) to 

compute ΔE(oxo) and uses the lower-energy spin state of the spin-accessible states of (3) formed 

either through minority- or majority-spin addition to compute ΔE(HAT). In cases where the singlet 

is the ground state of (1), GSSA is the same as the LS surface. 

 We investigate all binary combinations of eight monodentate ligands spanning a large 

range of field strengths: weak-field water (H2O), methanol (MeOH), and hydrogen sulfide (H2S); 

intermediate-field ammonia (NH3) and phosphine (PH3); and strong-field carbonyl (CO), 

acetonitrile (MeCN), and methyl isocyanide (misc). 

Scheme 1. Studied steps of the radical rebound mechanism for the partial oxidation of methane 
to methanol on iron(II) transition metal complexes with monodentate ligands. The reaction 
steps proceed left-to-right from the resting state (1) to the metal-oxo intermediate (2) formed 
by two-electron oxidation with N2O, followed by hydrogen atom transfer (HAT) to form a 
metal-hydroxo intermediate (3). In a complete cycle, the methyl radical (•CH3) rebounds to 
form a metal-bound methanol intermediate before methanol is released, regenerating (1). An 
iron(II) catalyst is shown with the most general monodentate ligands labeled Leq1, Leq2, Leq3, 
Leq4, and Lax.  
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3b. Electronic Structure Calculations. 

DFT geometry optimizations were performed using a development version of TeraChem 

v1.9.106,107 The B3LYP108-110 global hybrid functional was employed with the LANL2DZ111 

effective core potential for transition metals and the 6-31G* basis112 for all other atoms. 

Calculations on all spin states (i.e., including singlet states) were performed in a spin-unrestricted 

formalism with level shifting113 of 0.25 Ha applied to both majority- and minority-spin virtual 

orbitals to aid self-consistent field convergence. Geometry optimizations were carried out in the 

gas phase with the translation rotation internal coordinate optimizer114 using the L-BFGS 

algorithm. Default tolerances of 4.5x10-4 Ha/bohr and 10-6 Ha were applied as the convergence 

criteria for the maximum gradient and energy difference between steps, respectively. DLPNO-

CCSD(T) calculations were carried out in ORCA 5.0115-117 using ORCA-computed B3LYP 

reference orbitals, iterative triples,118 and the CPS1/CBS[3:4] extrapolation scheme.61 When 

comparing DFT predictions to DLPNO-CCSD(T), we use the DFT energy from the B3LYP 

reference orbital calculation of the larger basis set from the CPS1/CBS[3:4] extrapolation (i.e., 
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ZORA-recontracted119 versions of the def2 basis sets120 with ZORA-def2-QZVPP on Fe, ZORA-

def2-SVP on H, and ZORA-def2-TZVP on all other atoms) rather than the energy from the 

TeraChem calculation in the basis set used for geometry optimizations (Supporting Information 

Table S1). 

The initial structures for all species used in spin-splitting energy calculations and all 

Fe(IV)=O species were constructed using molSimplify v1.7,121 which uses OpenBabel122,123 as a 

backend. Metal-hydroxo initial geometries were generated by adding an H atom to the optimized 

metal-oxo structure as in prior work.124,125 All resting state catalyst structures were obtained as 

single-point energies after removal of the oxygen atom from optimized metal-oxo structures.  

Optimized geometries were validated as octahedral following previously developed criteria 

(Supporting Information Table S2).126,127 Failed calculations were resubmitted, starting from the 

converged geometry of another spin state where available, with preference towards a lower-spin 

state. Structures flagged for ligand dissociation were resubmitted via an intermediate calculation 

with frozen metal–ligand distances on the initial geometry before full optimization of the 

coordinates. We checked for other conformations of structures with Jahn–Teller or axial distortions 

by restarting the geometry optimization with a fixed axial metal–ligand distance and kept the 

lowest-energy conformer that passed the geometry checks (Supporting Information Figure S2). 

Failed SCF calculations were reattempted without level shifting and subsequently with level 

shifting of 1.0 Ha and 0.1 Ha on majority- and minority-spin virtual orbitals respectively. 

Calculations that failed to pass convergence or geometry checks after these job rescue efforts did 

not affect conclusions but were eliminated (Supporting Information Tables S3 and S4). 

3c. Regression and model evaluation. 
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Although the mean absolute error (MAE) is frequently used to measure performance within 

computational chemistry, it is a less useful metric when comparing regression models with 

differing numbers of model parameters, np. Instead, we define the scaled root-mean-square error 

(sRMSE), which includes a scaling factor based on the degrees of freedom in the regression, 

  (8) 

where nm is the number of measurements or data points of the target variable. This scaling factor 

is based on that used by Ezekiel in the adjusted-R2 for the evaluation of models with different 

numbers of parameters.128-131 The sRMSE is a better metric for comparing the various orders of 

the ligand MBE models to see if the higher-order models are worth the increased cost of the extra 

parameters. 

All regression tasks use the Moore–Penrose pseudo-inverse to obtain the least-squares 

solution of minimum norm as implemented in NumPy132 v. 1.26. To enable a consistent definition 

of sRMSE and compare models, regression tasks involving bidentate ligand parameters assume 

that monodentate ligand parameters are fixed at the values obtained from the minimal basis 

solution (Supporting Information Table S5). 

4. Results and Discussion. 

4a.  Evaluation of model accuracies on spin state energetics 

While homoleptic averaging has been demonstrated for symmetric geometries including 

octahedral,71,74,80,133 tetrahedral,75 and linear/sandwich73 geometries, it has not been thoroughly 

explored for asymmetric coordination geometries, such as square pyramidal. We thus first evaluate 

the performance of homoleptic averaging in predicting spin state energetics for square pyramidal 
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complexes and compare it to the performance for octahedral complexes. We investigate Fe(II) 

complexes containing up to two unique ligands from a set of four small monodentate ligands that 

span a large range of ligand field strengths: strong-field methyl isocyanide (misc) and carbonyl 

(CO), intermediate-field ammonia (NH3), and weak-field water (H2O). We compute the B3LYP 

adiabatic high-spin (HS, i.e., quintet) to low-spin (LS, i.e., singlet) splitting, ΔEH-L, for all such 

complexes (i.e., 52 octahedral and 64 square pyramidal). The ΔEH-L values for the homoleptic 

square pyramidal complexes are generally lower (i.e., more high-spin favoring) and span a smaller 

range than the corresponding homoleptic octahedral complexes (Figure 3 and Supporting 

Information Figure S3). This observation aligns with an additive interpretation where each ligand 

adds a contribution to the bare Fe(II) ion, which is strongly high-spin favoring, with the lowest-

energy singlet excited state being 87 kcal/mol above the quintet ground state.134,135 

 

Figure 3. Parity plots for the homoleptic averaging (i.e., interpolated from the spy HO or oct HO 
sets) ΔEH-L (in kcal/mol) vs. B3LYP computed values for Fe(II) between square pyramidal (left) 
and octahedral (right) geometries. Points are colored according to the pair of ligands they 
correspond to: CO–misc (green circles), H2O–NH3 (red triangles), and CO–H2O (blue squares), as 
indicated in the inset. Key isomers are annotated. Points used for the interpolation are translucent, 
whereas the remaining points are opaque. In both panels, a black dotted parity line is shown. 
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An additive interpretation also suggests that the heteroleptic combinations should have 

ΔEH-L values between those of the parent homoleptic complexes, as previously observed in 

octahedral complexes.77 This also appears to hold generally for square pyramidal complexes 

(Figure 3 and Supporting Information Figure S3). The one exception is the TE isomer of 

Fe(II)(CO)2(misc)3, with a calculated ΔEH-L of 19.4 kcal/mol that is slightly higher than the upper 

homoleptic limit of 18.8 kcal/mol for Fe(II)(misc)5. In the interpretation of square pyramidal 

complexes as a special subset of octahedral complexes, the TE Fe(II)(CO)2(misc)3 complex would 

still be well within the range of homoleptic values for the octahedral complexes that is spanned by 

the bare metal ion (i.e., homoleptic octahedral with all null ligands) and Fe(II)(misc)6 at the upper 

limit. However, no per-ligand additive explanation can account for differences between the TE 

and CE isomers of any square pyramidal complex, and CE Fe(II)(CO)2(misc)3 is inside the range 

of square pyramidal homoleptic values. Still, in predicting the heteroleptic values overall, 

homoleptic averaging achieves a mean absolute error (MAE) of 3.1 kcal/mol in the square 

pyramidal complexes that is comparable to the 3.4 kcal/mol MAE observed for octahedral 

complexes.  

While the MAE for square pyramidal complexes is slightly lower and very nearly meets a 

looser threshold of 3 kcal/mol that has been suggested for transition metal chemical accuracy,136,137 

the magnitude of error depends on both the ligand composition and the symmetry class. Complexes 

comprising ligands with a greater difference between the parent homoleptic ΔEH-L values on 

average exhibit higher errors from homoleptic averaging (Supporting Information Figure S4). The 

average magnitude of errors normalized by the difference in homoleptic parent compounds is 1.5 

times larger for square pyramidal complexes than for octahedral complexes (0.12 vs. 0.08). Thus, 

the relative errors from homoleptic averaging may be more significant for square pyramidal 
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complexes than octahedral complexes. We previously observed for octahedral complexes that the 

TS and MS symmetry classes generally have greater errors.77 Of the square pyramidal symmetry 

classes, TE is the most similar to TS and MS because adding a ligand to the open site of TE will 

result in either TS or MS depending on the ligand added. Indeed, the error for the TE class (MAE 

of 5.0 kcal/mol) is likewise greater than other square pyramidal symmetry classes (Supporting 

Information Table S6). Thus, homoleptic averaging performs equally, or worse, for asymmetric 

geometries compared with the symmetric geometries.   

 Using the ligand MBE models we introduced that have adjustable accuracy (see Sec. 2b), 

we now evaluate the tradeoff between cost and accuracy with respect to the expansion order across 

the set of ΔEH-L in monodentate octahedral complexes. To provide unbiased treatment of each 

model’s accuracy, we use linear regression on all 52 available data points rather than a minimal 

basis. That is, the “noninteracting” model evaluated here is given by eq. (3) and differs from 

homoleptic averaging in that each qi is determined via linear regression instead of directly from 

the homoleptic complexes. While each model (i.e., the non-interacting, cis only, and cis + trans) 

meets the 3 kcal/mol MAE cutoff, the MAE, scaled RMSE (sRMSE), and maximum absolute error 

are each approximately halved upon including cis interactions, nearly meeting the standard 1 

kcal/mol MAE cutoff for main-group chemical accuracy (Figure 4). However, the FS isomer of 

Fe(II)(H2O)3(CO)3 is corrected in the wrong direction in the cis model, leading to a major outlier 

with an error greater than 5 kcal/mol (Figure 4). Accounting for trans interactions as well brings 

the maximum error under 3 kcal/mol but offers only minor improvement to the MAE and sRMSE 

(Figure 4). For these reasons, we suggest that the cis model is likely to yield the best trade-off of 

accurate predictions with the highest data efficiency. In practice, it is sufficient to use the minimal 
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basis presented in eq. (7), which reduces data required by up to eightfold for the cis model but only 

increases the MAE by 0.1 kcal/mol (Supporting Information Table S6). 

 
Figure 4. (a) Parity plots and (b) error metrics for the performance of the noninteracting model, 
the cis interaction model, and the cis + trans interactions model in predicting ΔEH-L of octahedral 
Fe(II) complexes containing monodentate ligands. Points are colored according to the pair of 
ligands they correspond to: CO–misc (green circles), H2O–NH3 (red triangles), and CO–H2O (blue 
squares), as indicated in the inset. Binary isomers of the CO–H2O systems are annotated with their 
symmetry labels. In all panels of the parity plots, a black dotted parity line is shown. The error 
metrics are computed for all 52 binary and homoleptic systems investigated, including those absent 
from the parity plots. In the bar chart of error metrics, the transition metal chemical accuracy 
threshold (3 kcal/mol) is indicated by the dashed black line while main-group chemical accuracy 
(1 kcal/mol) is indicated by the dotted black line. 
 

  While the models thus far consider only monodentate ligands, most realistic transition 

metal complexes include higher-denticity ligands, motivating consideration of multidentate 

ligands in ligand additivity models. In previous studies, we have found that frameworks developed 

for monodentate ligands can work equally well for multidentate ligands.124,138 Here, we consider 

bidentate ligands, which introduce different symmetry cis interactions (i.e., in-plane and out-of-

plane). The new terms are redundant with the trans interaction terms (Supporting Information Text 

S4). Therefore, it is equivalent to use the same model as with monodentate ligands, but it is possible 

that the trans terms are more important for bidentate ligands. We investigate DEH-L values in binary 

and ternary octahedral complexes that contain either 2,2′-bipyridine (bipy) or ethylenediamine (en) 

along with combinations of NH3, H2O, CO, and pyridine (pyr) ligands or alternatively binary 
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complexes of only the bidentate bipy/en ligands. We observe that homoleptic averaging performs 

well for the bidentate-only systems, with an MAE of 0.5 kcal/mol on Fe(II)(bipy)(en)2 and 

Fe(II)(bipy)2(en) (Figure 5). This is in agreement with past literature observations that homoleptic 

averaging works well for binary bidentate complexes.72 However, we find varied performance for 

the mixed bidentate-monodentate binary systems in both homoleptic averaging and the cis 

interaction model, with MAEs of 5.9 kcal/mol and 5.1 kcal/mol respectively on the three 

heteroleptic complexes of bipy and CO. Nevertheless, we observe that the inclusion of trans 

interactions nearly eliminates prediction error, reducing the MAE to 0.5 kcal/mol on the three 

heteroleptic complexes of bipy and CO (Figure 5). The increased number of parameters is balanced 

by the significant reduction in error in both binary and ternary complexes because the sRMSE 

value decreases from 2.9 kcal/mol to 1.2 kcal/mol in the binary systems and from 2.6 kcal/mol to 

2.4 kcal/mol in the ternary systems with the addition of the trans parameters involving bipy (Figure 

5 and Supporting Information Figure S5). While it appears that not all pairs of ligands require the 

trans interactions, the need in some cases (i.e., bipy–CO) warrants their inclusion. This implies 

that the presented ligand MBE models can be applied to multidentate ligands and motivates future 

study of which ligand pairs require additional terms.  

 
Figure 5. (a) Parity plots and (b) error metrics for the performance of homoleptic averaging (HA), 
the cis model, and the cis + trans model in predicting ΔEH-L of Fe(II) complexes containing 
bidentate ligands. Points are colored according to the pair of ligands they correspond to: bipy–pyr 
(blue triangles), CO–bipy (red squares), NH3–bipy (green diamonds), and bipy–en (gray circles). 
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In all panels of the parity plots, a black dotted parity line is shown. The error metrics are for all 32 
binary systems investigated, including those absent from the parity plots. In the bar chart of error 
metrics, transition metal chemical accuracy (3 kcal/mol) is indicated by the dashed black line while 
main-group chemical accuracy (1 kcal/mol) is indicated by the dotted black line. 
 

 Having established that the cis model addresses most error in octahedral complexes with 

monodentate ligands, we next investigate the cis model performance for square pyramidal 

complexes. We first consider adiabatic spin-splitting energies because they can be evaluated for 

both octahedral and square pyramidal complexes, unlike the reaction energies of catalytic steps 

that are only compatible with a structure with an open metal site. Treating the square pyramidal 

complexes as octahedral complexes with a “null” ligand, we can directly apply the octahedral cis 

model. We investigate four cases: the oct HO case, which includes information only from the 

octahedral homoleptic complexes including the bare Fe(II) ion as the homoleptic octahedral case 

of the "null" ligand; the spy HO case, which includes information only from the square pyramidal 

complexes; the all HO case, which includes information from all homoleptic complexes (i.e., 

octahedral and square pyramidal); and all HO + MS, which includes information from all of the 

homoleptic complexes and the MS complexes (Figure 6). While the all HO case has very similar 

overall performance to spy HO across square pyramidal complexes, it performs slightly worse on 

all ligand pairs except H2O–NH3 (overall all HO MAE of 3.2 kcal/mol vs. 2.9 kcal/mol for spy 

HO, see Figure 3 and Supporting Information Table S7). The oct HO case gives noticeably worse 

predictions than spy HO (oct HO MAE of 4.8 kcal/mol). Only the fourth case, all HO + MS, gives 

superior performance to spy HO with an MAE of 2.4 kcal/mol (Figure 6). This observation shows 

that the cis model can utilize information from the binary heteroleptic octahedral complexes to 

inform predictions on the binary heteroleptic square pyramidal complexes without the need for 

calculations on any heteroleptic square pyramidal complexes. This removes the ambiguity of 
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selecting a basis in the square pyramidal complexes and saves on computational cost. It also shows 

that keeping the model parameters separate between the two geometries achieves slightly better 

performance within a given geometry, meaning that we do sacrifice some accuracy for the cost 

savings of sharing information between octahedral and square pyramidal geometries.  

 

 
Figure 6. Parity plots of model predictions for ΔEH-L (kcal/mol) vs. B3LYP computed values in 
Fe(II) square pyramidal complexes using models that share information with the octahedral 
complexes. The models are labeled based upon which complexes were used to obtain the model 
parameters. Points are colored according to the pair of ligands they correspond to: CO–misc (green 
circles), H2O–NH3 (red triangles), and CO–H2O (blue squares), as indicated in the inset. In all 
panels, a black dotted parity line is shown. 
 

4b. Ligand additivity trends in reaction energies 

In previous studies, we showed that homogeneous catalysts do not always follow linear 

scaling relationships as strongly as heterogeneous catalysts do and are additionally affected by the 

spin state and metal center.125,139,140 However, these previous studies investigated restricted subsets 

of binary symmetry classes. Thus, we analyzed the distribution of reaction energies in our data set, 

which includes all binary symmetry classes, to determine if this set yields trends consistent with 

prior observations of i) privileged ligand types for optimal reactivity124 and ii) a lack of strong 

scaling relationships between reaction energies.139  Within the homoleptic catalysts, we find that 

there is weaker correlation between B3LYP ΔE(oxo) and ΔE(HAT) energetics in the IS state than 
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in the LS or HS states, in agreement with previous findings (Figure 7 and Supporting Information 

Table S8).139 The heteroleptic catalysts include values outside the range of homoleptic catalyst 

ΔE(oxo) and ΔE(HAT) values, leading to an even weaker scaling relationship over the full set of 

catalysts (Figure 7 and Supporting Information Table S8). This shows that substitutions in square 

pyramidal complexes can result in perturbations outside the range of homoleptic properties, a 

phenomenon we observed only once (i.e., TE Fe(II)(CO)2(misc)3) for spin-splitting energies (see 

Figure 3). Here, we find that the range of heteroleptic ΔE(oxo) is 25% larger than that of 

homoleptic ΔE(oxo), while the same difference in ranges is only 4% for ΔE(HAT). As a measure 

of reaction energetics, we quantify the sum, ΣE=ΔE(oxo)+ΔE(HAT), which, for favorable 

catalysts, should be close to or below zero (Figure 7). Within each spin state, ΣE generally 

increases with increasing ligand field strength, and weak-field MeOH gives the lowest sum within 

the homoleptic catalysts (i.e., the LS state shown as a green square or IS state shown as a green 

triangle in Figure 7). In this context, the most favorable points are IS complexes with weaker-field 

MeOH or H2O in the equatorial plane and stronger-field misc or NH3 in the axial position. This 

result implies that a balance of weak-field ligands in the equatorial plane with strong-field ligands 

in the axial position may make for better catalysts. Previous work similarly identified weak-field 

equatorial ligands as important for favorable HAT energetics.124 Combining the new observation 

that strong-field axial ligands make oxo formation more favorable with the past observation that 

anionic ligands make methanol release more favorable,124 we suggest future study of cyanide or 

nitrite as axial ligands. 
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Figure 7. The hydrogen-atom transfer (HAT) reaction energy vs Fe(IV)-oxo formation (oxo) 
formation energy for all possible binary square pyramidal complexes colored by frequency from 
low (purple) to high (yellow). Homoleptic species are identified with black-outlined points and 
select ligands are colored, while the remaining ligands are white-filled points. Reactions on the 
low-spin (LS), intermediate-spin (IS), and high-spin (HS) surfaces are identified with triangles, 
squares, and circles respectively. The four points indicating the complexes with the lowest sum of 
the reaction energies (ΣE) are identified and filled with the color corresponding to the minority 
ligand and outlined with the color corresponding to the majority ligand – i.e., green and red outlines 
for majority MeOH and H2O complexes, respectively, with blue and brown fills for complexes 
with minority ligands of NH3 and misc, respectively. The dashed orange line indicates a ΣE value 
of ˗20 kcal/mol. The catalyst with the lowest ΣE, Ax Fe(II)(MeOH)4(NH3) in the intermediate-
spin state is illustrated in the inset in its resting state. 

 

 Although we might expect thermochemistry predictions to be more straightforward than 

spin-state energetics because DFT reaction energies are typically less method-sensitive,141 the 

reaction energy data appears noisier than the spin-splitting energies did. That is, we observe a 

greater variation in the values of ΔE(oxo) and ΔE(HAT) for heteroleptic complexes compared to 

the homoleptic values than we did for the ΔEH-L property, suggesting additivity-based models may 

struggle. We first investigated the performance of homoleptic averaging for reaction energetics. 

We find that homoleptic averaging overall performs slightly better in predicting ΔE(HAT) than 

ΔE(oxo), with an MAE of 1.7 kcal/mol compared to 2.1 kcal/mol (Figure 8). Both reaction energy 

estimates from homoleptic averaging exhibit smaller MAEs than for ΔEH-L (MAE of 3.1 kcal/mol). 

However, homoleptic averaging performs especially poorly in predicting the ΔE(oxo) of systems 
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containing mixtures of CO and H2O ligands, with a maximum error of 6.2 kcal/mol in the HS state, 

which exceeds the magnitude of the range of homoleptic values (i.e., 3.7 kcal/mol, Figure 8). This 

example is indicative of the higher relative errors for ΔE(oxo) prediction than for ΔE(HAT). This 

aligns with the observation that heteroleptic complexes have a much larger range of ΔE(oxo) 

relative to the homoleptic range. The range may be larger since the oxo formation step involves 

the formation of a double bond with the metal center of the complex, leading to a stronger influence 

of subtle differences in ligand–metal–ligand interactions for oxo formation. Given that ΔE(HAT) 

is not strictly a metal-centered property, we will further investigate whether models with more 

interaction terms could improve the predictions to perform as well as those for ΔE(oxo) (see next). 

Additionally, homoleptic averaging performs notably worse in areas of interest for catalyst design. 

For the 10 binary complexes with the lowest ΣE values, homoleptic averaging generally 

overestimates both ΔE(HAT) and ΔE(oxo), respectively, by 5.8 kcal/mol and 2.6 kcal/mol on 

average (Supporting Information Table S9). In this zone of interest, the homoleptic averaging 

prediction errors for ΔE(HAT) are much higher than for ΔE(oxo), unlike the trend over the 

complete dataset. Moreover, homoleptic averaging cannot be used to find better catalysts than 

those already found because interpolation cannot predict a lower ΣE value than the lowest 

homoleptic ΣE value found. 
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Figure 8. Parity plots for the HS reaction energies inferred by homoleptic averaging (top) and the 
cis model using the spy + AxE basis (bottom) vs B3LYP computed values for oxo formation (left) 
and hydrogen atom transfer (right) steps. Points are colored according to the pair of ligands they 
correspond to: CO–misc (green circles), H2O–NH3 (red triangles), and CO–H2O (blue squares), as 
indicated in the inset. In each panel, the mean absolute error (MAE) across all 288 complexes in 
all three spin states is indicated in the bottom right corner. In all panels, a black dotted parity line 
is shown. Points seen by the models are translucent. Two complexes are labeled in the inset: TE 
Fe(II)(misc)3(CO)2 and Ax Fe(II)(CO)4(H2O) with corresponding points outlined in gray and 
brown respectively. 

 

 We next investigated the extent to which including additional terms could improve model 

predictions of ΔE(oxo) and ΔE(HAT) reaction energetics. We showed (see Sec. 2b) that the 

statistically optimal basis for the cis model comprises the two AxE and the two spy complexes 

within a set of binary square pyramidal complexes, so we use all AxE and spy complexes to inform 

the regression for the cis model parameters. Across all three spin states and all pairs of ligands, the 
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cis model achieves an MAE of 0.9 kcal/mol for both ΔE(HAT) and ΔE(oxo). Notably, the cis 

model infers both the ΔE(oxo) and ΔE(HAT) of HS Ax Fe(II)(CO)4(H2O) within 0.8 kcal/mol of 

the ground-truth B3LYP result, whereas homoleptic averaging has errors of 6.2 and 2.2 kcal/mol 

for ΔE(oxo) and ΔE(HAT), respectively, for the same complex. While homoleptic averaging 

performed worse for ΔE(HAT), the cis model performs equally for both, indicating that the cis 

model performs well even for properties that are not metal-local. Notably, the cis model does not 

have a strong bias in the region of interest and significantly outperforms homoleptic averaging, 

with MAEs under 2 kcal/mol across the 10 complexes with the lowest ΣE values (Supporting 

Information Table S9). The cis model appears to perform better in regions with greater asymmetry 

in equatorial metal–ligand distances, which is surprising because our MBE-based models only 

account for ligand identity (Supporting Information Figure S6). That is, Jahn–Teller distortions 

are not provided as input to the cis model, but the model implicitly distinguishes complexes with 

these distortions based on data from the spy and AxE structures. Finally, the cis model performance 

appears to be unaffected by asymmetry within a ligand since it performs equally well for MeOH, 

which coordinates in an asymmetric fashion to the metal center (Supporting Information Table 

S10). Overall, we have demonstrated the ability of the cis model to make accurate predictions on 

thermochemical properties of transition metal complexes even outside the range of homoleptic 

values and in structures with asymmetry. 

 We now aim to demonstrate how this model can also be used to make accurate predictions 

on lower-symmetry (e.g., ternary) complexes. With only eight monodentate ligands, there are 

5,328 possible square pyramidal complexes (Supporting Information Text S5). We thus use the cis 

model to predict if any lower-symmetry complexes would have more negative ΣE values than the 

IS Ax Fe(II)(MeOH)4(NH3) complex that has the lowest computed ΣE value of −15.6 kcal/mol. 
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The cis model in the spy + AxE basis does predict some ΣE values under −15.6 kcal/mol but also 

incorrectly predicts the binary complex with the lowest ΣE as the IS Ax Fe(II)(MeOH)4(misc) at 

−16.9 kcal/mol (vs. a ground-truth value of −14.3 kcal/mol, see Table 1). In this sense, the cis 

model does not predict that there will be a lower ΣE value in the lower-symmetry complexes 

compared to the binary complexes among the LS, IS, and HS surfaces. Based on overall trends 

and predicted lowest ΣE values from the cis model, we perform DFT calculations on the eight 

lower-symmetry IS complexes with MeOH and H2O in the equatorial plane and NH3 or misc in 

the axial position (see Figure 7). As expected, none of these eight complexes have ΣE values lower 

than the lowest binary ΣE values (Table 1). This is indicative of a strong underprediction bias in 

this zone of interest by the cis model. It should be noted that while the cis model does not predict 

any ΣE values outside the range of binary values, it is still possible to predict values outside the 

range of binary values with the cis model (see next). Subsequent studies could improve upon the 

current performance by using an active-learning approach to refine the model performance in 

zones of interest and utilize dynamic models that allow for more interaction terms to be accounted 

for as more data is acquired. 

Table 1. The cis model (with spy + AxE basis) predictions on complexes with lowest ΣE values. 
For the binary and ternary cases, the three complexes with the lowest overall ΣE values in any spin 
state are listed as well as the three lowest ΣE values that occur on the GSSA surface. Additionally, 
the binary complex with the lowest predicted ΣE value in the GSSA surface is shown since it is 
not within the three with the lowest calculated values. 

 
Leq1 Leq2 Leq3 Leq4 Lax 

spin 
surface 

predicted 
ΣE 

(kcal/mol) 

calculated 
ΣE 

(kcal/mol) 

residual 
ΣE 

(kcal/mol) 

Binary (overall) 
MeOH MeOH MeOH MeOH NH3 IS −16.2 −15.6 −0.6 
H2O H2O H2O H2O misc IS −16.6 −15.3 −1.4 

MeOH MeOH MeOH MeOH misc IS −16.9 −14.3 −2.6 

Binary (GSSA) 
PH3 PH3 PH3 PH3 misc LS −1.2 −6.5 +5.3 
PH3 PH3 PH3 misc PH3 LS −1.7 −6.2 +4.5 
PH3 PH3 PH3 PH3 CO LS −1.8 −6.0 +4.2 
PH3 misc PH3 misc PH3 LS −3.9 −3.7 −0.2 

Ternary (overall) 
H2O MeOH MeOH MeOH misc IS −16.7 −14.8 −1.8 
H2O MeOH MeOH MeOH NH3 IS −15.8 −13.8 −2.0 
H2O MeOH H2O MeOH NH3 IS −15.5 −13.7 −1.7 

https://doi.org/10.26434/chemrxiv-2024-m39d9 ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-m39d9
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by-nc/4.0/


28 

 

Ternary (GSSA) 
PH3 PH3 misc misc CO LS −4.0 −2.5 −1.5 
PH3 misc PH3 misc CO LS −4.0 −2.3 −1.7 
PH3 PH3 PH3 misc CO LS −4.1 −2.1 −2.1 

 
 

 Thus far, we have considered reactions on separate spin surfaces because simulating spin-

forbidden reactions require significantly greater computational cost and are not relevant for testing 

our models. Realistically, many methane oxidation catalysts are believed to exhibit “two-state 

reactivity,” requiring a transition to an excited state spin-surface.142,143 Ideally, favorable reaction 

surfaces will be in the ground-state spin-allowed (GSSA) surface such that no change in spin state 

is required to follow the minimum energy path (see Sec. 3a), but spin state transitions are often 

invoked in Fe(II) catalysts.124 In the present work, the lowest ΣE value found on the GSSA surface 

is −6.5 kcal/mol (i.e., for LS Ax Fe(II)(PH3)4(misc)) compared to −15.6 kcal/mol for any spin 

surface (i.e., IS Ax Fe(II)(MeOH)4(NH3)). We tested the ability of the cis model to predict the 

GSSA ΣE value of complexes directly and found comparable performance to the predictions across 

individual spin surfaces, with an MAE of 1.35 kcal/mol compared to an MAE of 1.25 kcal/mol on 

the IS surface (Supporting Information Table S11). Nevertheless, unlike on the IS surface, 

predictions of binary ΣE on the GSSA surface have a tendency towards overestimation at the 

lowest ΣE values (Table 1). Next, we used the cis model to predict the GSSA ΣE value of lower-

symmetry complexes. While the cis model does not predict any GSSA ΣE values below −6.5 

kcal/mol, it does predict three ternary complexes as the lowest three values (Table 1). However, 

the DFT-calculated values for these three ternary complexes were underestimated by the cis model 

and thus are not below −6.5 kcal/mol. These results indicate that it is more difficult to predict 

values on the GSSA surface, which aligns with previous findings that scaling relations do not hold 

across spin surfaces.125 When there is a bias in prediction of the extrema of the binary complexes, 

this bias is also present in the lower-symmetry complexes, regardless of spin state convention. 
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Overall, the greater number of intermediates involved in estimating reaction energetics makes their 

prediction more challenging than spin-state energetics, and further improvements would likely 

benefit from an approach that used more detailed models than the cis model.  

 While accelerated prediction of DFT energetics is useful, it would be preferable to use 

models to predict energetics for higher-accuracy methods, such as DLPNO-CCSD(T). Indeed, we 

find that the performance of the cis interaction model for reproducing DLPNO-CCSD(T) values 

of reaction energetics is comparable to that for predicting DFT values, with a combined average 

MAE of about 1 kcal/mol for the two reaction steps (i.e., DE(oxo) and DE(HAT), Table 2). Once 

again, the Ax and TE symmetry classes have higher errors than other symmetry classes, indicating 

that a more detailed model could be beneficial for predicting these symmetry classes (Supporting 

Information Table S12). As a potentially even more powerful approach, we explored whether the 

cis model could be used for D-learning, where the model employs the same complexes as in the 

standard cis model but instead is used to predict the difference between DLPNO-CCSD(T) and 

B3LYP energetics for other configurations based on those in the training data. This predicted 

difference would then be combined with the explicitly calculated B3LYP energetics to infer 

DLPNO-CCSD(T) values on those remaining symmetries. In line with other "D-learning" 

approaches,63 the cis model performs significantly better in predicting the difference (Δ) between 

B3LYP and DLPNO-CCSD(T) than in predicting either value independently with an overall MAE 

of 0.3 kcal/mol. This increased performance is especially evident for ΔE(HAT), where the MAE 

decreases from 1.3 kcal/mol for both B3LYP and DLPNO-CCSD(T) values to 0.3 kcal/mol for 

predicting the difference. Thus, high-accuracy combinatorial explorations can be accelerated by 

performing DLPNO-CCSD(T) calculations for higher-symmetry complexes in two ways: by 

accelerating direct prediction of DLPNO-CCSD(T) energies with a cis interaction model at an 
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accuracy of around 1 kcal/mol, or by carrying out all DFT calculations and the using the D-learning 

model to achieve even higher accuracy (ca. 0.3 kcal/mol with respect to DLPNO-CCSD(T)).  

 

Table 2. Error metrics of the cis interaction model (with spy + AxE basis) for predictions of 
B3LYP, CCSD(T) using the DLPNO approximation, and D (the difference between B3LYP and 
DLPNO-CCSD(T)) for the 20 binary IS catalysts of H2O/NH3 and H2O/MeCN in units of kcal/mol. 

 DE(HAT) DE(oxo) combined 
 B3LYP CCSD(T) D B3LYP CCSD(T) D B3LYP CCSD(T) D 

MAE 1.25 1.26 0.34 0.80 0.90 0.30 1.03 1.08 0.32 

RMSE 1.90 1.86 0.50 1.15 1.33 0.42 1.57 1.62 0.42 

max 4.98 4.02 1.24 3.14 3.24 1.17 4.98 4.02 1.24 

 

5. Conclusions 

We described a physically motivated many-body expansion framework to infer the 

properties of low-symmetry coordination complexes from higher-symmetry coordination 

complexes with an adjustable cost–accuracy tradeoff. Using this framework, we derived the cis 

interaction model for mononuclear octahedral complexes. This model expands upon our previous 

interpolative schemes for octahedral complexes to include square pyramidal complexes and 

complexes with more than three unique ligand types. We further demonstrated that the model only 

requires N(N+1)/2 parameters to make predictions on the full space of O(N6) octahedral 

complexes, where N is the number of unique monodentate ligands in the design space. Uncertainty 

analysis revealed that the optimal set of measurements to use in making predictions for octahedral 

complexes comprises all homoleptic structures and the mer symmetric isomer for each pair of 

ligands. 

 To test the model performance, we computed spin-splitting energies for octahedral and 

square pyramidal complexes and determined that schemes beyond homoleptic averaging were also 
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needed in both square pyramidal and octahedral complexes for predictions of spin-state energetics. 

We found that our cis model improved prediction performance over homoleptic averaging in 

monodentate octahedral systems (MAE of ~1 kcal/mol vs. ~3 kcal/mol). Including trans 

interactions had little effect on the overall MAE, but they were necessary for accurate predictions 

on some monodentate and most bidentate systems. We also found that the octahedral spin-splitting 

energies could be used with the cis model to improve predictions on square pyramidal complexes. 

 We demonstrated that the cis interaction model predicts reaction energetics within 1 

kcal/mol of calculated results on average for key reaction steps in methane-to-methanol conversion 

on square pyramidal molecular catalysts. Furthermore, we identified trends that lead to more 

favorable reaction energetics, suggesting that future studies should investigate strong-field ligands 

with a negative charge in the position trans to the reacting moiety. Finally, we showed that our 

models can be used to predict DLPNO-CCSD(T) energetics, with the lowest errors (0.3 kcal/mol) 

when the cis model is used to predict Δ-learning energies in combination with exhaustive DFT 

calculations. We expect that the models will perform similarly in predicting other properties of 

TMCs, including activation energies. Thus, our models present a novel means for data-efficient 

computational discovery of molecular catalysts from large chemical spaces.  
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