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Abstract: Recent events involving A-series nerve agents, a once elusive class of 

chemical warfare agents, have provoked a great concern in the international 
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community. In this paper, continuing our research efforts in Medicinal Chemistry 

at IDQBRN, a OPCW Designated Laboratory for environmental samples, we explore 

ANMP, aA-230 surrogate, as an inhibitor, in the search for new treatment options 

for intoxication caused by these chemicals. We evaluated the potential of five 

isatin-pyridine oximes hybrids as reactivators using a modified Ellman’s assay. The 

results suggest that isatin-oxime monocationic hybrids structures with 5 

methylene units and its oxa-analog could be promising for the design of new AChE 

reactivator. 

 

Keywords: nerve agents, isatin hybrids, acetylcholinesterase, antidotes, Chemical 

Weapons Convention. 

 

Chemical warfare agents (CWAs) are toxic compounds designed to cause 

injury or incapacitation. They are more readily synthesized compared to biological 

and radiological/nuclear agents.1–4 Among the highly toxic CWAs are the 

organophosphorus-based nerve agents (OPNA, Figure 1), which are potent 

inhibitors of acetylcholinesterase (AChE). AChE is a pivotal enzyme found in the 

central nervous system (CNS) and neuromuscular junctions, responsible for the 

hydrolysis of neurotransmitter acetylcholine (ACh). OPNA intoxication may lead to 

hyperexcitability (cholinergic syndrome)and, depending on the dose and route of 

exposure, can result in rapid death.5,6 

 
Figure 1. Structure of some nerve agents: tabun (GA), sarin (GB), VX, A-230 and A-242. 
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The most comprehensive and effective international agreement to control 

CWAs, the Chemical Weapons Convention (CWC), which entered into force in 

1997, was not sufficient to avoid theuse of OPNA, as observed in Syria (2011), 

Malaysia (2017), UK (2018), and Russia (2020). The latter two cases drawn 

attention because they involvedattempts of intoxication using the once elusive A-

series nerve agents, a class of OPNAfor which information on analysis and 

toxicology remains limited, albeit the increaseof research publications in recent 

years.7–10 An amendment to the CWC expanded the list of controlled compounds to 

includeover 10,000 A-series scaffolds.11,12 AsInstitute of Chemical, Biological 

Radiological and Nuclear Defense (IDQBRN)  is the OPCW Designated Laboratory 

in the Group of Latin America and Caribbean (GRULAC) region, it is mandatoryto 

be ready to support the Organisation for the Prohibition of Chemical Weapons 

(OPCW), the international body overseeing the CWC compliance. This includesthe 

research on the peaceful uses of Chemistry, such as the development of medical 

countermeasures againsttoxic chemicals. 

Currently, the therapeutic strategy for OPNA poisoning consists in up to three 

drugs. First, anticholinergicssuch as atropine are administered to antagonizethe 

effects of ACh accumulation in the synaptic cleft. Additionally, benzodiazepines 

(e.g.,diazepam or midazolam) are used to reduce seizures. Finally, an AChE 

reactivator is employed to restore the enzyme’s biological activity.So far, oximes 

have beenthe most successful antidotes for OPNA poisoning. Nonetheless, all 

tested compounds still present limited efficacy, including commercial AChE 

reactivators (Erro! Fonte de referência não encontrada.).13,14 
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Figure 2. Commercial AChE reactivators oximes: Asoxime (HI-6), pralidoxime (2-PAM), 

trimedoxime (TMB),obidoxime (LüH-6) and methoxime. 

In order to develop a broaderand more effective approach for treating A-series 

OPNA poisoning, we have tested the potential of isatin-oxime derivatives (1-5, 

Figure 3)as reactivators for the AChE inhibited by4-nitrophenyl (E)-N-(1-

(diethylamino)ethylidene)-P-methylphosphonamidate (ANMP), a A-230surrogate 

(Figure 4).Literature suggests that ANMP is a valuable tool to study A-230 

behavior as an AChE inhibitor and for assessing the profile of countermeasure 

candidates. Previously, we demonstrated that five isatin-oximes derivatives may 

be promising AChE reactivators against VX surrogate NEMP and paraoxon (Figure 

4).15–17 
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Figure 3. Structure of isatin-oxime derivatives studied in this work. 

 
Figure 4. Structures of OP surrogates. 

The evaluation of AChE inhibition by ANMP and reactivation by the five isatin-

oxime hybrids were performed by modified Ellman’s assay, following established 

protocols.15,18Only compounds 3 and 5 presented reactivation above 5% (Table 1), 

suggesting interactions with the AChE inhibited by ANMP.19These compounds also 

demonstrated the highest reactivation in this study, consistent with the results 

from similar studies with other OP.16,17 Although 2-PAM, TMB, and LüH-6showed 

higher reactivation potential, compounds 3 and 5 outperformed HI-6 and 

methoxime.Reactivation potential of themolecules tested in this work for AChE 

inhibited by ANMP is lower compared to paraoxon- and NEMP-inhibited 

models,15,16 suggesting a specific performance of isatin-oxime hybrids for each OP. 
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Table 1. Reactivation of AChE inhibited by ANMP in % (mean ± standard deviation). 

 

Aiming to assess the AChE reactivation mechanism, in silico studies were 

performed. Molecular docking simulations were performed with the human AChE 

(HssAChE) inhibited by A-230 model along with the isatin-oxime derivatives 

structuresas established in the literature.20The near-attack conformation (NAC) 

approach was employed to analyze the poses,21 and the angle-distance ratio Rθd 

were calculated(Table S1-S10). It was observed that the non-deprotonated forms 

of compounds 3, 5, and 6 hadbetter scores than their deprotonated 

counterparts,indicating a better interaction with HssAChE/A-230 model 

(Compound 4 showed the most negativetotal hydrogen bonding 

energy(EH)calculated values among all ligands and formed more H-bonds with a 

greater number of residues in both deprotonated and non-deprotonated states 

(Erro! Auto-referência de indicador não válida. and Table 3). Although it showed 

lower reactivation in the Ellman’s assay, these in silico results suggest the better 

interactions with the enzyme and greater stability forcompound 4, indicatinga 

potential for exploring this structure inother applications.23,24 

Table 2). On the other hand, the Rθd values werehigher for the deprotonated 

species of compounds 3 and 6, suggesting a better approach from these ligands to 

the phosphorus atom of Ser203 adduct ( 

Table 3). Comparing the theoretical data with the results from theEllman’s 

assay, a greater similarity was observed in the calculations for deprotonated 

Reactivator 1 µM 10 µM 100 µM 

1 1±0 0±0 2±1 

2 0±0 0±0 3±0 

3 0±0 2±1 8±0 

4 0±0 2±0 4±1 

5 0±0 0±0 8±0 

2-PAM* 2±0 7±0 27±0 

TMB* 0 ± 0 2 ± 0 16 ± 1 

LüH-6* 1 ± 1 1 ± 0 10 ± 3 

HI-6* 0 ± 0 0 ± 0 1 ± 0 

Methoxime* 0 ± 0 0 ± 0 1 ± 0 
*source: Bernardo and co-workers15 
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species and the in vitro results, supporting theproposed mechanism in literature 

that oximate species provide the attack on phosphorus atom.22 

Compound 4 showed the most negativetotal hydrogen bonding 

energy(EH)calculated values among all ligands and formed more H-bonds with a 

greater number of residues in both deprotonated and non-deprotonated states 

(Erro! Auto-referência de indicador não válida. and  

Table 3). Although it showed lower reactivation in the Ellman’s assay, these in 

silico results suggest the better interactions with the enzyme and greater stability 

forcompound 4, indicatinga potential for exploring this structure inother 

applications.23,24 

Table 2. Molecular docking data from the non-deprotonated species of the ligands. 

 

Table 3. Molecular docking data from the deprotonated species of the ligands. 

 

Ligand Einter (kcal.mol−1)a EH (kcal.mol−1)b H-bondingc Rθd 

1 −179.5 −1.8 Tyr124, Tyr337 21.2 

2 −185.9 −4.3 Tyr124, Tyr337 24.2 

3 −181.1 −6.0 Tyr124, Ser125 26.2 

4 −171.2 −6.3 Tyr72, Tyr124, Ser125 27.6 

5 −176.5 −3.5 Tyr124, Tyr337 22.8 
a intermolecular interaction energy 
b total hydrogen bonding energy 
c amino acid residues 

Ligand Einter (kcal.mol−1)a EH (kcal.mol−1)b H-bondingc Rθd 

1 −181.6 −4.6 Ser298 11.9 

2 −183.1 −2.8 Tyr124, Tyr337 22.9 

3 −168.8 −2.4 Tyr124, Tyr337 27.2 

4 −179.4 −9.1 
Tyr124 (x2), Ser125, 

Ser298 (x2) 25.4 

5 −180.6 −6.2 
Tyr124, Phe295, 
Arg296, Tyr337 25.2 

a intermolecular interaction energy 
b total hydrogen bonding energy 
c amino acid residues 
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Ligand-protein 2D interaction maps (

interactions between the isatin moiety of all ligands and 

residues, except for the deprotonated form of

was also observed Π-stacking interaction of the pyridinium ring with Tyr341 for 

the deprotonated species of

deprotonated and deprotonated species of 

the designing expectations 

with peripheral anionic site

and 5 . 

Figure 5. Ligand interaction maps (amino acids within range of 4

protein 2D interaction maps (Figure 4-8) revealed

interactions between the isatin moiety of all ligands and the Tyr124 and Trp286 

the deprotonated form of compound 4 deprotonated form. It 

stacking interaction of the pyridinium ring with Tyr341 for 

deprotonated species of compounds 1, 3, and 5, as well as 

deprotonated and deprotonated species of compound 2. These interactions meet 

the designing expectations forthe studied ligands, suggesting strong interaction

site (PAS),16particularlyin the structures of compounds 

Ligand interaction maps (amino acids within range of 4 Å) for compound

deprotonated form (right). 

revealed Π-Π stacking 

Tyr124 and Trp286 

deprotonated form. It 

stacking interaction of the pyridinium ring with Tyr341 for 

, as well as for both non-

2. These interactions meet 

the studied ligands, suggesting strong interactions 

the structures of compounds 3 

 
compound1 (left) and its 
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Figure 6. Ligand interaction maps (amino acids within range of 4

Figure 7. Ligand interaction maps (amino acids within range of 4

Ligand interaction maps (amino acids within range of 4 Å) for compound

deprotonated form (right). 

Ligand interaction maps (amino acids within range of 4 Å) for compound

deprotonated form (right). 

 
compound2 (left) and its 

 
compound3 (left) and its 
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Figure 8. Ligand interaction maps (amino acids within range of 4

Figure 9. Ligand interaction maps (amino acids within range of 4

This work presented information on the reliability of ANMP as

surrogate for toxicological assessments, confirming its importance as a

toxicological tool. Additionally, 

Ligand interaction maps (amino acids within range of 4 Å) for compound

deprotonated form (right). 

Ligand interaction maps (amino acids within range of 4 Å) for compound

deprotonated form (right). 

presented information on the reliability of ANMP as

surrogate for toxicological assessments, confirming its importance as a

toxicological tool. Additionally, we compared in in silico and 

 
compound 4 (left) and its 

 
compound5 (left) and its 

presented information on the reliability of ANMP as an A-230 

surrogate for toxicological assessments, confirming its importance as a 

and in vitroAChE 
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reactivation data obtained for five isatin-oxime monocationic hybrids.Although 

these compounds did not perform betterthan all commercial oximes as 

reactivators for ANMP-inhibited AChE, we found that the compounds with 5 

methylene units and theiroxa-analog showed the best results.This suggeststhat the 

distance of 5 atoms between isatin and hydroxyimino moiety provides 

optimalinteraction with the PAS and the stearic site, respectively. These 

findingsdemonstrated the potential for exploring isatin-oxime monocationic 

hybrids with 5 methylene units in the design of new AChE reactivators. 
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