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ABSTRACT: Enzyme engineering techniques optimize enzymes to synthesize value-added 
chemicals, degrade environmental pollutants, and improve therapeutics. The field is entering a 
new era characterized by the increasing integration of computational strategies. While 
bioinformatics and artificial intelligence (AI) have been extensively applied to accelerate the 
screening of function-enhancing mutants, physics-based modeling methods, such as molecular 
mechanics and quantum mechanics, serve as essential complements in engineering objectives 
where setting up high-throughput screening is difficult or where a deep understanding of unknown 
physical principles is crucial. In this perspective, we discuss the enormous, untapped potential of 
physics-based modeling in guiding the next step of computational enzyme engineering. We first 
explore the paradigm of physics-based design principles wherein insights from natural, efficient 
enzymes are applied to recommend beneficial mutations in silico. We examine current 
development of high-throughput molecular modeling workflows that aid enzyme engineering 
campaigns through large-scale virtual applications of design principles. We then emphasize how 
physics-based modeling empowers AI techniques through enriching data expressiveness and 
interpretability. Finally, we proposed unmet challenges for the next step advancement of 
computational tools for enzyme engineering. 
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1. Introduction 

Enzyme engineering concerns leveraging enzymes to suit our catalytic needs for synthesis, 

therapeutics, and sustainability. Industrial appetite is strong, with predicted compound annual 

growth rates ranging from 5 to 6% for the next decade.1 A desirable future of enzyme engineering 

hinges on the creation of computational protocols capable of pinpointing functional raw enzymes 

and their engineered variants with quantitative accuracy, where biocatalytic development can be 

achieved with minimal screening efforts, as well as associated economic and environmental cost. 

At present, directed evolution-based (DE) protocols dominate the field and are routinely applied 

to create enzymes which assist in chemical production, plastic degradation, and addiction 

treatment.2-4  

Despite clear and established success, the reliance of DE-based protocols on high 

throughput experimental screening precludes its application to some enzyme systems and 

engineering objectives. When side reactions are non-negligible (proteases5) and pure protein 

samples are needed for the assay, screening protocol cannot be easily constructed. In addition, it 

is difficult to reliably miniaturize enzymes through high-throughput deletion or truncation while 

maintaining their high activity.6 The establishment of such an engineering strategy will improve 

therapeutic efficacy 7, 8, enhance enzyme compatibility in microfluidic devices, and reduce 

production costs and resource consumption. Engineering enzymes to perform optimally in non-

native, extreme conditions is another critical, recurring task in industrial biosynthesis.9 Although 

efficient extremophile enzymes create a clear path for reducing both cost and environmental 

impact, the commonplace mismatch between biological and industrial conditions (temperature, pH, 

etc.) makes extreme system engineering considerably less addressable with high throughput 

screening.  
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Beyond intractable engineering objectives, the prevalent use of bacterial expression 

systems in high throughput screening makes working with plant-based and mammalian enzymes 

challenging or impossible, albeit their innumerable biosynthetic functionality or reduced 

immunogenicity.10 Eventually, although often viewed a strength, the choice of DE to treat catalysis 

as a black box process introduces the potential for evolutionary dead ends that cannot be escaped 

without structurally or mechanistically-derived detours10 and prevents the quantitative prediction 

of enzymatic activity. When trapped in such a dead end, screening an additional 109 variants was 

unable to improve the efficiency of a human kynureninase. The logistical and theoretical 

limitations associated with DE and high throughput experimental screening highlight the need for 

complimentary techniques that overcome these limitations.  

Computational sciences offer a definitive path for enzyme engineering to realize its full 

potential by expanding the scope of addressable enzyme properties and systems (Figure 1). Despite 

the growing use of bioinformatics and artificial intelligence to achieve these goals,11, 12 physics-

based molecular modeling techniques remain indispensable due to the ubiquitous insufficiency in 

both the quantity and quality of relational enzyme sequence-structure-function data.13 Quantum 

mechanics (QM) and molecular mechanics (MM) can in theory be applied to measure 

experimentally-relevant functions for arguably arbitrary systems with an atom-resolved, three-

dimensional structure, regardless of the enzyme’s origin or preferred environment. Leveraging 

physics-based modeling, de novo enzyme design showcased the ability of first-principle 

approaches to create artificial enzymes that catalyze new-to-nature reactions, complimenting 

limitations of experimental screening. Unlike DE protocols which require a starting scaffold, de 

novo design uniquely focuses on the creation of completely artificial scaffolds whose residues 

contribute to catalytic efficiency by stabilizing rate limiting TS while adopting a stable fold. 
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Following the initial enzyme design efforts in the 1990s,14 the seminal inside-out design protocol 

led to highly efficient, artificial retro-aldolases and kemp eliminases (KE),15, 16 and further 

advanced approaches were developed for optimizing de novo-designed enzymes.17-19 Though 

relying on DE protocols to optimize the designed scaffolds15, 20  and frequently reported to hit 

evolutionary dead ends,10 de novo enzyme design demonstrates that virtual, physics-based design 

can complement conventional screening-based techniques, representing a conceptual milestone for 

computational enzyme engineering.  

 

Figure 1: Physics-based computational methods as an approach to realize enzyme 

engineering’s full potential. Conventional enzyme engineering techniques can reliably improve 

enzymatic efficiency for bacterial, non-membrane enzymes (top, dashed lines). A shortcoming in 

these workflows is the potential for campaigns to enter evolutionary dead ends (top, middle), as 

well as difficulties to address various systems like proteases, photo-enzymes, and plant-based 
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enzymes (left) or tackle other functional objectives like substrate tuning, cold adaptation, and 

miniaturization (right). Physics-based enzyme engineering can optimize systems accessible to 

conventional techniques, as well as proteases, photo-enzymes, and plant-based enzymes (left, 

black lines). Additionally, physics-based protocols can optimize substrate preference, cold 

adaptation, and miniaturization (right). 

Besides enabling de novo enzyme design, molecular modeling has been extensively applied 

to elucidate an enzyme’s mechanism21 and interpret the origin of efficiency22-24 and selectivity25, 

26 through transition state (TS) or reaction barrier calculations.27, 28 These modeling also informs a 

quantitative relation or engineering principles that score and rank candidate enzyme scaffolds and 

mutants to achieve desired enzymatic functions. Furthermore, the resulting engineering principles 

inspire the design of descriptors and architectures for building machine learning (ML) models to 

accurately predict enzyme efficiencies, regioselectivity, substrate affinity, and other functions,29-

32 complementary to existing ML models trained solely from sequence or multiple sequence 

alignment (MSA) by enhancing molecular expressiveness of protein data.13 ML methods 

additionally enhance physics-based modelling, performing dimension reduction on complicated 

MD-derived datasets and helping identify catalytically relevant modes or global conformations. 

Augmented with physics-based modeling, ML models may serve as an optimal pathway as the 

field works towards comprehensive models of catalysis.  

In this perspective, we discuss the paradigm of physics-based modelling as a means for 

enzyme engineering to achieve the goal of optimizing arbitrary characteristics of arbitrary enzyme 

systems. We describe principles-based design, which aims to apply insights derived from known, 

efficient enzymes to predict beneficial mutants in yet unoptimized systems. Our perspective 

highlights the growing influence of high throughput molecular modeling workflows which stand 
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to accelerate the progress of principles focused enzyme engineering by increasing the number of 

enzymes and mutations analyzed. We also consider the fusion of ML and physics-based enzyme 

engineering, detailing the mutually beneficial impact of these two methods on each other. We 

further emphasize that ML methods will play a pivotal role in field, combining different physics-

based measurements to develop a holistic view of enzyme catalysis.  

2. Physics-based Modeling Elucidates New Structure-Function Relationships Underlying 

Enzyme Catalysis 

Molecular insights of enzyme catalysis, as derived from physics-based molecular modeling, 

guide the identification and deployment of beneficial mutants for enhancing enzyme functions 

(Figure 2). Design principles are often formulated from observing and investigating known, 

experimentally characterized enzymes. In this sense, creating design principles allows the field to 

leverage molecular evolution from nature to inform our enzyme engineering efforts. Just as natural 

enzymes owe their catalytic efficiency to several sources, design principles survey many aspects 

of enzyme scaffolds. Based on classical molecular dynamics (cMD) and QM modeling, these 

studies may involve structural, dynamic, and electronic characteristics of enzymes including 

topology, enzyme electrostatics, flexibility and residue networks, or theoretical calculations with 

thermodynamic relevance such as activation energy, activation free energy and heat capacity. 

Researchers increasingly elucidated the correlation between molecular simulation-derived features 

and experimentally characterized kinetics and binding data.33-35 These phenomenological models 

present an avenue for rapid scoring of mutation effects and improvement of catalytic functions. 

Due to the complexity of enzyme catalysis, there are yet undiscovered physical principles 

underlying enzymes’ extraordinary catalytic efficiency and selectivity. The investigation of these 
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principles provides a direct path to further derive insights into catalytic activity as the field works 

towards a more holistic view of catalysis.  

 

Figure 2: The lifecycle of physics-based principles. Physics-based principles are derived through 

observation of efficient enzymes from both natural and engineered sources (A). Individual 

principles and physical phenomena are identified, quantified, and better understood through 

physics-based computational simulations leveraging QM and MD frameworks (B). After 

identification in multiple systems, design principles are codified into generalized rational design 

rules which create definite, quantitative functional predictions (C). Design rules are applied to rank 

beneficial mutations to achieve a given functional objective, which can serve as another efficient 

enzyme (D). 

2a. Structure and Topology 

Efficient Enzymes Physics Based Methods

Design PrinciplesEngineered Enzymes
Structure and 

Topology Electric Field

Protein
Dynamics Heat Capacity

New and Emerging Phenomena

A) B)

C)D)

https://doi.org/10.26434/chemrxiv-2024-0z1gn ORCID: https://orcid.org/0000-0003-0395-6617 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0z1gn
https://orcid.org/0000-0003-0395-6617
https://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Structure-based enzyme engineering is uniquely convenient as beneficial mutants can be 

rationalized visually and AlphaFold2 has made it trivial to produce sufficiently accurate three-

dimensional models for sequences of globular proteins36. Computational analysis of enzyme 

structures suggests that catalytic efficiency toward a specific substrate is improved when active 

sites show shape complementarity for that substrate and tunnel geometries promote rapid diffusion 

of associated reactants or products to and from active sites, respectively. Demonstrating the 

importance of active site complementarity, computational analysis shows that conserved guanine 

binding sites broadly drive ribozyme selectivity,37 a single residue in catechol O-methyl transferase 

(COMT) positions its SAM cofactor to achieve a preferred donor-acceptor distance,38 and that the 

active site residues of bacterial arylmalonate decarboxylase (AMDase) drive substrate specificity 

by tuning the size of a hydrophobic pocket to accommodate various substrates.39 Topological 

engineering focuses on altering an enzyme’s structure with these principles in mind, typically 

selecting mutations which favor substrate binding, or to improve tunnel accessibility. Active site 

mutations have been repeatedly deployed to improve substrate complementarity and enzymatic 

efficiency. Such mutations have enhanced an O-methyl transferase’s ability to synthesize the 

pharmaceutical pinostilebene,40 improved substrate specificity of an acyltransferase in an 

unfavorable aqueous environment,41 and transformed a non-enzymatic protein to a KE.42 

Topological engineering has also been leveraged to alter substrate specificity by mutating buried 

residues in a channel, reducing the ability of some substrates to travel to the active site,43 or to 

improve overall efficiency of a flavin dependent halogenase (FDH) by both giving better access 

to active sites and reducing leakage of an intermediate.44 A clear inconvenience of topology-based 

design is the reliance on domain knowledge and the lack of generalizability. Rational engineering 
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metrics are typically specific to the system at hand and can hardly be compared to other physics-

based features.  

Structure-based insights can also be applied to intuitively engineering non-functional 

aspects of enzymes including pH preference. Assuming that surface residues play an outsized role 

in determining an enzyme’s optimal pH, mutating these amino acids is a viable strategy for its 

preferred aqueous environment. By mutating only two residues, the optimal pH of vanillin 

dehydrogenase was shifted from 7.4 to 9.45 This work illustrates the importance of considering a 

mutant’s structural context and the viability of optimizing an enzyme’s optimal pH. Most enzymes 

evolved to prefer environments closer to neutral pH’s, and tolerance for less biologically common 

conditions opens the door for working with reactions that proceed more rapidly in a basic or acidic 

environment. Altering optimal pH is a largely unutilized engineering strategy for improved 

enzymatic efficiency. 

Structure-focused enzyme engineering is inherently limited by its qualitative nature which 

hinders quantitative comparison between different enzyme classes. Despite the abundance of 

accurate, predicted structures from AlphaFold2, the inability to predict ligand locations limits the 

application of these principles to this breadth of data. AlphaFold3 offers some relief by predicting 

ligand locations, but it is not enough to simply stabilize interactions in the ground state as an 

enzyme must ensure that concerted interactions are in reactive conformations capable of 

generating products.29 It remains to be seen how accurately this tool can predict reactive 

conformations. This and other shortcomings of structure-based principles are addressed partially 

by creating more conformations for a given structure, and new generative models are making it 

possible to do so easily and rapidly. The recently developed idpGAN creates structure ensembles 
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from sequence alone, introducing a new paradigm for structure-based design principles where 

insights are rapidly applied without the need for MD simulations.46, 47  

Beyond technical approaches, applying crowd-sourcing to analyze and engineer enzyme 

structure remains an untapped avenue. Though low-throughput, human intuition is known to be 

effective and creative at optimizing various biomolecule problems as evidenced through successful 

efforts to game-ify protein folding, RNA folding, and drug design.48-51 Applying Web3 block-

chain technology could enhance massively parallel efforts to study and design on the basis of 

enzyme structure, and one could envision a public ledger that stores individual analyses and serves 

as an intermediary to develop consensus amongst citizen scientists.  

2b. Electrostatics 

Enzyme electrostatics, such as electrostatic potential and electric field (EF), mediate 

chemical reactivity that involves change of ionic states or charge separation. They have a 

quantitative connection to transition state stabilization and are convenient to calculate, making it 

popular in the computational enzyme engineering community. Experimental EF can be determined 

through vibrational Stark Shift experiments. When applied to enzymes, these methods typically 

require the probe molecule to have a rigid structure to enable calibrations based on MD-

simulations.52 Computationally, EF can be calculated using Coulomb's law based on atomic 

charges derived from MM or QM methods, and then projected onto dipole moments of reacting 

bonds to yield stabilization and interaction energies.25, 53 Numerous cMD and QM/MM studies on 

ketosteroid isomerases, KEs, P450 enzymes, dihydrofolate reductase (DHFR), glycine N-

methyltransferase (GNMTs), 20S Proteasome, and catechol-O-methyltransferase (COMT) show 

that enzyme EF directs substrate specificity, as scaffolds directly accommodate the electronic 

structure of substrates and promote the breaking and formation of bonds.54  
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Seminal work by the Head-Gordon group converted the understanding of enzyme 

electrostatics into a design principle. They established that individual mutations of Kemp 

eliminases (KE) can effectively fine-tune the magnitude of EF projected onto a catalytically 

relevant chemical bond, thereby enhancing KE’s catalytic rate.53 This principle was fully leveraged 

in the engineering of the highly efficient KE15, which saw point mutations deployed to favor bond 

breaking in a KE.55 Beyond KE, observation of an electrostatic basis for efficient hydrolases 

motivated the inclusion of an aspartate residue which transformed the Bacillus subtilis esterase 

Bs2 into an amidase through electrostatic stabilization of the TS.56  

Developing gold standard methods for calculating EF remains an open challenge, and 

providing relevant technical infrastructure stands to benefit the field at large. Researchers often 

project an enzyme’s EF only along relevant bonds of reactant and transition state (𝐸 = 	−𝑭𝒆𝒏𝒛 ∙

𝒖𝒃𝒐𝒏𝒅), and new methods are being developed to integrate the product of the electron density and 

the electric field potential  of the entire reactant or transition state molecule ( 𝐸 =

∫𝜌(𝒓)𝑉'()(𝒓)𝑑*𝒓) to calculate the electrostatic stabilization energy.57 Simple EF calculations treat 

the enzyme scaffold as a collection of point charges. Polarizable force fields like AMOEBA offer 

enhanced accuracy which surpasses the typical over estimation of fixed charge force fields and 

rivals that of QM-derived EFs.58 However, GPU-accelerated polarizable force field calculations 

are only supported in Tinker-HP59 instead of other popular MD packages such as AMBER, 

GROMACS, etc., presenting a need for accessibility enhancement. Rational engineering relies on 

deploying point mutations to improve EF strength or stabilization effects, but critically assumes 

that mutants retain the global fold and substrate positioning dynamics of the wild-type protein. The 

latter is especially pertinent as minor changes to substrate orientation may quickly abolish 

anticipated electrostatic gains. Analysis of residue coupling based on mutual sidechain information 
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presents a potential means to identifying EF-mediating residues unlikely to perturb substrate 

dynamics, but methods are not generalized across enzymatic systems and require further 

refinement.60 Improving the accuracy of enzyme EF calculations through advances in 

computational methodology stands to promote the use of these design principles and presents 

untapped potential for growth, especially when it can be predicted which EF-mediating residues 

are unlikely to alter local and global conformational changes.  

2c. Protein Dynamics 

Dynamics-inspired enzyme engineering emphasizes how conformational changes mediate 

catalytic activity and apply these principles to improve enzyme functions. Though convenient, a 

PDB-derived single enzyme geometry provides only an averaged molecular view of catalysis, 

which does not inform how enzyme restructuring or reorganization influences substrate 

positioning for barrier crossing.61 This single geometry also fails to inform the impact of mutation 

on catalysis via rearranging active site residues or even dynamic allostery.62, 63 B-factor analyses 

over 60,000 enzymes across 925 families show that the flexibility of active-site residues varies 

drastically as an enzyme evolves to adopt new functions, indicating the necessity of 

conformational ensemble in elucidating enzyme functions.64 MD simulations sample enzymatic 

conformational ensembles and measure structural or energetic features across frames of production 

MD runs, generating enzyme property values, such as binding affinity, chemical selectivity, and 

even reaction barriers when combined with QM or QMMM methods. MD simulations offer 

physical insights and design hypothesis that are not accessible through the analysis of static 

structures.  

MD analysis informs that loop mutations reduce flexibility, improving ligand binding and 

enzymatic activity, assisting the experimental engineering of luciferase AncHLD-RLuc.65 Measuring 
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the evolving ratio of substrate to active site SASA through the substrate positioning index (SPI) in 

KE mutants provides a more nuanced view that mutations can reduce catalytic activity when the 

resulting active site is too loose or tight, thereby implying a Goldilocks “sweet spot” of active site 

size.33 Likewise, conformational pseudo-ensembles of ketosteroid isomerase (KSI) homologs, as 

experimentally characterized by room temperature X-ray crystallography, reveal the presence of 

an optimum flexibility that allows the residue to shuffle protons between different positions as a 

general base with maximum catalytic efficiency.66 Evidences from both NMR and simulation 

studies show that the substrate positioning and the flexibility of the enzyme mediate catalysis 

through affecting the conformational entropy.67 Investigations of enzyme reactant and TS-

complexes provide insight into the ways in which shifts in conformational ensembles can facilitate 

catalytic efficiency. Dynamics studies have shown that liver alcohol dehydrogenase (LADH) 

experiences ps-ns conformational changes near its transition state to facilitate hydride transfer.68 

QM/MM investigations into the TS ensembles of adenylate kinase suggest that the presence of a 

broad ensemble likely contributes to increased entropy of activation, suggesting that such an 

ensemble increases catalytic activity.69 Mutual information analysis of side chain dynamics in 

directed evolution-optimized KE has illustrated emergence of evolved entropic forces which 

destabilize the reactant state complex.60 Investigations into dynamics-derived ensembles of ketol-

acid reductoisomerase (KARI) illustrate that specific conformational regions are associated with 

higher reactivity, and that mutations should be targeted to preferentially populate those regions.70 

Similar work analyzing correlated residue movement has led to the creation of the shortest path 

map (SPM) model, which uses MD trajectory data to identify residues that are likely instrumental 

to catalytically relevant conformational switches.71 Additionally, dynamics-derived principles help 

identify rate-enhancing mutants. The observation that rigid catalytic residues enhance enzymatic 
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activity was leveraged to create the efficient HG4 KE, whose mutations promote both rigidity and 

active site organization for favorable catalysis.19  

Despite storied success, logistical and theoretical limitations prevent universal application 

and adoption of dynamics-based principles in enzyme engineering campaigns. Sufficient 

conformational sampling, alongside the QM-based reaction barrier calculation, is necessary to 

identify catalytically relevant states. While computational costs continue to cheapen, 

conformational sampling remains a rate-limiting step in computational enzyme engineering 

efforts,72, 73 particularly in cases where enhanced sampling or Markov-State modeling is needed. 

Generative models hold great promises to achieve low-cost conformational sampling directly from 

an input sequence, but it’s application to computational enzyme engineering is likely impeded by 

its insensitivity to point mutations, though there have been reports of cases where AlphaFold2-

generated conformal ensembles are sensitive to point mutations.47 Another challenge for MD-

guided enzyme engineering is the lack of generalizable quantitative metrics that represent the 

impact of protein dynamics on chemical reactivity. Like structure-based principles, MD-based 

design principles are often system specific. Substrate positioning index (SPI) demonstrates a 

volcano-like piecewise linear correlation with free energy barrier in lactonase SsoPox35 and KE33. 

However, it remains unknown how to identify the SPI corresponding to the optimal activity a 

priori. Investigations of soybean lipoxygenase (SLO) have demonstrated the critical role that distal 

loop motions play in thermally activated enzymes, where the enthalpy of activation of hydrogen-

deuterium exchange (HDX) energy and activation barrier energy are unexpectedly positively 

correlated.74 The fundamental nature of this observation paves the way for new dynamics-inspired 

enzyme engineering principles that are potentially generalizable across systems.61 Additionally, 

entropy has long been known critical for catalysis, but how to quantitatively factor in the role of 
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entropy from conformational ensemble remains an open question.75 There is also increasing 

interest in predicting relative populations of reactive states capable of chemical productivity. 

Proximity alone is not enough for reaction procession and case studies have suggested that 

discriminating reactive and non-reactive geometries is a non-trivial task in need of further 

development.70, 76 Treating enzymes as conformational ensembles is a fundamentally robust 

approach, and further refinement and application of MD-guided design principles maximize the 

potential of computational enzyme engineering.  

2d. Heat Capacity 

Considering heat capacity adds a unique dimension for engineering enzymes with a 

temperature-dependent behavior, such as cold-adaptation and thermostability. Negative heat 

capacity in a highly efficient KE is associated with stabilization of the TS state versus the ground 

state.77 It has also been demonstrated that the addition of 2,2,2-trifluoro ethane induces similar 

effects in engineered enzymes leading to associated efficiency gains.78 Standard Arrhenius 

behavior assumes that enzyme activity increases exponentially with temperature until protein 

degradation occurs. The incompatibility of Arrhenius behavior (non-Arrhenius behavior) seen in 

cold-adapted a-amylase (AHA), ancient reconstructed adenylate kinase (ANC1), and others has 

motivated the establishment of a heat capacity-based framework for understanding the temperature 

dependency of  enzyme efficiency from MD simulations.79 These simulations elucidate the 

emergence of inactive substrate-enzyme conformations, rather than a non-trivial activation heat 

capacity, to be the key factor underlying the cold adaptation of AHA. In theoretical terms, AHA 

keeps activation enthalpies low and activation entropies more negative by preventing 

conformationally competent enzyme-substrate interactions.80 This principle was applied back to 

AHA, leading to the identification of mutations which shifted its thermal optima upward.81  
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Engineering enzyme temperature preference through heat capacity prediction is promising 

and untapped. With methods for predicting non-Arrhenius activity only being developed recently, 

they remain largely unapplied despite potential applications in sugar, laundry, and textile 

manufacturing, as well as biocatalysis, and sustainable production. Fundamental and glaring issues 

arise when trying to apply lessons from monodomain AHA to other industrial enzymes, such as 

amylases and cellulases, because the majority of these enzymes have two domains, a catalytic 

domain and a carbohydrate-binding module.82, 83 Instead, it has been demonstrated that cold 

adaptation can be achieved via the introduction of linkers which increase domain separation index 

(DSI), an MD-derived descriptor which rigorously describes domain separation.84 DSI-guided 

screening of linkers helped introduce a 12-fold activity increase in  Pseudomonas saccharophila 

amylase (psA) at 0°C from 2.4% to 30.5%. Although this work provides a physical principle for 

engineering cold-adapted bidomain enzymes, its structural basis underlying the apparent non-

Arrhenius activity remains to be investigated. 

2e. Complex Mechanisms that Require New Engineering Principles 

Until every contributor of enzyme catalysis is catalogued and codified, there is still room 

for the development of new physics-based design principles. At present there are an abundance of 

mechanisms which enable enzymes to achieve high catalytic efficiency, but have not been distilled 

into concise design principles. Excited state simulations have unrevealed mechanisms of 

photoactive enzymes.85-87 Hydrogen tunneling is critical to the rate limiting step of soybean 

lipoxygenase (SLO),61 and recent MD and QM simulations are only now beginning to unveil its 

mechanistic details.88 Before that, multi-dimensional tunneling analysis has also been applied to 

understand how hydrogen, proton, and hydride transfer occurs in various enzyme systems, 

although insights have largely not been applied to further enzyme engineering efforts.89 More 
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broadly, proton coupled electron transfer (PCET) serves the basis of countless highly efficient 

enzymatic reactions, and studies have been conducted to elucidate how mutations affect PCET.88, 

90 However, there has been limited understanding of how beneficial mutations can be predicted to 

gain desired functions such as activity, selectivity, etc. in an enzyme involving PCET.91 In addition, 

growing interest exists in understanding the chemical reaction dynamics of enzyme catalysis on 

the femtosecond timescale. Ab initio path integral simulations of KSID40N discovered a quantum 

proton delocalization facilitated by a triad of strongly hydrogen-bonded tyrosine residues, which 

leads to a 10,000-fold increase in the acidity of one of the tyrosine.92 Transition path analysis of 

purine nucleoside phosphorylase (PNP) highlights that a distal residue contributes a rapid 

promoting vibration.93 Committor analysis of Myosin II with frozen active site residues has shown 

that specific global protein motions are required for ATP hydrolysis to proceed.94 Two-

dimensional QM/MM MD simulations elucidated the complex mechanism of oxidosqualene 

cyclase involving a nearly concerted but highly asynchronous cyclization.95 QM/MM-based 

quasiclassical trajectory simulations illustrate how post-TS bifurcations determine product 

selectivity in SpnF-catalyzed Diels–Alder reactions, demonstrating the kinetic energy contribution 

of active-site hydrophobic residues in chemical activation.21 Fundamental understanding of 

enzyme’s chemical activation networks will suggest untapped avenue to engineer biocatalysts. 

Clearly, there is a diverse ecosystem of physical phenomena critical to enzyme catalysis which are 

not yet applied to enzyme engineering efforts. In turn, physics-based enzyme engineering is an 

exciting field with considerable potential to grow as computational resources continue to cheapen 

and phenomena like PCET, hydrogen tunneling, quantum proton delocalization, excited states, 

rapid enzyme motions, and post-TS bifurcations are studied in greater detail.  

3. Physics-based Modeling Facilitates Discovery of New Enzymes and Variants 
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Automated workflows are an emerging means of fully leveraging physics-derived design 

principles to evolve the field of enzyme engineering. While there is a robust and validated selection 

of design principles, manually applying them to enzyme systems limits the field by lowering 

throughput-levels, reducing reproducibility, and keeping technical barriers to entry high. The low-

throughput level associated with manual system preparation hurts the field by both reducing the 

number of enzymes that are refined and limiting the exhaustiveness of sequence search for those 

systems. Manual preparation of input files as well as analysis of simulations introduces 

innumerable failure points, translating into an escalated risk of error and reduced reproducibility 

when deploying mutations to a system. Computational enzyme engineering workflows typically 

feature multiple software packages, introducing a high technical barrier to entry and ultimately 

limiting the size of the community and the diversity of perspectives (Figure 3). Consequently, 

computational enzyme engineering workflows should aim to address these concerns. 
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Figure 3: The role of high throughput workflows in enzyme engineering. Conventional 

workflows for computational enzyme engineering follow a common pattern where a mutant library 

is generated for a prepared enzyme-substrate complex and physics-based scoring is used to 

recommend mutants based on rigorous values averaged through conformational sampling (A). 

There are currently no computational workflows developed for optimizing non-rate enhancing 

objectives, leaving tasks like smart library construction, chimera-enzyme fusion, engineering new-

to-nature reactions, and metagenomic enzyme discovery unaddressed (B).  

Physics-based enzyme engineering workflows were pioneered with the release of CADEE 

in 2017.96 Designed as a workflow to perform computer-aided directed evolution, CADEE was the 

first platform designed for the sole purpose of ranking and recommending individual  mutants with 

physics-based methods (i.e., EVB). To apply CADEE to a given system, one needs to prepare the 

enzyme-substrate complex and calibrate the EVB force field with experimentally characterized 

mutants of the target enzymatic reaction. Alternatively, rigorous calculations or experimental data 

of the intrinsic reaction can be used. The automatic workflow then deploys mutations before 

running an MD simulation and ranking each mutant based on the activation energy calculated via 

a standard EVB free-energy perturbation/umbrella sampling (EVB-FEP/US) procedure. CADEE 

was initially tested on the proton transfer step of the triosephosphate isomerase (TIM) using a set 

of rigorous EVB parameters for this enzyme. As a pedagogical example, 128 single point 

mutations were computationally screened in 9.5 days with 512 CPU cores. CADEE is a clear 

success in the field, but there are limitations to this workflow. CADEE’s performance is sensitive 

to EVB force field’s parameterization quality, and expert input is needed when relevant 

experimental data is not available.  This limits application of the workflow to well-studied enzymes 

and essentially precluding analysis of sequences folded by AlphaFold2. Reliance on implicit 
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knowledge gained from fitting to experimental data also introduces variability across systems, 

making it difficult to systematically improve the accuracy and generalizability of CADEE. The 

bulk of CADEE’s drawbacks originate from its reliance on EVB, which could be addressed by 

implementing support for other techniques. Unfortunately, significant further development for 

CADEE has not been reported since its release, highlighting a recurring issue in the field. Software 

projects for enzyme engineering often have short active development lifetimes, resulting in 

inadvertent specialization. The field lacks a software package with robust support for numerous 

simulation techniques and design principles. 

EnzyHTP73 was released in 2022 and fundamentally advanced the state of the art for high 

throughput computational workflows. Following up CADEE, EnzyHTP was conceptualized and 

developed as a robust and flexible tool for general purpose enzyme engineering. Notably, 

EnzyHTP automates every step of enzyme engineering including preparation, mutagenesis, 

geometry sampling, and post-hoc analysis. This python-based package advances the state of the 

art by supporting arbitrary molecular modelling tasks including MD, QM, ligand docking, 

trajectory analysis, and more. Exposing this functionality through modular python functions 

uniquely enables the creation of flexible analysis and engineering workflows tailored to the system 

at hand. Ultimately, EnzyHTP serves as a modular breadboard from which other workflows can 

be built. For example,72 an EnzyHTP-based workflow was recently developed to perform 

computational DE. In this workflow, in silico analysis allowed hundreds of mutants to be screened 

for both thermostability and their ability to stabilize the breaking bond in the rate-limiting TS. 43,44 

Applied to the KE07, a well-characterized and optimized KE, this EnzyHTP workflow 

successfully identified all 4 experimentally observed rate-enhancing mutants. A total of 184 

mutants were screened using a combined 18.4 μs of equilibrium MD simulations and 18,400 QM 
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single point calculations. Calculations were performed in 3 days using 30 GPUs and 1000 CPUs. 

This work highlights various pareto optimization concerns for such workflows as striking balances 

between computational cost and mutant ranking accuracy, smart library construction schemes, or 

functional scoring remain unsolved problems.  

Narrow selection of targeted engineering objectives and insufficient incorporation of 

physics-based principles within workflows are two shortcomings in the field which both represent 

potential areas of growth. Protocols like CADEE, EnzyHTP, ASiteDesign97, and CASCO98 have 

demonstrated the power of high throughput workflows for the task of identifying rate-enhancing 

point mutations and modifying selectivity, but no analogous pipelines have been applied to solve  

challenges like tuning the substrate scope. This lack of functionality is problematic as altering 

substrate scope is a desirable task in computational enzyme engineering and especially in the 

context of biosynthetic enzymes with applications in industrial production and late-stage 

pharmaceutical functionalization. Other unaddressed functional challenges include accelerating 

genome-based enzyme discovery,99 engineering new-to-nature reactions in enzymes,100, 101 and 

assembling fused functional domain into chimera enzymes (Figure 3B).102 While these objectives 

are addressable with existing methods created to rank point mutations, the majority of physics-

based design principles remain unimplemented in a manner which could be applied to address 

these tasks. Given the diversity of these functional objectives, it is almost certain that many more 

physics-based principles will need to be codified, quantitated, and applied in high throughput 

workflows to see meaningful progress.  

Besides expanding the scientific relevance of high-throughput enzyme modeling workflow, 

a technical challenge lies in software engineering. Applying coding best practices is non-trivial 

but frequently neglected in the initial stage of software development, leading to extensive 
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refactoring efforts when the inherent software architecture struggles or fails to accommodate 

expanded functionality. On the other hand, low code readability, over-simplified documentation, 

and poor co-development infrastructure are not uncommon, limiting the development and 

applications of the software to the developers’ research group. As a result, maintenance may cease 

to continue as the main developer trainees move to the next career stage. Initiatives like the 

Molecular Sciences Software Institute have made a huge impact on raising awareness within the 

community about the importance of implementing software design principles in molecular 

modeling software, training a large group of early-stage computational chemists and biologists 

specializing in software development. Looking ahead, the challenge lies in how to make software 

engineering initiatives a routine part of training programs in traditional science departments, 

thereby creating a cohort of developers equipped to tackle interdisciplinary challenges like protein 

engineering.     

 

Figure 4: The symbiotic relationship of physics-based and ML modelling. Physics-based 

modelling (left) improves ML modelling (right) by motivating physics-inspired ML architectures 
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(top) and providing models with physics-derived features and descriptors (middle). ML modelling 

aids the advancement of physics-based understanding of catalysis through conformational analysis 

and dimension reduction (bottom) of large-scale dataset intractable to simplistic analytical 

techniques.  

4. Symbiotic Fusion of Physics-Based Modelling and ML 

ML has been extensively used to guide enzyme engineering, but the lack of robust datasets 

combining structure, sequence, and function has hampered model development. Physics-based 

modelling is uniquely poised to address this limitation and enhance the expressivity and 

performance of ML models by providing an abundance of microscopic, information dense 

descriptors. Beyond feature generation, physics-based techniques enable model interpretability by 

establishing concrete links between catalysis and enzyme-substrate interactions in the ground state, 

reactive conformational state, and even transition state. As an example, incorporating structure-

based features increases prediction performance in ML models. In the case of predicting the impact 

of mutations on relative improvement of the activity in bovine enterokinase (EKB), the 

introduction of MD-derived conformational descriptors improved Pearson correlation, root mean 

square error (RMSE), and mean average error (MAE) versus a sequence-only model.32 In addition, 

structural features enhance stereoselectivity predictions. Explicit encoding of active site enzyme-

ligand interactions propelled EnzyKR to outperform the general-purpose kcat predictor (DLKcat) 

when predicting favored enantiomers for hydrolases.31 Considering the lack of explicit substrate-

enzyme interaction information in one-dimensional protein sequence and substrate SMILES string, 

the notion that structural features boost ML performance may seem obvious. The practical 

challenge, however, lies in the acquisition of quality enzyme-substrate complexes. Unlike 

sequence databases that are numerous, robust, and accessible, integrated sequence-structure 
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libraries are rare. The development of integrated sequence-structure-function database, such as 

IntEnzyDB103 and OpenEnzymeDB,104 emerges as a solution, but the size of curated quality data 

still largely lags behind the community needs. Moreover, despite advances of reactive docking 

algorithms,105, 106 a comprehensive database of large-scale catalytically relevant pre-reaction 

complexes across diverse enzymes and substrates remains undeveloped. Equally urgent is the 

establishment of enzymology databases with physics-based modeling-derived descriptors. An 

indicative example is the BioFragment Database, a repository of QM-derived protein interaction 

energies that provides a template for how researchers can create generalized values which can be 

readily adapted as features for training ML models.107 A similar database containing QM and MD 

descriptors has also been developed for antimicrobials, and given the widespread use of these 

techniques in the enzyme engineering community, developing analogous resources for enzyme 

structures would both accelerate and improve ML efforts.108 Molecular modeling-inspired 

sequence embedding tailored to enzyme engineering tasks is likewise under-developed, and serves 

as another avenue for improving the quality of ML models. There are also deficiencies in existing 

data as fitness-related values remain the most reported in large-scale dataset, such as 

ProteinGym.109 Kinetic parameters like kcat and Km are important for training biocatalysis-oriented 

models, but they disperse in scientific literatures with a wide variety of reporting formats and units. 

Training GPT agents with biochemistry knowledge-guided prompt engineering serves as a 

promising solution. A longer-term strategy would be to build a community-level Web3-based 

infrastructure that provide token incentives for experimentalists to contribute their quality kinetic 

data to the community.  

 Supplying ML models with multiple feature classes improve performance today and paves 

the way for comprehensive catalytic understanding and the design of electrostatically optimized 
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sequences. Individual physics-based principles are useful for ranking mutations in a specific case 

but are hard to combine and generalize across families of enzymes. While binding affinity and TS 

barrier height both impact catalysis, the lack of quantitative models describing their coupling 

makes it difficult to predict the impact of mutations which improve one quantity and impair the 

other. This problem is complicated further when catalytically relevant conformational descriptors 

are unitless. Contemporary ML models address this problem by combining multiple disparate 

features in predictive efforts and additionally use this wealth of information to their benefit. By 

using docking scores, QM-derived charges, and other physics-based metrics, a recently developed 

classifier was able to predict substrate promiscuity of bacterial nitrilases against a test library with 

high accuracy.30 When residue-level Rosetta energy terms and sequence identity were combined 

in a structure-aware protein graph convolutional network (PGCN), protease specificity was 

predicted with a minimum of 86.62% accuracy and greater than 90% in many cases.110 Beyond 

improving model accuracy today, such studies pave the way for ML models to elucidate the 

interplay of competing physics-based phenomena on catalytic efficiency. Supplying models with 

information about substrate binding, product binding, and reaction-related features presents an 

opportunity to develop a holistic understanding of enzyme catalysis. Moreover, the success of the 

PGCN encoding and EnzyKR demonstrate the importance of representing spatial information in 

ML models and highlights how the physical origin of catalysis can inspire better model design and 

performance through the explicit modelling of systems in catalytically competent conformations. 

Looking to ML design, the introduction of ProteinMPNN has made it possible to generate 

expressible, soluble, and stable de novo enzyme scaffolds.111 Despite this success, ProteinMPNN’s 

focus on the scaffold stability and disregard for properties that are more catalytic relevant such as 

side-chain conformations, dynamics, electric field, etc. means that many enzymes require further 
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rounds of catalytic engineering before potential use. Developing similar models which consider 

protein EF presents a direct method to design enzymes which are biased towards higher initial 

efficiency.  

 Descending from broad views of catalytic activity to the transition state, ML models play 

key roles in addressing long standing problems associated with the generation and classification 

of reactive states. Generating accurate TS geometries inside an enzyme remains a major challenge, 

despite their importance in calculating barrier height. Recent work has demonstrated that 

equivariant diffusion models can generate highly accurate gas phase TS-geometries from 

structures of reactants and products alone.112 Considerable further effort will be needed to extend 

this technology to account for interactions with both active site residues and solvent molecules, 

but using ML algorithms to generate accurate TS-geometries is an elegant means to make barrier 

calculations possible for more systems. Distilling catalytic meaning from high-dimensional MD 

simulations is another major challenge aided by ML integration. Connecting stochastically 

sampled enzyme geometries with activity is often hampered by the tendency for conformational 

shifts to occur. Markov chain Monte Carlo (MCMC) models solve this problem on a global scale 

by organizing MD snapshots into probability-weighted states which combine with physics-based 

calculations to show high agreement with experimentally measured values.113 Looking to 

individual molecular coordinates, the high number of distances, angles, and dihedrals associated 

with even small ligand systems makes manual analysis potentially spurious and counterproductive. 

In the case of ketol-acid reductoisomerase (KARI), ML models analyzed substrate turnover events 

and identified measurables strongly associated with reactivity.29 This application of ML is 

transformative and potentially not replicable through manual analysis. Further application of this 

technique to systems beyond KARI stands to grow knowledge of intrinsic reactivity and paves the 
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way for the distillation of a more generalized understanding of how ligand geometry impacts 

reactivity.  

5. Challenges in Computational Tool Development for Enzyme Engineering 

The advancement of physics-based enzyme engineering will depend on methodological 

and technical improvements. Enzyme engineering’s reliance on computational tools provides both 

technical limitations at present and the potential for rapid gains as first-principles software 

packages see continued improvement. Computational cost is a primary bottleneck for most 

techniques in the field. MD and QM/MM are critical for conformational sampling and activation 

barrier height calculations, respectively, but both techniques can take days to calculate values 

meaningful for enzyme engineering efforts. Addressing the challenge demands advancements in 

both computing hardware and algorithms. On the hardware front, quantum computing presents a 

promising engine to drive the next-generation electronic structure simulations, with early 

applications demonstrating its potential in the structure prediction of proteins114. The hybrid use 

of quantum computers alongside existing classical processing units could lead to significant 

advances in modeling the rare events within enzyme systems, though the realization of a true 

quantum advantage remains uncertain. On the algorithmic side, the development of artificial 

intelligence (AI) to accelerate high-accuracy energy calculations and sampling is a thriving 

direction. Machine learning potentials have shown promise in facilitating QM/MM simulations, 

particularly for evaluating chemical barriers115. Furthermore, generative models are increasingly 

being used to map path-dependent free energy changes by leveraging information from end-point 

states, such as in targeted free energy perturbation studies116.  

Many tools have been developed, but there is no consensus on how to compare and titrate 

computational performance for enzyme engineering. In contrast to traditional computational 
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chemistry tasks, such as thermochemistry predictions with well-established benchmark sets, 

computational enzyme engineering faces a constantly evolving target that depends on the intrinsic 

mutational landscape of the selected enzyme. Some model systems like KE have become de facto 

benchmarks, but the practice of drawing conclusions from a single enzyme is biased and prone to 

create analyses which hyper fixate on artifacts or aberrations of a specific enzyme. AlphaFold2 

and its origins in the Critical Assessment of Structure Prediction (CASP) program offer a potential 

path to more sound methodology in the enzyme engineering. CASP uses a blind process in which 

researchers’ predictions are validated against unreleased protein structures and contain protein 

targets across different families. Such an approach creates a maximally robust validation 

environment and inspires the future creation of an initiative perhaps called Critical Assessment of 

Enzyme Functional Prediction. Notably, ProteinGym109 offers a large dataset obtained from deep 

mutational screening (DMS) and clinical observation, mapping the protein sequence to the DMS 

score. While the dataset is valuable for AI model developments, ProteinGym does not contain 

information such as substrates, reaction mechanism, enzyme-substrate complex structures, or more 

physically meaningful kinetic properties such as kcat or Km, which are all critical for assessing a 

physics-based enzyme engineering tool. A gold standard of benchmarking in the field of enzyme 

engineering should comprise of enzyme data with a diverse range of wild-type sequences, 

mutations, reactions, reaction mechanisms, substrate types, experimental hit rates, as well as 

evaluation metrics and algorithms which critically assess the performance of software packages in 

a blind, unbiased manner.  

Although the abilities of directed evolution and high-throughput screening are impressive, 

we only consider this approach as an intermediate step towards developing methods that can 

address any engineering objectives across any enzyme systems. Physics-based modeling plays an 
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essential role in advancing the next generation of enzyme engineering methods due to its unique 

ability to directly predict experimental observables from first principles, elucidate molecular 

mechanisms, and identify key molecular descriptors as design principles. This approach is crucial 

for ultimately unlocking the full potential of enzyme engineering, leading us into a new era of 

enzyme innovation and discovery. 
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