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Abstract 

Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. 

Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality 

information about their nanoscale structure. More recently, its four-dimensional modality has emerged as 

a tool for a comprehensive crystal structure analysis using large datasets of diffraction patterns. In this 

study, we track the alternations of the crystal structure of individual carbon-supported PtCu3 nanoparticles 

before and after fuel cell-relevant activation treatment, consisting of a mild acid-washing protocol and 

potential cycling, essential for forming an active catalyst. To take full advantage of the rich, identical 

location 4D-STEM capabilities, unsupervised algorithms were used for the complex data analysis, starting 

with k-means clustering followed by non-negative matrix factorization, to find commonly occurring signals 

within specific nanoparticle data. The study revealed domains with (partially) ordered alloy structures, 

twin boundaries, and local amorphization.  After activation, specific nanoparticle surface sites exhibited a 

loss of crystallinity which can be correlated to the simultaneous local scarcity of the ordered alloy phase, 

confirming the enhanced stability of the ordered alloy during potential cycling activation conditions. With 

the capabilities of our in-house developed identical-location 4D-STEM approach to track changes in 

individual nanoparticles, combined with advanced data analysis, we determine how activation treatment 

affects the electrocatalysts’ local crystal structure. Such an approach provides considerably richer insights 

and is much more sensitive to minor changes than traditional STEM imaging. This workflow requires little 

manual input, has a reasonable computational complexity, and is transferrable to other functional 

nanomaterials.  
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Fuel cell electrocatalysts stand at the forefront of commercializing hydrogen as a viable alternative to fossil 

fuels in the transport and stationary power generation sectors. Those functional nanomaterials currently 

represent a bottleneck to fuel cell commercialization due to their high price, as they are commonly based 

on noble metals. Electrocatalysts for the oxygen reduction reaction (ORR) inside a proton exchange 

membrane fuel cell specifically use scarce platinum. Today, they are commonly made of platinum alloy 

nanoparticles, which contain abundant transition metals such as Cu, Co, Ni, or Fe. Alloyed nanoparticles 

are dispersed over high-surface-area support like carbon, drastically improving platinum utilization while 

retaining good catalytic properties.1–3 Despite their successful development, further fundamental 

investigation into their structure-activity and structure-stability relationships is essential to reach their 

maximum potential. 

Structural features govern the catalytic properties of alloyed nanoparticles. One example is a better ORR 

performance in both activity and stability tests for nanoparticles, encapsulated by a Pt-rich surface.1 

Several strategies were reported to create the overlayer4 and tune its thickness.5 Furthermore, the 

synthesis of intermetallic structures resulted in more active and stable electrocatalysts.1,6–8 Alloy ordering 

is thought to improve the catalytic properties due to the enhanced stability of the less noble metal.9 In-

situ studies correlated a higher degree of order with better ORR activity and durability10 and demonstrated 

the separation of the alloying and ordering stages.11 However, only a handful of references also consider 

the physical placement of ordered domains inside nanoparticles, for example using atomically resolved 

imaging to show an ordered shell and a disordered core in a Pt-Cu nanoparticle,12 tracking alloying and 

ordering in Pt-Fe nanoparticles,13 and specifying chemical order at the atomic scale for a Pt-Fe 

nanoparticle.14 Such complexity inevitably results in an exclusive atomic arrangement and thus structure 

of each nanoparticle.15 Therefore, a bottom-up approach is needed to study their structure-function 

relationships.3 

Changes to the electrocatalyst structure during operation occur at the nanoscale. Scanning transmission 

electron microscopy (STEM) is a versatile tool that can acquire that information down to the atomic scale 

and is thus indispensable when characterizing nanomaterials. Identical-location STEM (IL-STEM), where an 

identical site or particle is characterized consecutively, is especially useful when investigating local changes 

before and after a certain ex-situ change-inducing protocol.16 It proved itself useful many times over in the 

field of ORR electrocatalysis and continues to offer information that is more objective and reliable than 

ex-situ imaging of randomly picked locations.3,17,18 Even though it does not provide in-situ data, comparing 

the starting and final configurations of a specific site can explain the possible mechanism behind the 

transformation. While it is true that in-situ imaging using an electrochemical cell would provide real-time 

insights, it would most likely mean sacrificing atomic-scale information. Modern imaging modalities 

promise an even better utilization of identical-location imaging in the context of functional materials.  

Four-dimensional STEM (4D-STEM) is a state-of-the-art method that collects diffraction patterns with a 

pixelated detector while scanning a thin sample with an electron beam. This creates massive datasets of 

tens of thousands of patterns with comprehensive information about the local crystal structure. The 

electron beam should in principle be close to a zone axis of the investigated structure to achieve an 

adequate diffraction contrast,19 but 4D-STEM nonetheless reduces the need for atomic resolution imaging 

compared to conventional STEM since the diffraction patterns retain crystal structure information at any 
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magnification. The technique also reduces the impact of sample drift and other distortions on a crystal 

structure analysis since individual patterns are recorded at once. Lastly, 4D-STEM offers more data 

compared to conventional STEM and does not reduce entire spatial distributions of the scattered electrons 

to scalar numbers. 

4D-STEM has already been successfully applied to several crystal structure studies at the nanoscale.20–22 

Analyzing tens of thousands of diffraction patterns by hand is out of the question due to the sheer amount 

of data. Automating the analysis not only speeds it up and ensures its objectivity but also offers 

information that would be impossible to obtain manually.23 There have already been numerous studies 

where the analysis of STEM images was automated24 as well as software solutions for 4D-STEM.25,26 Some 

of those are dedicated to orientation mapping for crystalline materials,27–29 generally aimed at systems 

where all phases were already identified.  

Unsupervised machine learning, on the other hand, offers outstanding possibilities for analyzing large 

amounts of entirely unlabeled data which is handled without prior knowledge about the sample or data 

acquisition method. Among such algorithms, clustering groups data points into discrete groups or clusters. 

There have already been several successful attempts in 4D-STEM to cluster the data into physically 

relevant groups, for example as an exploratory data analysis approach,30,31 to reveal lattice deformations,32 

stacking order in multilayer nanomaterials,33 and to segment twinned crystallites.34  

Clustering, however, usually fails to consider the possibility of one data point including several different 

signals, which can very well be the case when imaging high surface area nanoparticulate electrocatalysts. 

Significant structure overlap can occur due to a large number of nanoparticles that are generally rotated 

randomly and exhibit a variety of crystal structures and defects, which is why other algorithms need to be 

considered. Dimensionality reduction can reduce a high-dimensional dataset to a low number of 

eigenvectors, and can therefore determine significant information within it. Examples of studies using 

dimensionality reduction on 4D-STEM data include general data exploring,31,35 denoising,36 confirming 

strain as a dominant feature,37 and for crystallite segmentation and analysis.34,38–45 So far, such approaches 

have not been widely explored in electrocatalysis.  

In this study, we demonstrate an identical-location 4D-STEM approach on an ORR electrocatalyst with 

carbon-supported Pt-Cu nanoparticles that underwent acid washing and potential cycling activation. We 

analyzed the 4D-STEM datasets using clustering and dimensionality reduction to obtain objective 

information about the local crystal structure. Identical location data enabled us to establish a link between 

the local crystal structure and the onset of degradation with observable local collapse of the initial crystal 

structure. Coupled with simulated 4D-STEM data, X-ray diffraction (XRD), scanning electron microscopy 

(SEM), and energy-dispersive X-ray spectrometry (EDX), this is a thorough study of the local structure-

stability relationship of individual Pt-Cu nanoparticles. 

 

Results and Discussion 

The present study encompasses a detailed investigation of the structure-stability relationship of an ORR 

electrocatalyst consisting of carbon-supported PtCu3 nanoparticles. After an initial structural 
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characterization of the sample, an identical-location 4D-STEM study was carried out on individual 

nanoparticles to study surface degradation mechanisms during sample treatment. Using advanced 

characterization methods and data analysis algorithms, this study builds on existing materials science 

knowledge to deliver a deeper understanding thanks to data-driven approaches. 

Ex-situ characterization of the as-synthesized sample 

A powder catalyst consisting of carbon-supported PtCu3 nanoparticles was synthesized using an in-house 

procedure. Figure 1a presents an X-ray diffraction pattern, where the most prominent three diffraction 

maxima corresponding to (111), (200), and (220) planes are characteristic of the disordered Pt-Cu alloy 

(Fm-3m) phase, and the rest of the maxima reveal the presence of the ordered PtCu3 alloy (Pm-3m) phase. 

The intensities of the diffraction maxima confirm a mixture of both alloy crystal phases while the broad 

signal at ~25° belongs to the partially graphitic carbon support.  

Figure 1b features bright-field (BF) and high-angle annular dark-field (HAADF) STEM images of the PtCu3/C 

electrocatalyst. In the bright-field image, the morphology of the carbon is visible. Carbon particles, 

spanning a few tens of nanometers in diameter, form aggregates that provide a high surface area for 

dispersing the catalytic nanoparticles. In both images, we can observe Pt-Cu nanoparticles from 4 to 100 

nanometers in diameter. Figure 1c includes SEM images to show further the carbon morphology and Pt-

Cu nanoparticles' faceted shape. More images can be found in Figure S1. We note that the wide particle 

size distribution is beneficial for our study, as it allows us to select particles of specific sizes for detailed 

analysis. It is not intended that this material represents an optimized performing electrocatalyst. 

 

Figure 1. (a) XRD pattern of the investigated PtCu3/C sample. Star markers denote superstructure diffraction maxima, 

characteristic of the ordered alloy crystal phase. (b) BF- and HAADF-STEM images of the sample showing the carbon 

support morphology and the Pt-Cu nanoparticles. (c) SEM images of the sample.  
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Selected nanoparticles underwent a detailed 4D-STEM analysis. Figure 2a includes a HAADF-STEM image 

of one such particle with its fast Fourier transform (FFT). It was imaged in a [111] zone axis, which can be 

inferred from the FFT and directly from the image. Figure S2 includes its BF-STEM image, average 

diffraction pattern, and reconstructed images from the 4D-STEM dataset.  

Since the dataset naturally included the nanoparticle surroundings, i.e. the carbon support and a smaller, 

out-of-focus neighboring nanoparticle, it was necessary to isolate the diffraction patterns, belonging 

strictly to the nanoparticle under investigation. To do so in an automated manner, we turned to 

unsupervised learning. K-means clustering was chosen thanks to its successful results, acceptable 

computational complexity, and simplicity of use. The algorithm requires the user to provide the desired 

number of clusters. In this case, two clusters were sufficient and yielded a result where the entirety of the 

studied nanoparticle was included in a single cluster.  

Figure 2b shows the k-means clustering results using two clusters, performed on the 4D-STEM data. Colors 

are used to illustrate the cluster labels in real space and the average diffraction pattern of each is depicted 

next to the real-space result. One cluster represents the Pt-Cu nanoparticle while the other includes the 

rest of the imaged area. The algorithm segmented the dataset meaningfully despite having no prior 

knowledge of the data or the imaging method. The [111] zone axis, used in this case, results in a 

characteristic six-fold symmetry, evident in the nanoparticle cluster diffraction pattern in Figure 2b. In 

contrast, the other cluster diffraction pattern is a mixture of a ring signal, coming from the carbon support, 

and several Bragg disks, coming from the other parts of the imaging area.  

The diffraction patterns from the nanoparticle cluster were then used for dimensionality reduction. Non-

negative matrix factorization (NMF) was performed to extract seven representative diffraction patterns, 

which was a reasonable value since no additional information appeared when increasing that number 

further. The calculated patterns are depicted in Figure 2c. The left-most three patterns include a signal, 

consistent with the ordered PtCu3 alloy phase, as evident from the superstructure Bragg disks closest to 

the central one. Here, it should be noted that each pattern does not necessarily mean a particular crystal 

structure, but rather a notable signal within the dataset, which means that there can be more than one 

pattern, consistent with one crystal structure.   

Several simulated diffraction patterns are depicted in Figure 2d to help understand the NMF results. 

Models, used for simulations, can be found in Figure S3. Indeed, the disordered and the ordered Pt-Cu 

alloys differ by the presence of superstructure Bragg disks. They also exhibit different Higher-Order Laue 

Zone (HOLZ) lines that form rings in the outermost part of the patterns but are not as prominent in 

individual experimental diffraction patterns. When imaging a mixture of the two phases, they share certain 

disks, and the disk intensities depend on the phase fractions. Thus, patterns simply featuring a signal in 

the place of superstructure disks do not necessarily depict a pure ordered alloy but should be understood 

as a possible mixture of phases.  

The disordered alloy patterns could also be associated with a Pt-rich nanoparticle surface, as the Pt lattice 

has the same symmetry as the disordered Pt-Cu alloy and there are no significant differences among disk 

intensities using the chosen instrumental parameters. Additionally, disk intensities will change when a 
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slight tilt away from the zone axis occurs, leaving us with fewer disks that are intense enough to be 

discerned from the noise. The pattern interpretation should therefore be careful and consider different 

crystal structures, mixtures, and tilts. Using NMF on 4D-STEM data was validated on a simulated dataset 

as summarized in Figure S4. 

Figure 2c shows loading maps, associated with each calculated diffraction pattern. Intensities represent 

the spatial abundance of each pattern, that is, what fraction of an individual experimental diffraction 

pattern at a specific site is associated with that calculated pattern. One or more corresponding domains 

can be discerned from the maps for each calculated pattern. In this case, we can attribute the left-most 

three maps to alloy ordering, as their corresponding diffraction patterns include signal, expected from an 

ordered PtCu3 alloy. The ordered domains are located in the outer part of the particle, forming an ordered 

alloy shell around a disordered alloy core of the nanoparticle, as reported previously for a similar system.12 

Parts of the ordered domains are located at the particle surface and are thus in direct contact with particle 

surroundings. 

More generally, this approach would enable us to highlight any domains that would exhibit characteristic 

diffraction – not only different space groups but also, for example, twin boundaries and crystallite 

orientations. The advantage of this approach is not needing to supply any prior knowledge about what we 

expect to see.  

Nonetheless, the reliability of result interpretation highly depends on the present structures, the zone axis, 

and imaging parameters. In the [111] zone axis, identifying (partially) ordered crystallites was 

straightforward because the superstructure Bragg disks are visible at the imaging parameters used in this 

study. The mere phase identification is less straightforward in certain other cases. Figure S5 includes the 

results for a twinned Pt-Cu nanoparticle in the [110] zone axis.  

Additionally, some parts of the nanoparticle can be highlighted in multiple maps. This already proves the 

need to consider structure overlap when imaging nanoparticulate electrocatalysts which is not possible 

with k-means clustering that assigns each data point to exactly one cluster. Distinguishing this is more 

effective with dimensionality reduction, as the overlap between crystal phases no longer poses a problem. 

This is an advantage of using 4D-STEM over conventional atomically resolved STEM, which provides 

individual 2D projections of the structure under investigation.  

https://doi.org/10.26434/chemrxiv-2024-x6f6m ORCID: https://orcid.org/0009-0008-6247-3256 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-x6f6m
https://orcid.org/0009-0008-6247-3256
https://creativecommons.org/licenses/by-nc/4.0/


 

Figure 2. (a) A HAADF-STEM image of a Pt-Cu nanoparticle in the [111] zone axis and its FFT. (b) Clustering with color-

coded labels (left) and the cluster average diffraction patterns with a border of the same color as their label (right). 

(c) The representative diffraction patterns, determined with NMF (top), and their loading maps (bottom). The color 

scale corresponds to the extent to which each calculated pattern is present in the overall diffraction signal. (d) 

Simulated diffraction patterns of relevant Pt-Cu alloy phases in the [111] zone axis. From left to right: the disordered 

alloy (arrows denote characteristic Bragg disks), the disordered alloy with a 3° tilt away from the zone axis, the 50:50 

mixture of the ordered and disordered alloys, and the pure ordered alloy (dashed arrows denote superstructure 

Bragg disks while full arrows denote disks that are also present in the disordered alloy).  

 

Identical-location 4D-STEM 

One 4D-STEM snapshot of the investigated nanoparticle provided us with information about the physical 

placement of the ordered alloy phase. Identical-location imaging takes us a step further and enables a 

direct comparison of a chosen site or a nanoparticle before and after induced changes.16 In this study, we 

carried out two steps to alter the sample, acid washing and potential cycling activation.   
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Acid washing is a chemical activation method for Pt-alloy-based ORR electrocatalysts which removes the 

less noble metal from the outermost layers of nanoparticles to form a Pt-rich surface.46–48 This is important 

to activate the surface and prevent contamination of the whole proton exchange membrane fuel cell 

system with leached metal cations. The chosen protocol is a milder version of an activation protocol 

compared to industry-relevant routines, as we intended to induce minimal changes to check the 

robustness of the methodology against minor alternations between datasets. Figure S6 contains an IL-

HAADF-STEM image of the nanoparticle after acid washing, a comparison to the as-synthesized state, and 

4D-STEM analysis results. Indeed, after close inspection, one can recognize that the nanoparticle exhibited 

only minor changes. The results can be directly connected to the first set and only reveal slight particle 

reshaping.  

EDX results in the form of maps and line scans, summarized in Figure S7, now more clearly reveal a minor 

enrichment of the surface with platinum (more red color on the edge of the nanoparticle), signifying 

copper dissolution from the outermost atomic layers as expected for acid washing. These results show 

that only combining several methods returns comprehensive information that addresses both chemical 

composition changes and crystal structure information.49 

The second sample treatment step was potential cycling activation, performed on the TEM grid in a 

modified floating electrode (MFE) setup. This method is based on a three-electrode setup, where the TEM 

grid with the deposited sample assumes the role of the working electrode. This makes MFE a convenient 

way to induce changes to the sample electrochemically and enables identical-location imaging of 

electrocatalysts at different scales.50  

Figure 3a depicts STEM images of the activated sample. The close-up shot of one Pt-Cu nanoparticle 

reveals a rugged surface in contrast with the faceted shapes of nanoparticles after synthesis and agrees 

with previous literature reports.17 The cyclic voltammograms in Figure 3b exhibit relatively low electric 

currents due to a small amount of catalyst on the working electrode, but the signal is consistent with the 

electrochemical response of platinum in the chosen potential window under an inert atmosphere, 

especially in the last cycle where a Pt signature indicates a formation of a Pt-rich surface.50 A Pt-rich surface 

is confirmed with EDX results as shown in Figure S7. A modified surface and a larger electrochemically 

active surface area are a desired outcome of activation protocols for ORR electrocatalysts, which in turn 

makes catalyst conditioning a very important step in industrial settings.46,47 
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Figure 3. (a) HAADF-STEM images of the investigated PtCu3/C sample after potential cycling activation. (b) Cyclic 

voltammograms, recorded during potential cycling activation of the TEM grid with the PtCu3/C sample.  

 

Identical-location imaging was performed as previously. Figure 4a includes a HAADF-STEM image of the 

investigated Pt-Cu nanoparticle where sites with a collapsed crystal structure can be observed as 

nanometer-sized amorphous regions on the particle surface. When comparing parts of the nanoparticle 

surface to the initial state, it is apparent that the highlighted sites lost their crystallinity. Only the local 

short-range order is affected, while the rest of the nanoparticle retained its crystalline symmetry. In 

addition, a minor particle shrinkage is observed as shown in Figure 4b. The final diameter was 

approximately 3.6 % smaller than the initial value. 

While spotting local amorphization is possible by consulting a HAADF-STEM image, success is not 

guaranteed if the atomic resolution is compromised, and a manual approach is slow and subjective. These 

risks can be mitigated using 4D-STEM and automated data analysis. Figure 4c depicts NMF results for the 

4D-STEM of the activated particle, where one of the loading maps features signal gaps denoted with 

arrows that directly correspond to the local collapse of the crystal structure as observed with HAADF-

STEM. The calculated diffraction pattern, used to construct that particular loading map, is consistent with 

a signal of a Fm-3m crystal structure, shared both by a disordered Pt-Cu alloy and a Pt-rich surface. 

Therefore, it is not surprising that amorphous regions would not be highlighted there.  

The signal gaps are, however, not equally as prominent in certain other loading maps. For example, the 

second-to-last map, looking from left to right in Figure 4c, does not feature any signal gaps on the 

nanoparticle surface. Its corresponding calculated diffraction pattern highlights the central Bragg disk most 

prominently, which is also the only noteworthy signal that can be expected from amorphous structures. 

The second-to-last loading map indeed highlights parts that mostly correspond to sites with local 

amorphization – although it is important to stress again that each map is obtained using the entirety of 

the signal in each calculated diffraction pattern which may feature a mixture of signals. Understanding the 

principles behind 4D-STEM and NMF is crucial to verify that all results corroborate the overarching story.  
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Figure 4. (a) HAADF-STEM image of a Pt-Cu nanoparticle after potential cycling activation. Arrows denote sites with 

local amorphization. The part within the dashed rectangle is visualized on the right with enhanced contrast and 

compared to the initial state. (b) Overlaid nanoparticle outlines before (red) and after (green) activation with Miller 

indices of crystal plane families. (c) The representative diffraction patterns, determined with NMF (top), and their 

loading maps (bottom). The color scale corresponds to the extent to which each calculated pattern is present in the 

overall diffraction signal. White arrows on one of the loading maps match the arrows on the HAADF-STEM image.  

 

A previous study showed that a local surface enrichment with Cu resulted in sites being more susceptible 

to pore formation during electrochemical cycling.17 In our case, however, the EDX investigation of several 

Pt-Cu nanoparticles did not reveal significant inhomogeneities in the surface chemical composition after 

synthesis that could be connected to the observed nanometer-sized amorphous regions after activation. 

Besides Cu-rich sites, differences in the crystal structures could in principle also govern the local structure-

stability relationship.  

Figure 5a shows where an ordered alloy structure is present within the investigated Pt-Cu nanoparticle 

after synthesis and after potential cycling activation. Interestingly, ordered domains often stretch to the 

particle surface in the initial state. After activation, however, the ordered alloy signal at the surface often 

vanishes, consistent both with a Pt-rich surface formation and local amorphization.  

Both ordered alloy maps come with marked amorphous sites after activation, as determined previously 

for the HAADF-STEM image. Those sites likely predominantly form due to the selective dissolution of Cu 
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atoms from the near-surface regions, followed by a partial collapse and diffusion of the leftover Pt atoms 

towards fcc lattice sites. Because Pt atoms do not occupy the expected fcc lattice positions, the site 

becomes locally amorphous. 

It is systematically observed that amorphous sites are more common in places with a locally lower degree 

of ordering (or close to them), and significantly less common in places with a higher degree of alloy 

ordering. Interestingly, amorphous sites appear to be placed at characteristic distances from one another, 

with the majority of the distances between them being approximately 3 to 5 nanometers (Figure 4a). It is 

worth noting that slight sample drift may occur due to a longer acquisition time of the 4D-STEM dataset 

compared to the HAADF-STEM image. Transferring markers to denote amorphous sites therefore comes 

with an error margin of a few tenths of a nanometer. Nonetheless, it is still possible to compare the two 

datasets as the uncertainty in arrow placement is an order of magnitude lower than the distances between 

them.  

Figure 5b schematically depicts the proposed mechanism of this phenomenon. While Cu atoms dissolve 

from a less stable region, namely the disordered phase, there is inherently also the formation of low-

coordinated or dangling Pt atoms that are prone to dissolution. These dissolved Cu and Pt atoms mark the 

beginning of pore formation. However, at these conditions, the dissolved Pt is likely to redeposit nearby 

rather than remain in the electrolyte. Pt is therefore deposited at the edges of the pores where it blocks 

underlying Cu from dissolving. It is our understating that this nano-pitting corrosion event is governed by 

the higher probability of Pt ions to redeposit on these exposed edges of the pores than further inside the 

nanoparticle where mass transport is somehow limited. These redeposition events therefore prevent local 

amorphization from taking place at that exact site and result in amorphous sites being placed at a distance 

from one another. Looking at the EDX maps after activation in Figure S7, the Pt-rich surface does not 

exhibit perfect homogeneity which corroborates this conclusion.  

 

Figure 5. (a) Maps depicting alloy ordering within a Pt-Cu nanoparticle after synthesis (left) and after potential cycling 

activation (right). White arrows denote sites with observed local amorphization after activation. Each map is 
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normalized to its respective maximum value. (b) A schematic depiction of the proposed mechanism for the local 

amorphization on the Pt-Cu nanoparticle surface.  

 

It should be emphasized that the maps in Figure 5a are not normalized to the same value but to each 

respective maximum value. They are constructed using different sets of NMF eigenvectors and a direct 

comparison of the values in the figure is therefore pointless.  

Besides the chemical composition and crystal structure, the local coordination number can also impact the 

surface site stability. Surface defects such as steps and edges can be expected to behave differently 

compared to sites in the middle of certain low-index surface facets since a different coordination number 

can change the local pH in the surrounding electrolyte. The impact of the surface coordination number on 

ORR activity and stability was investigated in detail in previous reports.51  

In this study, however, the predominantly attacked sites seemed to be more connected to the crystal 

structure rather than to surface defects. The stability of the ordered and disordered Pt-Cu alloy structures 

was previously investigated theoretically by calculating the vacancy formation energy of individual Cu 

atoms. Cu stability was indeed determined to be higher in intermetallic structures which goes in line with 

the present experimental findings.9  

Probabilities for surface changes likely follow a priority list: the local chemical composition has the largest 

effect, followed by alloy ordering and local coordination number. Less stable regions exhibit a higher 

probability of degradation events, and changes occur randomly when all regions are equally as stable. 

Dealloying, surface diffusion, and redeposition are processes that can occur simultaneously and are 

interrelated. Those nano-corrosion processes are an opportunity to form amorphous sites, and the 

resulting local collapse of crystallinity can then be observed and explained with 4D-STEM.  

Identical location imaging shows the local history of a chosen site and provides better information than 

comparing two different nanoparticles before and after inducing changes. This enables recognizing trends 

rather than a simple recognition of the present crystal structures, which makes the interpretation more 

telling, especially in the context of catalyst stability and conditioning. Using 4D-STEM for an identical 

location study offers an additional advantage as the evolution of the crystal structure can be tracked 

locally. Although the overlap between some ordered and disordered alloy disks and the presence of the 

background make phase quantification unfeasible, phase identification nonetheless remains possible in all 

collected datasets. 

Identical-location 4D-STEM together with unsupervised algorithms is a powerful method for probing the 

local structure-stability relationship of nanocomposite electrocatalysts, and is an appropriate 

accompaniment to studies, investigating bulk catalysts. This method can be applied to other 

nanomaterials, where crystal phase mapping would provide meaningful information that could be 

connected to the material’s functional properties. Additionally, the data analysis pipeline is well-suited for 

automating complex and large-scale dataset analysis such as in IL-4D-STEM, a task that would be practically 

impossible to carry out manually. 
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Conclusion 

In this study, we investigated the crystal structure of a Pt-Cu/C nanoparticulate ORR electrocatalyst using 

XRD, identical-location STEM, and IL-4D-STEM supported by unsupervised machine learning analysis 

consisting of k-means clustering and NMF. A mild acid-washing protocol and potential cycling activation 

were used to induce structural changes which were then tracked at identical locations. IL-HAADF-STEM 

revealed minor particle reshaping and local loss of short-range order (amorphization) at specific surface 

sites, and a Pt-rich surface was confirmed with IL-EDX. Nanoparticle surface sites that exhibited local loss 

of crystal structure can be correlated to alloy ordering, as ordered domains are more stable under the 

conditions of potential cycling activation.  

This work presents an important methodological step as 4D-STEM and corresponding data analysis are still 

under-utilized in electrocatalysis. The presented approach requires little manual input and is not limited 

to nanoparticulate electrocatalysts. 4D-STEM offers several advantages over using solely conventional 

STEM imaging. Since nanoparticles are 3D objects, the two-dimensional projections may include 

overlapping signals in the imaging direction. Data acquisition and analysis that considers that overlap is 

thus a welcome step forward compared to studies that disregard this aspect. In this case, we recognize 

that each experimental diffraction pattern can be understood as a sum of common signals, determined 

with unsupervised algorithms. Furthermore, unsupervised algorithms can also reveal unexpected domain 

differentiation or unknown features, unlike conventional deterministic approaches or supervised learning 

which requires labeled data. Last but not least, 4D-STEM offers crystal structure information even if real-

space images do not offer atomic resolution as long as the imaged structure is close enough to a zone axis 

for diffraction patterns to feature relevant Bragg disks.  

In the future, where computational complexity would be less of a concern, real-time exploratory data 

analysis might serve as a useful tool to the microscope operator during imaging and possibly help them 

collect more representative data rather than imaging arbitrarily chosen regions that may or may not hold 

comprehensive information of the structure under investigation. Achieving cooperation between humans 

and machines and among different characterization methods will enable even smarter design of functional 

materials, capable of solving humanity’s problems.  

 

Methods 

a. Pt-Cu/C electrocatalyst synthesis 

A PtCu3/C sample was synthesized similarly to previous reports.52 In brief, a modified sol-gel method was 

used to mix the metal reactants at the molecular level. First, 0.08 g of hydroxyethyl cellulose (Merck, 

Germany) was dissolved in 6 mL of water by heating the mixture to 90 °C to ensure complete dissolution. 

After cooling the solution to 50 °C, 0.18 g of copper(II) acetate monohydrate (Honeywell, Germany) and 

0.12 g of tetraamine platinum(II) nitrate (Sigma-Aldrich, Germany) were added and dissolved. To the 

resulting viscous solution, 0.25 g carbon black (Vulcan XC72R, Cabot, USA) was added and then stirred to 

achieve a uniform dispersion. The mixture was then frozen with liquid nitrogen and freeze-dried to obtain 

a dry composite powder. 
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The freeze-dried powder was then heated to 250 °C with a heating rate of 2 °C/min in an air atmosphere 

and held at this temperature for 1 hour. After the system was purged with argon gas (100 ml/min) for 15 

minutes, a 5% H₂/Ar gas mixture (100 ml/min) was introduced and the sample was further heated at 250 

°C for 45 minutes. After 2 h at 250 °C, the temperature was then gradually increased to 850 °C  at a rate of 

2 °C/min for 6 hours. According to the Pt-Cu phase diagram, annealing at 850°C at a composition of approx. 

PtCu3 ensures the formation of a (Pt, Cu) solid solution. The initial annealing in air is to prevent carbon 

deposit formation on the surface of nanoparticles, while subsequent annealing in a reductive atmosphere 

prevents oxide formation. 

The sample was then cooled to room temperature at a rate of 6 °C/min. Finally, the composite was 

annealed for 72 hours at 500 °C in H₂/Ar and then rapidly cooled to room temperature, resulting in the 

final product. Again, the temperature of 500°C was chosen according to the Pt-Cu phase diagram as it 

provides appropriate conditions to form an ordered PtCu3 alloy, and rapid cooling preserved the crystal 

structure, obtained during annealing.  

b. X-ray diffraction (XRD) 

X-ray diffraction patterns were obtained using a PANanalytical X’Pert PRO MPD diffractometer using Cu 

Kα1 radiation (λ = 1.5406 Å). A 2θ range of 10° to 80° was used along with a step size of 0.034° and a holding 

time of 300 seconds. The sample was prepared on a Si holder. 

c. SEM 

SEM images were obtained using a SUPRA 35 VP (Carl Zeiss) microscope at 5 kV using detectors for back-

scattered and secondary electrons. In Figure 1c, the left panel is an SEM image formed with back-scattered 

electrons. The other two panels as well as both images in Figure S1b are mixtures consisting of 56 % of the 

signal coming from back-scattered electrons and the rest from secondary electrons. Powder samples were 

prepared on standard SEM pin mounts (Agar Scientific) covered with conductive carbon tape (Agar 

Scientific).  

d. Sample treatment 

A 1 mg/mL suspension was prepared with the powder PtCu3/C sample and Milli-Q water. 5 µL of the 

catalyst suspension was dropcasted on a gold lacey-carbon-coated TEM grid (Agar Scientific). Its treatment 

consisted of two steps. The first step was acid washing, dipping the grid into 50 mL of 0.1 M perchloric acid 

(HClO4, 70 % Rotipuran Supra, Carl Roth, diluted by Milli-Q, 18.2 Ω cm) for 30 seconds at room temperature 

while purging with argon and stirring the electrolyte at 100 rpm. The grid was then washed with Milli-Q 

water and dried at room temperature.  

The second step was carried out in a three-electrode setup with an EmStat4X (PalmSens) potentiostat. For 

the electrochemical treatment of the sample, deposited on the TEM grid (as above), the modified floating 

electrode setup was used as the working electrode.50 MFE consists of a two-piece Teflon housing, metallic 

spring, placed between two metallic cones, gas diffusion layer (GDL, 280 µm thickness) with 40% Teflon 

weight wet proofing (Toray Carbon paper 090, Fuel Cell Store), and a catalyst-coated TEM grid. A reversible 

hydrogen electrode (HydroFlex®) and a Pt mesh were used as reference and counter electrodes, 

respectively. The experiment was performed in 0.1 M perchloric acid, purged with argon before and during 
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the measurement. After contacting the sample with electrolyte at 0.05 V, the sample was treated by 

performing 200 cyclic voltammograms between 0.05 and 1.2 V with 300 mV/s. After the experiment, the 

grid was again washed with Milli-Q water and dried at room temperature. 

e. STEM and 4D-STEM 

STEM images were obtained using a probe Cs-corrected scanning transmission electron microscope Jeol 

ARM 200 CF. The accelerating voltage was set to 80 kV. For the bright-field and high-angle annular dark-

field images, the convergence angle was set to 24 mrad, and the collection semi-angles were 0-45 and 68-

185 mrad, respectively. Energy-dispersive X-ray spectrometry was performed using an SDD Jeol Centurio 

spectrometer. 4D-STEM datasets were acquired as a series of 256×256 convergent beam electron 

diffraction patterns using a Merlin detector with a convergence angle of ~6 mrad. The scan size of the 4D-

STEM data was 256×256 pixels.  

Identical location imaging was performed after synthesis, after acid washing, and after potential cycling 

activation. Locations of the chosen spots were recorded at different magnifications to aid in finding them 

during subsequent imaging sessions. All data was recorded under the same conditions.  

f. 4D-STEM data analysis 

All data was analyzed using in-house scripts written in Python programming language. Intensities in the 

recorded diffraction patterns were integrated using virtual apertures in reciprocal space. A circular binary 

mask covering only the central Bragg disk was used to determine the virtual bright-field image, and an 

annular binary mask covering other disks was used for the virtual dark-field image.  

For subsequent analyses, the raw intensities in the recorded diffraction patterns were preprocessed using 

a natural logarithm to enhance the lower-intensity features. Pixels with zero values were beforehand 

replaced by minimum non-zero values, present elsewhere in the dataset. 

Clustering was used to isolate the diffraction patterns, related to an individual nanoparticle under 

investigation. Diffraction patterns were clustered using k-means clustering, as implemented in the open-

source scikit-learn library.53 The k-means algorithm partitions the diffraction patterns into a user-

determined number of clusters, where each pattern can belong to only one cluster, and clusters are 

determined based on distances between data points in vector space.54 A centroid was computed for each 

cluster, representing the group's average diffraction pattern. Nanoparticles were segmented using k-

means clustering with two or three clusters, depending on nanoparticle surroundings in each image. The 

success of the segmentation was determined by comparing the results to STEM images. 

The diffraction patterns, belonging to an individual nanoparticle, were then analyzed using a 

dimensionality reduction method called non-negative matrix factorization (NMF), as implemented in the 

scikit-learn library.53 NMF decomposes the data by representing it as a product of matrices, one of which 

includes non-negative eigenvectors of the data.55 The eigenvectors can be understood as representative 

diffraction patterns to describe the commonly present signals within the dataset. The number of 

eigenvectors needs to be specified in advance and should be at least as high as the number of distinct 

structural features within the data, but not significantly more. It was first estimated by performing 

principal component analysis and examining the scree plot, which explains the eigenvector variance. Later, 
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NMF was performed for different numbers of eigenvectors close to the initial estimate, and the final value 

was chosen by manual evaluation. The number of iterations was set to 1000. The spatial abundance of all 

eigenvectors was visualized in real space as loading maps that were normalized to the maximum value 

found amongst all maps.  

g.  (4D-)STEM data simulation 

QSTEM software was used to perform simulations of STEM and 4D-STEM data using the multislice method 

and frozen phonon approximation.56 Results were obtained after ten iterations of each simulation. 

Instrumental parameters matched the experimentally used values and the size of simulated patterns was 

adjusted to match the size of the experimentally obtained ones. 

In simulations for interpreting NMF results, models consisted of disordered-alloy, ordered-alloy, and 

mixed-phase PtCu3 nanoparticles spanning 5.5 nm in diameter. A 10×10 grid of diffraction patterns was 

simulated using a convergence angle of 6 mrad and integrated to yield the average diffraction pattern of 

each model.  

To validate the NMF methodology, the model was a mixed-phase PtCu3 nanoparticle spanning 10 nm in 

diameter. The nanoparticle had a disordered alloy core, representing 50 % of the particle volume, and an 

ordered alloy shell with a Pt-rich surface. A 32x32 grid of diffraction patterns was simulated using a 

convergence angle of 6 mrad and a HAADF-STEM image was simulated using a convergence angle of 24 

mrad. 

 

Code availability 

The code to analyze 4D-STEM data is available at https://github.com/kamsekar/Local-crystal-structure-

4DSTEM.  
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