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Abstract 12 
 13 
Novel reactivity is paramount to accessing valuable chemical space. Chemists use mechanistic intuition in 14 
conjunction with modern reaction screening techniques to discover, invent, or optimise chemical reactions. 15 
We have codified this logic in an automated cheminformatic workflow as one approach to systematic reaction 16 
invention. Hundreds of expert-encoded elementary reaction templates were used to construct a highly 17 
connected mechanistic network. This network can be used to enumerate reaction pathways for a set of given 18 
input substrates and reagents, serving as a qualitative “virtual flask”. Our method’s predictive capability is first 19 
exemplified through the regeneration of mechanistic pathways to the main and potential side products of 20 
seven known multicomponent reactions. Then, we showcase its innovative capability in a multicomponent 21 
reaction invention pipeline that rapidly screens three component sets of starting materials for scenarios where 22 
two components form an intermediate that is captured by a third reactant. Two novel three component 23 
transformations proposed by the model were experimentally validated using robotically dosed parallel reaction 24 
plates employing a broad range of reaction conditions. We discuss the potential utility of these novel 25 
transformations and interrogate the kinetics of both reaction systems with a robot-operated assay. 26 
 27 
 28 
 29 
Main 30 
 31 
Novel reactivity can enable alternative access to valuable chemical space and allow for the development of 32 
cheaper, faster, or more sustainable syntheses of chemical products or libraries.1,2 The identification of 33 
conditions that enable a specific, selective transformation between molecular structures is a core practice of 34 
organic synthesis. While expert chemists routinely optimise reaction conditions to yield known products, 35 
developing an entirely new system that enables an unprecedented transformation between substrates 36 
remains a significant challenge. We view this intentional development as the essence of ‘invention’. On the 37 
other hand, identifying the ‘initial hit’ – the enabling conditions that yield a novel transformation – is often seen 38 
as a ‘discovery’, as reactivity is often complex, non-linear, and sensitive to many variables. Chemists bridge 39 
the gap between ‘discovery’ and ‘invention’ through experimentation, formulating and testing many 40 
hypotheses to maximise the productivity or selectivity toward the outcome of interest. Serendipity has also 41 
played a major role in the discovery of transformations and reaction conditions. Modern high throughput 42 
experimentation techniques3,4 and continued improvement of chemistry automation5,6 have even led to 43 
concepts of ‘accelerated serendipity’,7-9 where information gain is maximised using minimal resources. 44 
Nonetheless, the design space of reaction conditions is virtually infinite, even when limited to the subset of 45 
easily automatable chemistry. Thus, we view computer-aided reaction design as an opportunity to guide 46 
experimentation away from purely serendipitous discovery and towards the intentional invention of 47 
unprecedented chemical transformations. 48 

The computer-aided systematic design of novel reactivity has been researched since the late 1960s,10-49 
12 but such models have yet to see mainstream use.13,14 Recently, the increased availability of reaction 50 
datasets with large numbers of entries has enabled contemporary attempts at data-driven reactivity models. 51 
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These models have been successful for many in-distribution tasks such as yield prediction, regioselectivity 52 
prediction, retrosynthesis, and even condition recommendation.15,16 Certain data-driven methods have been 53 
pursued to expand the substrate scope of known transformations,17,18 but most fail to extrapolate chemical 54 
reasoning to both novel and reasonable transformations.19 An interesting data-driven approach proposed by 55 
Segler and Waller uses link prediction within a knowledge graph of millions of reactions to generate reactions 56 
between co-reactive substrates, but with varying levels of plausibility judged only on the basis of structural 57 
similarity.20  58 

Another approach to systematic reaction invention has been through automated experimentation and 59 
analysis. Multidimensional screening in conjunction with clever UPLC-MS pooling techniques and spectra 60 
processing algorithms can accelerate the identification of novel catalytic reactions.21,22 Similarly, methods 61 
have been proposed to automate the exploration of reaction space, targeting areas of high model uncertainty 62 
to maximise the likelihood of enabling a novel transformation.23-25 While such methods have resulted in 63 
unexpected chemistries in controlled systems, they have relied on limiting the reactant pool to a modestly-64 
sized set of reagents predisposed to be highly reactive. Likewise, data-driven, automated exploration of 65 
electrochemistry has proven fruitful in identifying reactive pairs when selecting an ideal model substrate.26   66 

Reaction discovery can alternatively be treated as the identification of unprecedented mechanistic 67 
steps (i.e., elementary reactions) or sequences thereof. For instance, an experimental approach reported by 68 
Glorius and coworkers in 2016 targeted a single, specific elementary step by using high throughput screening 69 
to test reagents for quenching potential in photocatalysis.27 Computationally, chemical networks can be 70 
generated via quantum chemical exploration of potential energy surfaces and be used to identify potentially 71 
novel mechanistic steps at significant cost.28-31 Alternatively, this mechanism-based strategy of reaction 72 
discovery can be formalised and expanded by developing a manually curated set of expert-encoded 73 
elementary reactions that serves as a ruleset in algorithms that generate reaction pathways. While reaction 74 
network datasets can be tedious to develop, this approach has seen recent success in extrapolation to novel 75 
chemistry. In early 2024, a template-based mechanistic model was used by Grzybowski and coworkers to 76 
predict the outcome of cationic rearrangements.32 Contemporaneously to this work, the same group extended 77 
their closed-source platform to propose multicomponent and one-pot reactivities.33 Our goals are similar, but 78 
we additionally investigate of the formal multicomponent nature34 of our newly discovered reactions and 79 
pursue more systematic definitions of novelty and utility to select the most interesting pathways for validation.  80 

Herein, we report a generalised method for systematic reaction invention that merges automated 81 
experimentation with template-based mechanistic modelling. In our approach, we strike a balance between 82 
feasibility and novelty by targeting hypothetical reactions that represent novel combinations of known 83 
elementary steps. To do so, we developed an extended version of the SMARTS language to define 84 
mechanistic transformations (Extended Data Fig. 1) and created a reaction corpus consisting of hundreds of 85 
elementary steps derived from popular reaction types and known named reactions. Each reaction in the 86 
corpus, encoded with mechanistic SMARTS, is described by a set of core atoms and abstractable R-groups 87 
to flexibly capture the reaction’s substrate scope. A network of these generalised templates can be 88 
constructed by linking reaction templates that share common substructures (Fig. 1a). Provided a set of input 89 
molecules, the network can be used to enumerate viable reaction pathways to intermediates and products. 90 
This cheminformatic framework, or “virtual flask”, when integrated with the computer aided synthesis planning 91 
program ASKCOS,35 effectively serves as a “digital twin” for experimental organic chemistry, albeit in a 92 
qualitative manner that attempts to anticipate only species and not product ratios or rates. For a given set of 93 
starting materials, the virtual flask iteratively constructs a “state network”, representing the evolution of 94 
compounds through the mechanistic network (Fig. 1b). A series of filters and calculated features inform the 95 
novelty and feasibility of potential multicomponent reactions for a given set of reactants (Fig. 1c); many 96 
combinations of reactants can be evaluated in this manner to prioritise the most novel and feasible 97 
combinations for experimental testing.  98 

We first showcase the capabilities of the virtual flask by recreating known chemistries for seven 99 
multicomponent reactions. We then demonstrate its use in a cheminformatic pipeline that proposes ideas for 100 
novel multicomponent transformations. Ultimately, two novel reactivities proposed by the virtual flask were 101 
realised using an automated high throughput assay to rapidly assess reaction conditions. The first reaction 102 
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enables rapid access to disubstituted 2-carbamoyl benzoates through the kinetic manipulation of anhydride 103 
hydrolysis. The second reaction enables extended access to a chiral quaternary centre which is otherwise 104 
inaccessible through typical Mannich reactivity by exploiting an unexpected activation of DMSO with POCl3. 105 
Finally, we discuss several kinetic experiments that were performed to study the multicomponent nature of 106 
the uncovered chemistries. The modularity and open-source nature of this framework enable it to serve as a 107 
general model to assist in predicting, explaining, and discovering chemical reactivity with accuracy and 108 
precision that will increase as our computational filters become more robust.  109 
 110 

 111 
Fig. 1 | The virtual flask screens reactants for novel and feasible multicomponent reactions. a, The 112 
encoding scheme used to create a mechanistic network. Elementary reactions, when encoded as SMARTS, 113 
can be used to form a network of overlapping intermediates. SMARTS templates are the reactant or product 114 
patterns that form a reaction SMARTS when joined by “>>”. b, Input sets of reactants are fed into the virtual 115 
flask, producing a state network that enumerates reaction pathways between the initial reaction state and 116 
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intermediate/product states. If a state contains a product proposed by our machine learning-based forward 117 
predictor models, the branch is terminated, and the transformation is considered insufficiently novel. c, State 118 
networks are assessed through a series of post-processing filters and feature calculations. Once the state 119 
network is fully generated, each node is assessed for multicomponent character – the existence of a product 120 
containing atoms from all three input substrates. States passing this filter are then assessed for 121 
thermodynamic feasibility using ground state energy calculations and structural heuristics related to ring strain 122 
and charge. Finally, a variety of calculations are computed on nodes passing all previous filters to allow for 123 
the organisation and rank ordering of network hits (i.e., to facilitate the prioritisation of which three component 124 
reactions to run in the chemistry lab). Features of interest include overall network size and maximum 125 
difference of ground state energies between any two intermediates.  126 
 127 
 128 
Results  129 
 130 

The mechanistic network within the virtual flask is constructed based on substructures shared between 131 
different reaction templates. For instance, the first elementary reaction of Fig. 1a that reacts aldehyde 1 with 132 
amine 2 to form ion 3 is a commonly seen mechanistic step in many iminium-based reactions. The next two 133 
transformations shown are the final two steps of the SNAr reaction, whereby templates 4 and 5 couple to form 134 
intermediate 6, which then decomposes into products 7 and 8. The mechanistic network identifies compounds 135 
which can be products of one elementary step and reactants of another (in this case, starting material 5 could 136 
be represented by intermediate 3). An example output is shown in Fig. 1b, where amine 9, 2-oxoacid 10, and 137 
phosphite 11 are fed into the virtual flask. The network begins with the initial state A0, representing the input 138 
set of reactants, and expands to new states after each propagation of the mechanistic network, as indicated 139 
by linked connecting state nodes of a lighter colour. The three states A1, A2, and A3 are shown and marked 140 
on the network, representing possible states in which the input reactants could exist in. Notably, each state 141 
maintains a heavy atom mass balance with the initial state and tracks reactive and non-reactive atoms and 142 
bonds throughout the generation of the network (Extended Data Fig. 2).  143 

The coverage of the elementary reaction templates in our virtual flask is assessed by recreating known 144 
chemistries. Input substrates leading to seven experimentally verified multicomponent reactions were 145 
sampled from the methodology literature. For each reaction’s set of inputs, the mechanistic network was 146 
propagated up to five times to generate the resultant state networks shown on the right of Fig. 2.  147 

In the first example, the Mannich reaction was recreated by feeding amine 12, aldehyde 13, and ketone 148 
14 into the virtual flask. This resulted in a state network containing reaction state 15, consisting of the expected 149 
Mannich product and two equivalents of byproduct water (Fig. 2a).36 150 
 In Fig. 2b, the Greico coupling is recreated with an initial state consisting of aniline 9, aldehyde 13, 151 
and diene 16. This example created a simple state network that contained the product state 17.37 In Fig. 2c, 152 
the Kabachnik-Fields reaction replaces diene 16 with phosphite 11 to generate the expected product state 153 
18.38 Interestingly, the resultant state network visually resembles the one produced given the Greico coupling 154 
reagents due to shared reactivities.  155 
 In Fig. 2d, the Passerini reaction is recreated with acid 19, aldehyde 20, and isocyanide 21 to form 156 
product state 22.39 This reaction contains a unique rearrangement step, possibly reflecting the sparsity of the 157 
resultant state network. In Fig. 2e, we show the aryl Petasis reaction that combines aldehyde 23 with amine 158 
24 and boronate 25 to produce state 26 with the expected product and boric acid byproduct.40 Next the 159 
Strecker synthesis was recreated from aldehyde 27, isocyanate 28, and amine 29. This formed state 30, which 160 
was the captured compound in the associated reported chemistry (Fig. 2f).41 Finally, Fig. 2g shows the 161 
recreation of the aldehyde-alkyne-amine reaction, forming state 34 from inputs 31, 32, and 33.42 By confirming 162 
that the virtual flask successfully recapitulated these archetypal multicomponent reactions, we validated both 163 
our definition of reaction SMARTS as well as our network traversal algorithm. 164 
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 165 
Fig. 2 | The virtual flask correctly generates the products of known reactions as well as potential 166 
byproducts. a-g, Virtual flask inputs and corresponding product states. A mechanistic pathway from 167 
substrates to product is highlighted in gold. Reaction conditions shown above and below the arrow were not 168 
considered during mechanistic reaction propagation.  169 
 170 
 171 

Next, we prospectively demonstrated the pipeline’s use in the discovery of novel multicomponent 172 
reactions. triplets of substrates were enumerated from a random set of 39 compounds from our in-house 173 
inventory, primarily containing amines, acids, and various common nucleophiles (Fig. S9). The substrate 174 
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library was not predisposed towards reactive species. Each set of three compounds was fed into the virtual 175 
flask to generate a state network with a maximum depth of five mechanistic propagations. 2,603 state 176 
networks were generated, filtered, and evaluated for novelty and feasibility (see Methods and Supplementary 177 
Information §5). An interactive two-dimensional histogram binning passing hits by overall network size (as an 178 
indication of potential mechanistic complexity) and maximum difference in ground state energies found in 179 
proposed pathways (as an indication of overall thermodynamic feasibility) was developed to allow for manual 180 
analysis and down selection (Fig. 3a-b). We focused on hits with small network sizes and low calculated max 181 
∆G, inspecting mechanistic pathways and cross-referencing reaction databases online to ensure the reactions 182 
were truly novel and not false positives. An example of a passing mechanistic sequence as shown in the 183 
analysis dashboard can be found in Extended Data Fig. 3.  184 

 185 

 186 
Fig. 3 | An automated assay rapidly identifies enabling conditions. a, An interactive 2-dimensional 187 
heatmap showing the distribution of passing hits identified by the model. Reaction pathways are binned into 188 
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buckets based on calculated scores. In this case, the x-axis bins pathways by their state network’s overall 189 
size, reflecting potential for side reactivities, and the y-axis bins by the maximum difference in ground state 190 
energies between intermediates in reaction pathways, serving as a metric for feasibility. Greyed out bins have 191 
no hits, otherwise, the bin’s opacity correlates with the number of hits it contains. During manual 192 
downselection, hypotheses with low scores for both were given higher priority. b, Given our inventory, certain 193 
mechanistic steps were frequently utilised in networks with passing hits (max: 235). The top 20 mechanisms 194 
found in the dataset are shown in the bar chart, and the top five are visualised below along with the number 195 
of times the mechanism was applied to a state across all passing networks. c, A ring-opening reaction 196 
captured via an SN2 step. The high throughput condition screen reveals that the multicomponent 197 
transformation is strongly controlled by the reaction conditions. Tin chloride, used in columns 3 and 4, 198 
deactivates the pathway to 37 entirely, while the addition of potassium carbonate led to its highest yield. d, 199 
An unexpected Swern oxidation-like activation of DMSO with POCl3 in conjunction with a Mannich addition 200 
led to the formation of a quaternary centre. Thiol 38 has been greyed out as further experimentation revealed 201 
it did not participate in the formation of product 42.  A legend defining the 24-condition heatmap screens in c 202 
and d can be found in Extended Data Fig. 5. TWC, total wavelength chromatograph; IS, internal standard; 203 
TIC, total ion count. 204 
 205 
 206 

We showcase two reactions that were identified and selected for automated execution after our 207 
analysis of the hits proposed by the model (Fig. 3c-d). As each step of the proposed mechanistic sequences 208 
generated by the virtual flask (Extended Data Fig. 4) were derived from templates inspired by known reactions, 209 
reasonable reaction conditions were generated for each experiment with a machine learning-based reaction 210 
context recommender (Supplementary Information §7-8).43 While the mechanism proposed by the virtual flask 211 
that forms both products may not be entirely accurate, they are plausible enough to use as a basis for reaction 212 
condition screening. Conditions amenable to parallel screening using a single 24-well high throughput 213 
experiment were selected (Extended Data Fig. 5), and reaction mixtures were analysed with LC-MS as well 214 
as 1D and 2D NMR (see Methods and Supplementary Information §11-12).  215 

The first verified reaction was a ring opening sequence shown in Fig. 3a, where phthalic anhydride 36 216 
is attacked by aniline 9 leading to hydrolysis and formation of a carboxylate which undergoes SN2 with 217 
bromopentane 35 to generate 37. While chemically simple, and further testing with forward synthesis machine 218 
learning models showed that they were able to predict 37 given 9, 35, and 36 as inputs, this reaction does not 219 
appear to have been reported previously (Figs. S10-S13 in Supplementary Information). We suspect that this 220 
style of reactivity can be extended to more efficiently introduce complexity to natural product analogues such 221 
as artesunate,44 a powerful antimalarial.45  222 

Additionally, we identify a Mannich aminomethylation sequence where bromoaniline 40 is methylated 223 
by an unexpected but mechanistically tractable chlorosulfonium ion generated from POCl3 (41)-activated 224 
DMSO,46,47 which is subsequently quenched through the Mannich addition of 39 to form product 42. Originally, 225 
the combination of 38, 39, and 40 yielded an unexpected mass hit in the presence of both solvent and POCl3 226 
that we then observed, through an ablation study, did not depend on thiol 38. However, that observed mass 227 
hit, later confirmed to be product 42, was successfully predicted by the virtual flask when DMSO and POCl3 228 
were included alongside the starting materials. To assess whether our reaction usefully expands the scope of 229 
Mannich-like chemistry, we attempted to form the same product using 39 and 40 with typical Mannich 230 
conditions (in DMSO at room temperature for 48 h,48 as well at 90 ºC for 24 h) and formaldehyde instead of 231 
POCl3/DMSO. No product was observed. Furthermore, very few examples of direct aminomethylations onto 232 
alpha substituted cyclohexanones have ever been reported (see Supplementary Information §10). Of these 233 
few examples, only a single reaction was found to utilize an aryl amine.49  234 

We anticipate this method to serve as a parallel method to forming quaternary centres to the catalytic 235 
asymmetric Mannich system developed by Toste and coworkers50 in addition to serving as a potential method 236 
to insert methylenes to form C-C-N bonds from carbonyl and amine building blocks, in a similar vein to Liu 237 
and coworkers’ recent report on aminative Suzuki-Miyaura couplings.51 We expect further development of this 238 
reactivity to enable novel access to chemical space around valuable small molecule therapeutics that may 239 
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have been difficult to readily access with standard Mannich chemistries, such as tramadol and its derivatives.52 240 
We are continuing to evaluate the scope of the reactivity and developing chiral ligands to maximise 241 
enantioselectivity. Assay details for both reactions are shown in Extended Data Fig. 5. 242 
 243 

 244 
Fig. 4 | A robotic kinetics assay assesses the formal multicomponent nature of reactivity. Heatmaps 245 
show normalised product abundance under different addition orders and timing of three (or two) components. 246 
In the first column, all two component reactions are tested in addition to the three-component reaction with all 247 
components being dosed simultaneously. In the following three columns, two components are added initially 248 
while the addition of the third component is delayed in 5-minute intervals, testing all possible permutations of 249 
the kinetics assay. We showcase proposed and identified intermediates and hypothesize a reaction system 250 
based off the kinetic assay results and the species believed to exist throughout the time course of each 251 
reaction. a, The kinetics assay performed on the first hit reported in this study. Each reaction is coloured by 252 
the UV integration ratio between the product and the internal standard. Formation of the product 43 is fastest 253 
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when 35 and 9 are dosed before 36. b, The kinetics assay was performed on the reaction between 39, 40, 254 
and POCl3 (41). The formation of the product is fastest when 39 and 40 are dosed before 41 is added. TWC, 255 
total wavelength chromatograph; IS, internal standard. 256 
 257 
 258 
 It can be difficult to determine whether a reaction is a formal multicomponent coupling or a series of 259 
two component reactions in one pot.34 To better understand the reactivity of the transformations identified in 260 
this study, an assay detailed in ref. 34 (herein referred to as a “Weber kinetic assay”) was adapted to our 261 
robotics platform to assess the kinetics of the coupling. In addition to testing each two-component permutation 262 
and the reaction where all three components are dosed in tandem, we robotically executed time series 263 
experiments wherein the third component was added in 5-minute intervals after the other two components 264 
were initially dosed. Reaction mixtures were analysed via LC/MS (see Methods and Supplementary 265 
Information §11f-11j). The sensitivity of the observed product quantity with respect to various dosing 266 
schedules reveals information about reaction network dynamics. In Fig. 4a, the assay results indicate that 267 
formation of the product 37 is fastest when aniline 9 and bromopentane 35 are dosed before the addition of 268 
anhydride 36. We reason this result as a phenomenon emerging from competing reaction pathways. In this 269 
experiment, potassium carbonate was added to each well before any substrate addition. We suspect that due 270 
to the initial basic conditions of the reaction vessel, anhydride is quickly converted into 43 and 44 if allowed 271 
to pre-react before all components are dosed; side reactivities consume (or occupy) the starting materials 272 
before the formation of the product is realised within the time scale of the experiment. As this side reactivity 273 
is reversible, we anticipate that the product would form eventually, given its thermodynamic stability. We 274 
performed a complimentary experiment where potassium carbonate was added in rapid succession after the 275 
final compound of each reaction was dosed. (Supplementary Information §11i) No product in any reaction 276 
over the time scale of the experiment was observed, perhaps indicating the role of a basic pre-environment 277 
in the activation of the intended reaction pathway.   278 

Similarly, in Fig. 4b, a kinetic profile is revealed with a noticeably faster formation of product 42 when 279 
39 and 40 are dosed before the addition of POCl3 (41). Again, this is reasoned through hypothetical side 280 
reactivities, in addition to the existence of side products identified in the reaction crude. Most of the reactivity 281 
in this system is rooted in the formation of the chlorosulfonium ion 47 generated from DMSO after activation 282 
via POCl3. We note that this activation is not a competing pathway due to the preparation of stock solutions. 283 
The formation of intermediate 46 from 39 and 40 is transient and does not consume the initial starting 284 
materials, but other substrate combinations with 47 led to a variety of side products including the 285 
aminomethylated 48 and intermediate 49 (both identified by UPLC-MS, see Supplementary Information §11e). 286 
However, in the series where 46 (and by extension, 47) is added last, the formation of key intermediate 49 is 287 
maximised, leading to a more rapid formation of the final product. This analysis, while not an extensive 288 
mechanistic interrogation, provides clues as to how this reaction can be developed further and showcases the 289 
utility of robotics in the execution of kinetic snapshot assays probing the order and timing of addition. 290 
 291 
Discussion 292 
 Using a mechanistic network derived from encoded elementary steps, a virtual flask was developed 293 
that can generate reaction state networks given a set of input molecular structures. This methodology was 294 
used in a cheminformatic pipeline to screen sets of reactants for combinations likely to produce novel 295 
multicomponent reactivity.  In conjunction with robotics, hypothesised reactions were able to be rapidly tested 296 
in the lab, leading to the discovery of two novel multicomponent transformations given a limited initial inventory 297 
set. The second reaction, a previously unreported aminomethylation/Mannich sequence using POCl3, is the 298 
subject of ongoing investigations in our lab.  299 

We anticipate that further development of this platform will only increase the model’s robustness in 300 
reaction exploration and will serve as a valuable addition to the computer-aided synthesis toolkit. We are 301 
striving to develop more accurate mechanistic networks to better engineer reaction conditions (including the 302 
design of new catalysts) to shift kinetic favourability towards the most desirable reaction pathways. 303 
Improvements in the comprehensiveness of the mechanistic template corpus can be made adaptively based 304 

https://doi.org/10.26434/chemrxiv-2024-qfjh9 ORCID: https://orcid.org/0000-0002-8225-6514 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qfjh9
https://orcid.org/0000-0002-8225-6514
https://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

on new experimental data and will enable more accurate anticipation of competing reactions. Integrating 305 
retrosynthetic analysis and “reaction targeting” logic into our model architecture will better guide the virtual 306 
flask towards valuable regions of chemical space. Finally, to mitigate the analytical bottleneck of robotic 307 
experimentation, we are investigating the robustness of automated structure elucidation by tandem mass 308 
spectrometry in this context of reaction screening and discovery.  309 
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Methods 310 
 311 
Computational Workflow 312 
 313 

Our algorithmic strategy involves identifying opportunities to capture reactive intermediates formed by 314 
two components with a third component; this type of multicomponent chemistry is commonly associated with 315 
iminium formation and seen in familiar reactions such as the Ugi reaction, the Mannich reaction, and the 316 
Petasis reaction. We consider a reaction to be multicomponent if the sequential addition of reactants is unable 317 
to produce the same product distribution compared to the reaction in which the substrates are added 318 
simultaneously.34 We consider a multicomponent reaction to be novel if its products cannot be predicted by 319 
separately trained machine learning models for major product prediction.53 As a novelty filter, any state that 320 
contains such products is deemed terminal and is removed. In other words, the chemistry generating this set 321 
of reaction outcomes is considered not novel, and the state is no longer propagated as the products are 322 
considered stable. The second filter assesses thermodynamic feasibility, eliminating nodes that contain more 323 
than three ionic species or one species with a formal charge greater than two absolute charge units. Post-324 
processing calculations further filter the propagated network. First, any remaining nodes that do not contain a 325 
product species with at least one atom from each of the input substrates are removed. Non-multicomponent 326 
reactions are removed by ensuring that all reactive atoms have participated in a unified transformation to 327 
remove hits where reactivities occur at separate, unrelated locations. 3D geometry optimisation is performed 328 
on compounds in remaining nodes to assess the stability of hypothetical product species; states that contain 329 
species with highly strained conformations or non-stable motifs are removed. As an additional filter, the ground 330 
state energy of each intermediate in the proposed mechanistic pathway is calculated with GFN2-xTB,54 and 331 
any route with an absolute difference in ground state energy between two intermediates greater than 10 332 
kcal/mol is removed. Finally, a series of properties calculations are performed on all remaining non-filtered 333 
states to rank-order reactions of interest, assisting manual analysis and downselection of hits before 334 
experimental validation. In this work, we primarily utilised metrics such as the size of the overall network, 335 
calculated ground state energies between intermediates contained in passing mechanistic routes, the 336 
complexity of the product based on the generated ring system, and “molecular uniqueness” calculated as a 337 
product’s minimum Tanimoto distance to any molecule in DrugBank as features of interest.  338 
 339 
Discovery Assay Workflow 340 
 341 
Reaction conditions, excluding solvents, were sampled from a context recommender machine learning 342 
model43 given reactions that formed components of the overall mechanistic sequence being proposed by the 343 
virtual flask (Supplementary Information §6-7). DMSO was selected as a universal solvent for initial screening 344 
due to its automation-friendly nature. Stock solutions recipes were calculated and followed to prepare an 345 
automated high throughput assay. An OpenTrons Flex liquid handling robot was used to transfer aliquots of 346 
stock solutions to a 24-well reactor block. Reactions were run with stirring at room temperature or a 347 
temperature proposed by the context recommender. After 24h or 48h (decided through studying literature 348 
using similar reagents, depending on the chemistry), the assay was worked up with water and diluted to 10 349 
mM before being injected into our UPLC-MS system for analysis of the crude mixtures. Passing hits were 350 
scaled up in a fume hood, and a semipreparative column was used to isolate the products for full spectroscopic 351 
analysis. See Supplementary Information §11a-11e. 352 
 353 
Weber Kinetics Assay34 Workflow 354 
 355 
We used an assay developed by Lutz Weber and colleagues as a previously established expert method to 356 
interrogate the multicomponent nature of the novel reactivities uncovered in our study.34 We adapted their 357 
experiment to allow our robotic platform to automate the order of addition and time series addition 358 
permutations the assay consists of. Stock solutions were calculated and prepared as before, but the robotic 359 
workflow was modified to screen the dosing and permutation of reagent additions in a 4x4 reaction grid. For 360 
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each reaction sequence permutation of a three-component reaction, 4 dosing times of the third component 361 
were tested, in addition to all two component reaction combinations as well as the original three component 362 
reaction as a control (where all three components are added in tandem). As before, reactions were worked 363 
up, diluted, and equimolar internal standard was added before injection into our UPLC-MS. See 364 
Supplementary Information §11h-11m. 365 
 366 
Data Availability 367 
All data, including experimental details, spectral data and raw .fid files generated or analysed during this study 368 
are included in Supplementary Information. All code and applications used in the study are available at 369 
https://github.com/coleygroup/virtual_flask. 370 
 371 
Code Availability 372 
All code and applications produced during this study can be found at 373 
https://github.com/coleygroup/virtual_flask under an MIT license. 374 
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Extended Data and Figures 575 
 576 

 577 
Extended Data Fig. 1 | Enhancements of SMARTS Language to facilitate mechanistic encodings. a, To 578 
minimise the size and improve the legibility of our SMARTS corpus, abstractable “R” tokens were introduced 579 
to the SMARTS language. While SMARTS are already incredibly expansive, this encoding style clearly 580 
delineates the core mechanistic structure and sequence of a reaction from the reactivity’s substrate scope. In 581 
a downstream step, all scope-mechanism combinations are created by replacing the R tokens with chemical 582 
structures representing the structural environment known to be amenable with a certain mechanistic step. b, 583 
Often, chemical transformations require specific substitution patterns at reactive centres. To avoid the need 584 
to repeat the same mechanistic encoding for each protonation state amenable to a transformation, while 585 
maintaining the ability to limit matching reactants, reaction SMARTS template application was modified to 586 
allow for multiple hydrogens to be specified in the product. Thus, protons are correctly conserved when the 587 
protonation state is not able to be implicitly defined. 588 
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 590 
Extended Data Fig. 2 | Exemplary Enumerated State Network. An interactive force directed layout of a 591 
state network. Each state is bound by its images’ convex hull, which is coloured by a hue correlating to the 592 
propagative step in which the state first appeared. Reactive atoms are highlighted with a colour corresponding 593 
to the substrate in which the atom originated (in this case, the indolone, red, the amide, green, and methane 594 
non-participating). 595 
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 597 
Extended Data Fig. 3 | Example enumerated mechanistic sequence hit. Passing hits can be visualised 598 
and inspected via interactive dashboard. Each hit is associated with a mechanistic sequence and additional 599 
metadata fully explaining the model’s logic in forming the product and assessed metrics of value, with an 600 
emphasis on human readability. 601 
  602 
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 603 
Extended Data Fig. 4 | Generated mechanistic sequences for novel reactivities identified through 604 
workflow. a, The virtual flask’s proposed pathway that predicted the formation of product 37. A nucleophilic 605 
attack followed by hydrolysis opens the anhydride ring, generating a handle to capture bromopentane via SN2 606 
and form a stable product. b, The virtual flask’s hypothesis for the mechanistic sequence that forms 42. Two 607 
equivalents of the bromoaniline are proposed to capture the chlorosulfonium ion generated from Swern 608 
oxidation-like activation of DMSO with POCl3. Oxidation followed by formation of an iminium is then captured 609 
via Mannich addition to form a quaternary centre. 610 
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 612 
Extended Data Fig. 5 | Assay Details for Fig. 3. a, The reaction condition assay ran that enabled the 613 
formation of desired product 37. Pleasingly, the assay enabled strong control of the system via reaction 614 
conditions, deactivating the pathway entirely when using tin II chloride. These results enabled a faster 615 
understanding of the mechanistic network underlying the multicomponent reactivity. b, A multicomponent 616 
reaction assay that led to the unexpected product 42 using DMSO/POCl3 as the third component as opposed 617 
to either of the intended thiols. 618 
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