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ABSTRACT. Balancing computational efficiency and precision, MM/P(G)BSA methods have 

been widely employed in the estimation of binding free energies within biological systems. 

However, the entropy contribution to the binding free energy is often neglected in MM/P(G)BSA 

calculations, due to the computational cost of conventional methods such as normal mode analysis 

(NMA). In this work, we develop an enhanced MM/P(G)BSA method by incorporating the entropy 

effect using a formulaic entropy. Extensive benchmarking reveals that the integration of formulaic 

entropy systematically elevates the performance of both MM/PBSA and MM/GBSA without 

incurring additional computational expenses. Notably, MM/PBSA_S, augmented with formulaic 

entropy, surpasses all other MM/P(G)BSA methods across a spectrum of datasets. Furthermore, 

the incorporation of MM/PBSA_S into a workflow can yield significantly improved results for the 

virtual screening, marked by a considerable enhancement in the enrichment factor. Our 

investigation furnishes a valuable and practical MM/P(G)BSA method, optimizing binding free 

energy calculations for a variety of biological systems. 

 

1.INTRODUCTION 

The accurate calculation and prediction of protein-ligand binding free energy constitute a 

pivotal phase in virtual screening for drug discovery.1-3 Alchemical methods, encompassing 

thermodynamic integration (TI) and free energy perturbation (FEP), are renowned for their 

reliability in binding free energy calculations,4-6 but their requirement for substantial 

computational resources renders them less feasible for high-throughput virtual screening scenarios. 

Scoring functions (SFs), which can be divided into physical-based, empirical-based, knowledge-

based, and machine learning-based methods, excel in swiftly estimating the binding affinity of 

protein-ligand complexes.7-12 However, the majority of these functions inadequately address the 

solvent effect intrinsic to binding free energy, leading to less than optimal performance. In stark 

contrast to alchemical methods and SFs, force field-based MM/P(G)BSA can achieve a superior 

equilibrium between computational expense and accuracy, thereby demonstrating wide 

applications in drug design and molecular modelling studies.13-17
 

Regarding MM/P(G)BSA, the binding free energy is a composite of gas-phase electrostatic 

and van der Waals interactions, solvent-mediated electrostatic and van der Waals differences at 

the terminal states, alongside the entropy component.17-19 Among these critical energy constituents, 

the entropy contribution has persistently posed a computational challenge.20, 21 A benchmark study 
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on 855 structures from PDBbind has shown that the ignorance of entropy effects in MM/GBSA 

can lead to either overestimation or underestimation of binding affinity.22 Normal-mode analysis 

(NMA) is extensively employed for the calculations of the configurational entropy, yet its 

computational expense renders it unsuitable for large-scale screening applications. A benchmark 

study elucidated that, in comparison to isothermal titration calorimetry (ITC) experimental 

outcomes, NMA yields more accurate results than the quasi-harmonic approximation method.23 

However, a noteworthy observation was that the computed entropies derived from NMA did not 

exhibit a correlation with the entropy values obtained from ITC experiments, highlighting a 

discrepancy between theoretical calculations and experimental measurements.23 In addition to 

NMA, the Interaction Entropy (IE) method is another widely adopted technique for entropy 

calculations. IE offers a theoretically robust framework grounded in molecular dynamics (MD) 

simulations, enabling the reliable computation of the entropic contribution to free energy.24-26 

Beyond entropy computation, a multitude of strategies have been devised to enhance the 

precision of MM/P(G)BSA calculations.27-32 Notably, Hou and colleagues have proposed the 

incorporation of a variable dielectric constant as a means to refine the performance of 

MM/P(G)BSA.33, 34 In a recent work, Ding and co-worker introduced an exponential damping 

factor to the electrostatic interaction ΔEele), which can significantly improve the performance of 

the MM/PBSA for the systems with charged ligands.35 Meanwhile, several automatic workflows 

have been developed to facilitate the MM/GB(PB)SA calculations, which can cover the system 

setup, molecular docking, structure minimization and/or MD simulations and the free energy 

calculations with MM/P(G)BSA process.36, 37 

In this work, we attempted to further improve the performance of MM/P(G)BSA by 

introducing the formulaic entropy into it. Our dual objectives encompass enhancing accuracy while 

concurrently managing computational expenses, thereby rendering the methodology amenable to 

high-throughput virtual screening applications. We propose an optimized MM/P(G)BSA method 

that approximates the entropy effect in binding free energy using formulaic entropy to achieve 

accuracy improvement. Molecular dynamics simulation is not a necessary step for formulaic 

entropy, thus balancing computational cost and enhancing its applicability for high-throughput 

screening tasks. In addition, we conducted benchmark tests and discussions on the parameter 

settings of MM/P(G)BSA, and applied them to downstream virtual screening tasks to provide 

suggestions and guidance for research related to the application of related methods. 
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2. THEORY 

2.1. MMP(G)BSA. 

In end-point MM/PBSA and MM/GBSA calculations, the free-energy change for binding of 

a ligand (L) to a protein (P) to form a complex (PL) can be expressed as:  

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑃𝐿 − 𝐺𝑃 − 𝐺𝐿                          (1) 

where the binding free energy (𝛥𝐺𝑏𝑖𝑛𝑑) corresponds to the free energy difference between the 

bound state (𝐺𝑃𝐿) and two free states (𝐺𝑃 and 𝐺𝐿). The binding free energy can be further expressed 

as: 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐻 − 𝑇𝛥𝑆 

              ≈ 𝛥𝐸𝑀𝑀 + ∆𝐺𝑠𝑜𝑙𝑣,𝑝 + 𝛥𝐺𝑠𝑜𝑙𝑣,𝑛𝑝 − 𝑇𝛥𝑆  

= 𝛥𝐸𝑒𝑙𝑒 + 𝛥𝐸𝑣𝑑𝑤 + 𝛥𝐺𝑃𝐵/𝐺𝐵 + 𝛥𝐺𝑆𝑜𝑙𝑣,𝑛𝑝-TΔS       (2) 

where the gas-phase interaction energy (𝛥𝐸𝑀𝑀) between protein and ligand can be decomposed 

into the electrostatic term (𝛥𝐸𝑒𝑙𝑒) and the van der Waals term (𝛥𝐸𝑣𝑑𝑤), while (∆𝐺𝑠𝑜𝑙𝑣,𝑝) and 

(𝛥𝐺𝑠𝑜𝑙𝑣,𝑛𝑝) are the energy changes brought by the solution as polar solvation interactions and 

non-polar solvation interactions, and the entropy change (TΔS). 𝛥𝐺𝑃𝐵/𝐺𝐵 is the polar 

(electrostatic) contribution to the solvation free energy calculated by PB or GB model.38, 39 

One-Term (SA-Only) Model for ΔGsolv,np. The nonpolar solvation term is expressed by an 

empirical function of SASA in this model  

𝛥𝐺𝑠𝑜𝑙𝑣,𝑛𝑝 = 𝛾 ∗ 𝛥𝑆𝐴𝑆𝐴 + 𝑏          (3) 

where γ and b are the surface tension constant and correction terms, respectively. 

Two-Term (Cavity-Dispersion) Model for ΔGsolv,np. The nonpolar solvation term comes from 

repulsive and attractive components between solute and explicit solvents  

𝛥𝐺𝑠𝑜𝑙𝑣,𝑛𝑝 = 𝛥𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑝 + 𝛥𝐺𝑠𝑜𝑙𝑣,𝑎𝑡𝑡    (4)  

where 𝛥𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑝  is the solvation free-energy contribution from solute−solvent repulsive 

interactions and the formation of solute cavity, while 𝛥𝐺𝑠𝑜𝑙𝑣,𝑎𝑡𝑡 is the solvent−solute attractive 

nonpolar interaction, which also includes the solvent−solvent reorganization component. 

𝛥𝐺𝑠𝑜𝑙𝑣,𝑟𝑒𝑝 ≈ 𝛥𝐺𝑐𝑎𝑣                 (5) 

𝛥𝐺𝑠𝑜𝑙𝑣,𝑎𝑡𝑡 ≈ 𝛥𝐺𝐷𝑃                  (6) 

𝛥𝐺𝑠𝑜𝑙𝑣,𝑛𝑝 = 𝛥𝐺𝑐𝑎𝑣 + 𝛥𝐺𝐷𝑃           (7) 
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𝛥𝐺𝑐𝑎𝑣 is the free energy of cavity formation corresponding to repulsive terms, and 𝛥𝐺𝐷𝑃 is the 

dispersion free energy corresponding to attractive nonpolar interactions between solute and solvent. 

Therefore, nonpolar energy is further divided into cavity and dispersion contributions in the two-

term model (Eq.7). In this work, the dispersion term is computed with a surface-based integration 

method,40 which is closely related to the PCM solvent for quantum chemical programs.41 Under 

this framework, the cavity term is still computed as a term linearly proportional to the molecular 

solvent accessible-surface area (SASA). 

2.2. Formula entropy 

Zhan and et al. proposed a method to estimate entropy.42 In the method, the entropy is 

contributed by two terms: solvation free entropy (𝛥𝑆𝑠𝑜𝑙𝑣) and conformational free entropy (𝛥𝑆𝑐𝑜𝑛𝑓): 

𝛥𝑆 = 𝛥𝑆𝑠𝑜𝑙𝑣 + 𝛥𝑆𝑐𝑜𝑛𝑓                         (8) 

The solvation entropy is gained by the tendency of water molecules to minimize their contacts 

with hydrophobic groups in protein.43 It has been demonstrated that the solvation entropy is 

temperature-dependent and can be calculated with heat capacity.44, 45 

𝛥𝑆𝑠𝑜𝑙𝑣 = 𝛥𝐶𝑝,𝑎𝑝 𝑙𝑛
𝑇

𝑇𝑆,𝑎𝑝
∗ + 𝛥𝐶𝑝,𝑝𝑜𝑙 𝑙𝑛

𝑇

𝑇𝑆,𝑝𝑜𝑙
∗           (9) 

where 𝛥𝐶𝑝,𝑎𝑝  and 𝛥𝐶𝑝,𝑝𝑜𝑙  are the apolar and polar heat capacity. 𝑇𝑆,𝑎𝑝
∗  and 𝑇𝑆,𝑝𝑜𝑙

∗  are the 

temperatures when the apolar and polar hydration entropies are zero, and their values are 385.1546 

and 335.15 K,47 respectively. The value of temperature T used in Eq.9 was 298.15 K. For the 

calculation of apolar and polar heat capacities, the apolar and polar heat capacity changes for the 

protein–ligand binding can be expressed as a linear relationship of apolar and polar solvent-

accessible surface area differences 𝛥𝑆𝐴𝑆𝐴𝑎𝑝 and 𝛥𝑆𝐴𝑆𝐴𝑝𝑜𝑙. 

𝛥𝐶𝑝,𝑎𝑝 = 𝑎𝑐(𝑇)𝛥𝑆𝐴𝑆𝐴𝑎𝑝                      (10) 

𝛥𝐶𝑝,𝑝𝑜𝑙 = 𝑏𝑐(𝑇)𝛥𝑆𝐴𝑆𝐴𝑝𝑜𝑙                     (11) 

where 𝑎𝑐(𝑇) and 𝑏𝑐(𝑇) are temperature-dependent coefficients. In a low temperature (T < 353 K) 

situation, the heat capacities are temperature-independent, and the values of 𝑎𝑐(𝑇) and 𝑏𝑐(𝑇)  are 

0.45 and -0.26, respectively.45 

As a first approximation, the conformational entropy change of the ligand binding, 𝛥𝑆𝑐𝑜𝑛𝑓, 

was written as a linear function of the number of rotatable bonds (𝑁𝑟𝑏) and total number of atoms 

(𝑁𝑎𝑡𝑜𝑚𝑠)44: 

𝛥𝑆𝑐𝑜𝑛𝑓 = 𝐾1𝑁𝑟𝑏 + 𝐾2𝑁𝑎𝑡𝑜𝑚𝑠                   (12) 
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The coefficient 𝐾1 was suggested to be -1.76 cal/(K/mol), which is close to the conformational 

entropy value observed for C-C bonds in long chain paraffins.48, 49 The coefficient 𝐾2  was 

suggested to be 0.414 cal/(K/mol), which essentially accounts for the conformational entropy 

restrictions in the free inhibitor. 31 

 

3. METHODS  

3.1. System Preparation. 

The crystal structures from PDBbind-v201650 refined set and CASF-201651 were used in this 

study. All absent hydrogen atoms were added to the proteins using the LEAP module in 

AMBER2052. We assigned the protonation states of titratable residues (His, Glu, Asp) on the basis 

of pKa values from the PROPKA software.53 The Amber ff14SB54  FF was employed for the 

protein residues, while the general AMBER FF (GAFF)55 and AM1-BCC56 charges were used for 

ligands. 

3.2. Structure Optimization. 

The resulting protein–ligand complexes were solvated in a rectangular box of TIP3P57 waters 

extending at least 10 Å from the protein surface. Counterions, Na+ or Cl–, were added to neutralize 

the total charge of each system. Afterwards, the whole system was fully minimized using 

combined steepest descent and conjugate gradient method. All optimizations were performed 

using the AMBER20 program.58 The fully optimized structures were used in the subsequent 

MM/P(G)BSA calculations. 

3.3. MM/P(G)BSA Calculations. 

MM/P(G)BSA calculations were performed using the structures of AMBER minimum energy 

optimizations via MMPBSA.py59 from AMBER. For the default MM/PBSA calculation, we use 

the AMBER built-in model and parameters are istrng=0.1, exdi=80, indi=4.0, radiopt=1 and inp=2. 

In the following chapters, the modified internal dielectric constant is indi here. For the default 

MM/GBSA calculation, we use the AMBER built-in model and parameters are igb=2 and 

saltcon=0.1. It is worth noting that MM/PBSA calculations default to the Two-Term Model for 

ΔGsolv,np, whereas MM/GBSA calculations default to the One-Term (SA-Only) Model for ΔGsolv,np 

in AMBER. 

3.4. Performance evaluation  
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The Pearson correlation coefficient (Rp) is a measure of the linear dependence of the 

predicted binding free energy values on the experimental values according to Eq. 8. The Spearman 

correlation coefficient (Rs) measures the strength of an association between the predicted and 

experimental binding free energy values according to a monotonic function (Eq. 9). RMSE is the 

root mean square error between the predicted binding free energy and the experimental value (Eq. 

10). These three quantities are calculated as follows: 

𝑅𝑝 =
∑ (𝑝𝑟𝑒𝑖−𝑝𝑟𝑒𝑎𝑣𝑒)(𝑒𝑥𝑝𝑖−𝑒𝑥𝑝𝑎𝑣𝑒)𝑁

𝑖=1

√∑ (𝑝𝑟𝑒𝑖−𝑝𝑟𝑒𝑎𝑣𝑒)2 ∑ (𝑁
𝑖=1 𝑒𝑥𝑝𝑖−𝑒𝑥𝑝𝑎𝑣𝑒)2𝑁

𝑖=1

    (8) 

𝑅𝑠 = 1 −
6 ∑ (𝑟𝑝𝑟𝑒𝑖−𝑟𝑒𝑥𝑝𝑖)𝑁

𝑖=1

𝑁(𝑁2−1)
                         (9) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑝𝑟𝑒𝑖 − 𝑒𝑥𝑝𝑖)2𝑁

𝑖=1               (10) 

where 𝑝𝑟𝑒𝑖 is the binding free energy from the given scoring function on the ith complex in the 

test set; 𝑒𝑥𝑝𝑖 is the experimental binding constant (in logarithm units, 𝑙𝑜𝑔𝐾𝑎) of this complex; 

𝑝𝑟𝑒𝑎𝑣𝑒 and 𝑒𝑥𝑝𝑎𝑣𝑒 are the corresponding averages; 𝑟𝑝𝑟𝑒𝑖 is the rank of the binding free energy of 

the ith complex; 𝑟𝑒𝑥𝑝𝑖 is the rank of the experimental binding free energy of this complex and N 

is the total number of samples.  

Enrichment factor (EF) is a measure that accounts for the number of true binders among the 

top x% ranked molecules and is calculated as follows: 

𝐸𝐹𝑥% =
𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑎𝑡 𝑥%

𝑙𝑖𝑔𝑎𝑛𝑑𝑠 𝑎𝑡 𝑥%
×

𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑔𝑎𝑛𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑒𝑠
 

The screening power of methods are assessed based on their enrichment performance that relates 

to enrichment factor. 

 

4. RESULTS 

4.1. MM/P(G)BSA with and without dispersion free energy 

As detailed in the Theory section, MM/P(G)BSA calculations can be executed using either 

one-term (SA-Only) model or two-term (Cavity-Dispersion) model for ΔGsolv,np. When the one-

term model is applied, the calculations are denoted as MM/PBSA or MM/GBSA. For the two-term 

approach, we append _DP to the original nomenclature (resulting in MM/PBSA_DP and 

MM/GBSA_DP). As illustrated in Figure 1, the results without DP correction were better in Rp, 

while the results with DP correction were better in RMSE. It was found that the one-term model 
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has better correlation for linear aliphatic molecules,60 while the two-term model has better 

correlation for branched and cyclic organic molecules.61 Unlike many previous studies, we have 

employed a substantial and structurally diverse dataset in our test. In addition, the data set is quite 

diverse structurally. Through large-scale tests, we have shown that the one-term can get better 

correlation for the calculation of the binding free energy of various systems (higher Rp), while the 

two-term model for the dispersion energy calculation is more accurate for the prediction of the 

absolute binding free energy (lower RMSE). 

 

Figure 1. Results of MM/PBSA and MM/GBSA in one-term (SA-Only) model and two-term (Cavity-Dispersion) 

model for ΔGsolv,np. For one-term model, the calculations are denoted as MM/PBSA or MM/GBSA. For the two-

term model, _DP is added at the end of their original name (MM/PBSA_DP and MM/GBSA_DP). (a), (b), (c) and (d) 

are the results of refined set (3186 complexes) and (e), (f), (g) and (h) are the results of CASF-2016 (285 complexes). 

 

we also evaluated the influence of varying internal dielectric constants on MM/PBSA 

calculations, employing both the one-term and two-term models for ΔGsolv,np. Across different 

dielectric constants, we observed that the one-term model yields better correlation than the two-

term model (Figure S1). Strikingly, for the one-term model, there appears to be no consistent 

relationship between performance and dielectric constant. On the contrary, for the two-term model, 

higher dielectric constants correlate with improved performance. In addition, these above 
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conclusions are not dependent on whether the ligands were charged or not (Figure S2 and S3). 

 

4.2. The entropy calculation with different forms of formulaic entropy 

As mentioned in Section 2.2, when the formulaic entropy is included, the methods are 

denoted as MM/PBSA_S or MM/GBSA_S. In a previous study, the conformational entropy was 

approximated using only the number of rotatable bonds, not the total number of atoms.42 In light 

of this, we also conducted tests with the conformational entropy term that excluded the number 

of atoms in Eq.12, denoting these methods with the suffix _S-A (MM/PBSA_S-A and 

MM/GBSA_S-A). 

The comparison of formulaic entropy calculation for MM/PBSA is summarized in Figure 2. 

It can be seen that no matter which method is used to calculate the formulaic entropy, the 

correlation (Rp) between the calculated values of binding free energy and the experimental ones 

can be improved a little bit, which is true for the refined set (a) (b) (c) with larger data volume 

and the benchmark set (d) (e) (f) with smaller data volume. However, the estimation of formulaic 

entropy elevates errors of absolute binding free energy (RMSE). In general, MM/PBSA_S shows 

a higher Rp and a lower RMSE than MM/PBSA_S-A, resulting in better performance. Therefore, 

the MM/PBSA_S method is recommended to estimate the entropy due to its improvement of the 

correlation between the calculated binding free energy and experimental values for MM/PBSA. 

As for MM/GBSA (Figure 3), we can see that no matter which method is used to calculate 

the formulaic entropy, the correlation (Rp) can be improved, which is true for the refined set (a) 

(b) (c) with larger data volume and the benchmark set (d) (e) (f) with smaller data volume. 

However, the estimation of formulaic entropy increases the error of absolute binding free energy 

(RMSE). Overall, MM/GBSA_S-A shows both higher Rp and RMSE than those of 

MM/GBSA_S. Therefore, we recommend the MM/GBSA_S-A method for entropy estimation 

for MM/GBSA. 

Overall, incorporating formulaic entropy significantly enhances the correlation performance 

of both MM/PBSA and MM/GBSA. On the refined set, Rp increases from 0.532 to 0. 541 for 

MM/PBSA, while it increases from 0.305 to 0.43 for MM/GBSA. In CASF-2016 test set, for 

MM/PBSA, Rp increases from 0.635 to 0.644 for MM/PBSA, and from 0.465 to 0.568 for 

MM/GBSA. Obviously, the addition of formulaic entropy yields a more pronounced 

improvement in the performance of MM/GBSA compared to MM/PBSA. 
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Figure 2. The entropy calculation results of MM/PBSA in different ways. (a), (b) and (c) are the results of refined set 

(2948 complexes) and (d), (e) and (f) are the results of CASF-2016 (285 complexes). (b) and (e) use the number of 

rotatable bonds and atoms of a ligand to approximate the conformational entropy. (c) and (f) the number of rotatable 

bonds of the ligand to approximate the conformational entropy. 

 

Figure 3. The entropy calculation results of MM/GBSA in different ways. (a), (b) and (c) are the results of refined set 

(2948 complexes) and (d), (e) and (f) are the results of CASF-2016 (285 complexes). (b) and (e) use the number of 

rotatable bonds and atoms of a ligand to approximate the conformational entropy. (c) and (f) the number of rotatable 

bonds of the ligand to approximate the conformational entropy. 
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4.3. Results of subsets clustered by different properties of protein pockets  

As noted in the preceding sections, MM/PBSA_S, with the inclusion of formulaic entropy, 

outperforms both the default MM/PBSA_DP (which is default in AMBER with an adjusted 

dielectric constant) and MM/PBSA_S-A (which includes formulaic entropy but excludes 

dispersion). Conversely, MM/GBSA_S-A, which incorporates formulaic entropy without 

dispersion, surpasses the performance of the default MM/GBSA and MM/GBSA_S (which 

includes formulaic entropy). In Figure 4, we present a comparison of the performance of these four 

representative methods on the CASF-2016 subsets, categorized by three properties of protein 

pockets 1):the excluded volume inside the binding pocket upon ligand binding, 2): the percentage 

of the solvent-accessible surface area of the ligand molecule that was buried upon binding, 3): the 

hydrophobic scale of the binding pocket). Nine subsets were obtained by clustering based on these 

three properties.51 It is evident that MM/PBSA_S and MM/GBSA_S-A exhibit markedly improved 

scoring and ranking power compared to their default counterparts (MM/PBSA_DP and 

MM/GBSA). Specifically, for scoring power (as measured by Rp), MM/PBSA_S emerges as the 

superior method among the four (Figure 4a). In terms of ranking power (Rs), MM/PBSA_S again 

leads the pack, delivering the best performance. For a more detailed analysis, please refer to Tables 

S1, S2, S3, and S4. 
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Figure 4. The results of adjusted and default methods on CASF-2016 according to different subsets clustered by three 

properties of protein pockets. MM/PBSA_S and MM/GBSA_S-A are the best adjusted MM/PBSA and MM/GBSA, 

respectively. MM/PBSA_DP and MM/GBSA are the default MM/PBSA and MM/GBSA in AMBER, respectively. 

(a) Scoring power based on Rp. (b) Ranking power based on Rs. 

 

4.4. Workflow for drug screening with the improved MM/P(G)BSA 

MM/P(G)BSA methods are widely utilized for binding free energy calculations in drug 

discovery screening. To further evaluate the performance of our improved MM/P(G)BSA 

methodologies, we conducted binding free energy calculations for actives and decoys from the 

DUD-E62 target AKT2 following the workflow depicted in Figure 5a. Initially, molecular docking 

was performed using AutoDock Vina, and subsequently, the protein-ligand complexes were 

constructed using the docked top-ranking structure with AMBER. This process yielded a total of 

4898 complexes, including 72 actives and 4826 decoys. The actives referred to here are molecules 

that have been experimentally detected to have activity, as mentioned in the DUD-E dataset.62 

Subsequently, geometry optimization of the protein-ligand complexes was performed under a 

molecular force field, as detailed in Section 3.2. Finally, various MM/P(G)BSA calculations were 

executed. Through the binding free energy ranking, we can distinguish between actives and decoys 
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(Figure 5b) and then evaluate the virtual screening power of each method using enrichment factor 

(EF) (Figure 5c). The results of EF are shown in Figure 5c. We have evaluated three EFs, namely 

EF1%, EF5% and EF10% (Figure 5c)., more details can be found in Table S5. Among four 

compared methods, we can see that MM/PBSA_S achieves the highest enrichment factor, 

indicating that it has the best screening power. Unlike MM/PBSA, we found the adjusted 

MM/GBSA_S-A did not yield the improvement in enrichment factor than the default MM/GBSA 

for this test set. In summary, our large-scale tests have demonstrated that the entropy-corrected 

MM/PBSA_S method exhibits significantly better performance than other MM/P(G)BSA methods, 

making it highly recommended for binding free energy calculations and virtual screening tasks. 

 

Figure 5. The test flow and results of the virtual screening power of MM/P(G)BSA before and after improvement. (a) 

Testing flow of virtual screening power (b) Schematic diagram of obtaining enrichment factors by calculating the 

binding free energy of the complex and ranking it (c) The results of three enrichment factors (EF1%, EF5% and 

EF10%) obtained by the improved method before and after. 

 

CONCLUSION 

In this study, we have optimized MM/P(G)BSA methods through the integration of formulaic 

entropy to account for the entropy effect. Unlike the computationally demanding entropy 
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calculations involving Normal Mode Analysis (NMA), the formulaic entropy approach offers a 

swift and efficient alternative. Upon extensive benchmark tests on refined set and CASF-2016 of 

PDBbind, we made discussions on the parameter settings of MM/P(G)BSA. Our analysis indicated 

that MM/PBSA_S with inclusion of formulaic entropy and MM/GBSA_S-A that includes 

formulaic entropy but excludes the dispersion shows better performance than their defaults 

methods. Our findings underscore that MM/PBSA_S, when incorporating formulaic entropy, 

surpasses all other MM/P(G)BSA methods in terms of calculated Rp and Rs values. Furthermore, 

a benchmark evaluation of various MM/P(G)BSA methods on the DUD-E target AKT2, utilizing 

a workflow, demonstrates that MM/PBSA_S, enhanced with formulaic entropy, achieves the 

highest enrichment factor for virtual screening purposes. Conclusively, our formulaic entropy-

corrected MM/PBSA_S is highly recommended for the prediction of binding free energy in diverse 

biological systems, offering a robust and efficient computational tool for researchers in this field. 
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