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Abstract  
Clinical trials are crucial for drug development, but they require significant time and financial resources. Additionally, 

uncertainties may arise during these trials concerning their results due to concerns surrounding effectiveness, safety, or 

the enrollment of participants. If robust AI (artificial intelligence) models exist that can accurately forecast clinical trial 

results, it would effectively prevent potential failures in such trials and also speed up the drug discovery process. Conse-

quently, more resources could be allocated towards potentially successful trials, ultimately enhancing the success rate of 

new drug development. This article systematically reviews the research works on the three main scenarios of AI affecting 

clinical trial outcomes. Clinical text embedding, complex trial relations and trial prediction methods. Then, the challenges 

and opportunities of predicting clinical trial outcomes is discussed in real-world applications. 

1. Introduction 

Although the development of modern molecular biology disci-

plines, such as genomics, proteomics, and bioinformatics, has brought 

great strides to drug R&D theory, new drug development has not es-

caped empirical nature due to the complexity of the biochemical reac-

tions that drug molecules undergo in humans. Traditional drug research 

and development is dominated by medicinal chemistry experts, who typ-

ically empirically conduct drug screens for every 5,000 to 1,0000 com-

pounds proposed, with only one compound ultimately eligible for clini-

cal testing and eventual marketing. A new drug takes more than 10 years 

and costs nearly $2.6 billion from development to approval to the market, 

with a clinical success rate of less than 10% [1]. The long R&D cycle, 

high R&D cost and low success rate have become three huge barriers to 

the development of new drugs [2]. 

The application of AI technology in natural language processing 

and image recognition is attributed to its exceptional capacity for han-

dling vast quantities of data. In recent years, AI has also been applied at 

different stages of new drug development including target identification 

[4], prediction of absorption, distribution, metabolism, excretion and  

toxicity (ADMET) properties [5-9], virtual screening [10], De novo drug 

design [11], automated synthesis [12], and precision medicine [13]. 

There are several milestones for AI for drug discovery. For exam-

ple, AlphaFold2 accurately predicted protein structure [14], considered 

one of the most challenging tasks in computational biology. Segler et al. 

[15] utilized Monte Carlo tree search (MCTS) to combine three distinct 

neural networks trained on all available published reactions. This ap-

proach was employed to forecast the optimal retrosynthetic pathways 

for a given molecule. Zhavoronkov et al. [16] used a rein 

forcement learning model to design new DDR1 kinase inhibitors and 

test activity in wet lab. LinearDesign [17] is capable of effectively 

improving the stability of mRNA vaccine sequences and protein trans-

lation efficiency. It can complete sequence design for the COVID-19 

spike protein mRNA vaccine in just 10 minutes. 

These breakthroughs demonstrate the potential of AI in exploring 

chemical and biological data. Therefore, it is estimated that AI-assisted 

computational approaches can reduce the time required for traditional 

R&D approaches from 3 to 6 years to 1 to 2 years, spinning from target 

identification to the clinical candidate drug. This reduction leads to a 

significant gain in efficiency and cost savings. Currently, AI plus new 

Figure 1: More than half of R&D investment is spent on clinical trials. 
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drug research and development has emerged as a hotspot in contempo-

rary cutting-edge medical pharmaceutical research and entrepreneurship. 

However, current AI applications are severely inadequate in pre-

dicting clinical trial outcomes. There are more articles on AI applied to 

drug development than to clinical trials due to factors such as data avail-

ability and complexity. In fact, efficiency gains or cost reductions in the 

clinical trial phase have a much larger impact on investment in new drug 

R&D than in the drug discovery phase as illustrated by Fig. 1. There has 

been a surge in the interest surrounding AI in the prediction of clinical 

trial outcomes due to two main factors. Firstly, the widespread adoption 

of electronic health records (EHRs) and electronic data capturing sys-

tems (EDC) has resulted in an unprecedented volume of patient data be-

ing available. Second, AI has had numerous successful applications in 

fields such as chatbot, object detection and art design. 

Clinical practice heavily relies on EHRs as they provide a compre-

hensive and diverse range of information formats. These formats encom-

pass various types of data that are crucial for healthcare professionals to 

make informed decisions and provide optimal patient care. 

One important type of data found in EHRs is tabular data, which 

includes essential demographic information such as age, gender, and 

contact details. Additionally, it encompasses medical procedures per-

formed on patients, their medical history including past illnesses or sur-

geries, and any relevant diagnostic test results.  

Another significant component of EHRs is image data. This in-

cludes photographs capturing physical conditions or injuries, x-rays 

providing detailed images of bones and internal organs, computerized-

tomography scans offering cross-sectional views of the body's structures, 

magnetic resonance imaging (MRI) scans revealing detailed anatomical 

information about soft tissues like muscles or organs, as well as pathol-

ogy slides displaying microscopic tissue samples for analysis.  

Time-series data plays a crucial role in EHRs, encompassing inter-

mittent pulse-oximetry readings that measure oxygen saturation levels 

in the blood over time, blood chemistry results indicating various bio-

chemical parameters such as glucose levels or liver function tests, res-

piratory analysis findings assessing lung function through spirometry 

measurements, electrocardiograms (ECG/EKG) recording electrical ac-

tivity of the heart, ultrasounds providing real-time images during preg-

nancy or evaluating organ abnormalities, in-vitro test outcomes deter-

mining laboratory-based diagnostic results like viral load counts or hor-

mone levels, and wearable sensor measurements tracking vital signs 

such as heart rate variability or sleep patterns. 

 Structured sequence data within EHRs comprises genomics infor-

mation related to an individual's genetic makeup along with proteomics 

detailing protein expression profiles and metabolomics describing met-

abolic processes occurring within the body. These molecular-level in-

sights can aid in personalized medicine approaches by identifying po-

tential genetic predispositions to diseases or guiding targeted therapies 

based on specific protein markers. Lastly, unstructured sequence data 

adds another layer to the richness of EHRs by incorporating notes, doc-

umentation forms, completion reports written by healthcare providers 

during patient encounters. It also includes voice recordings capturing 

verbal discussions between clinicians and patients regarding symptoms 

or treatment plans as well as videos documenting surgical procedures 

for educational purposes. 

Given this, the present article provides a summary of recent appli-

cations of AI in predicting clinical trial outcomes and discusses the chal-

lenges and opportunities associated with them. 

2. Related Work 

Clinical text embedding refers to the process of learning represen-

tations (i.e., features or embeddings) of clinical trial data that capture its 

underlying structure and patterns. The goal of TRL is to get an accurate 

latent space of data from clinical trials that can be used for downstream 

tasks like clinical trial outcome prediction. 

Complex trial relations refer to the relations of different data type 

from clinical trials, such as electronic health record, imaging data, ge-

nomics data, and clinical assessments. By combining multiple data mo-

dalities, researchers can leverage complementary information and en-

hance the accuracy and generalizability of predictive models. 

Trial prediction methods is the way of using AI models to predict 

the out-comes of clinical trials, this is a critical step, as it can inform 

clinical decision-making and facilitate the selection of the most promis-

ing trial design for further investigation. 

Clinical text embedding and complex trial relations are key base-

ments of trial prediction methods, as they enable the construction of 

more informative and robust models that can capture the precise repre-

sentations and complex interactions between different clinical variables 

and predict outcomes more accurately.  

2.1 Clinical text embedding 

Clinical trials play a crucial role in advancing and assessing novel 

medical therapies and interventions. However, analyzing and interpret-

ing clinical trial data can be challenging due to the complexity and het-

erogeneity of the data. Electronic health records (EHRs) and eligibility 

criteria (EC) are two critical sources of information that offer important 

insights into patient data, such as demographics, medical history, diag-

noses, and treatments. EC outlines the inclusion and exclusion criteria 

for clinical trials, defining the eligible patient population for clinical tri-

als. 

Extracting meaningful information from EHRs and EC is essential 

for predicting clinical trial outcomes and improving patient care. How-

ever, the text-based nature of these data sources makes it challenging to 

analyze and extract useful information. Clinical text embedding, which 

involves transforming the raw data into a more structured and meaning-

ful format, can help to address this challenge. By learning to recognize 

patterns and relationships between words and phrases, representation 

learning algorithms can generate high-quality representations that cap-

ture the essential information in the data. 

Pre-training models, like BERT [18] have demonstrated great 

promise in the field of representation learning. BERT is a language 

model based on the transformer architecture and is pre-trained on a large 

Figure 2: The illustration of different biological units and EHR interact 

with each other. 
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corpus of text. Throughout the pre-training phase, BERT learns to rec-

ognize patterns and connections among words by engaging in self-su-

pervised tasks, such as masked language modeling and predicting the 

next sentence. The resulting contextualized word embeddings can be 

fine-tuned for downstream tasks such as sentiment analysis, question 

answering, and named entity recognition. 

In the biomedical domain, researchers have applied pre-training 

techniques, such as BERT, to various applications, including the analy-

sis of clinical trials. For example, BioBERT [19] is a domain-specific 

BERT model pre-trained on biomedical articles, achieving state-of-the-

art performance on NLP tasks related to biomedical questions. Other ap-

proaches, such as Doctor2Vec [20], DeepEnrol [21], and Compose [22], 

also utilize pre-trained models like BERT to embed clinical trial infor-

mation, yielding promising results in various tasks. MiME [23] utilizes 

the inherent hierarchical organization of EHRs data and the encoded as-

sociations among medical codes to address the challenge of large data 

volume. These approaches demonstrate the potential of pre-training 

techniques to advance the analysis and understanding of clinical trial 

data, potentially leading to improved patient outcomes and better-in-

formed clinical decision-making. 

2.2 Complex trial relations 

In addition to clinical text embedding, complex trial relations in-

volve intricate interactions and dependencies within trial data that can 

significantly impact the outcomes and interpretations of the trials. Trial 

data can be highly heterogeneous, encompassing structured data (e.g., 

lab results), unstructured data (e.g., clinical notes), and semi-structured 

data (e.g., questionnaires). 

Multimodal learning is a specialized field that focuses on develop-

ing and training models capable of utilizing various types of data and 

their relations. The goal is to enable these models to understand the re-

lationships between different modalities and effectively combine them 

to enhance prediction performance. One prominent example of a multi-

modal learning framework is CLIP. This framework has been trained on 

millions of image-text pairs and has demonstrated comparable zero-shot 

performance to fully supervised models [24]. Based on this idea, 

MedCLIP introduces a novel strategy that replaces the InfoNCE loss 

with a medical knowledge-based semantic matching loss. The objective 

of this adjustment is to tackle the issue of false negatives in contrastive 

learning [25]. 

From a biology perspective, various data modalities are critical for 

predicting the success of clinical trials as illustrated previously because 

every aspect of human function is achieved through a series of biological 

units. 

Moreover, most biological units execute their functions by inter-

acting with other biological units such as proteins, metabolites, small 

molecules, genes, and DNA. These elements react and cooperate with 

each other shown in Figure 2. The formidable nature of the potential 

intricate in diverse trial components, their intricate interconnections, and 

their impact on trial outcomes poses a daunting challenge.  

In previous research, multimodal learning has been applied to di-

agnose several diseases [27-45] and address public health [46-50]. It has 

been proven that multimodal learning can improve the performance of 

downstream tasks compared to the AI models using a single modality.  

Most researcher used a combination of two modalities. Yiwen et al. 

[50] created a Bidirectional Representation Learning model using EHR 

and text data to predict depression. Jordan et al. [51] used medical im-

aging and EHRs to classify skin lesions. Larry et al. [52] used EHR and 

time series (ECG) data to monitor patient, maintaining the temporal re-

lationship by assembling ECG data into tensors. Jae et al. [53] used im-

aging (MRI) and genomic data (polygenic risk scores) for ADHD diag-

nosis. Some researchers used three modalities. Janani et al. [54] used 

imaging, EHR and genomic data for early detection of Alzheimer's dis-

ease. Zeng et al. [55] used imaging, EHR and text data to analyze indi-

viduals infected with COVID-19. 

These methods process model-specific data using various machine-

learning techniques. Subsequently, a fusion module with early, interme-

diate, or late strategies [56] is used to combine these features for finial 

prediction. However, these approaches may fail to encode different mo-

dalities during training, limiting their ability to fully exploit multimodal 

information. 

To address this challenge, IRENE [57] utilizes bidirectional blocks 

that incorporate intramodal and intermodal attention, generating a com-

prehensive representation from both medical images and textual clinical 

information for the detection of pulmonary disease. It achieves superior 

performance compared to previous methods that employ data early or 

late fusion, with an average improvement of 9% and 10%, respectively. 

To expedite multimodal research, Aliper et al. [58] introduces the HAIM 

framework which facilitates the development and evaluation of AI sys-

tems utilizing multiple types of inputs. 

2.3 Trial prediction methods 

The process of developing and introducing a novel pharmaceutical 

product to the market entails a comprehensive and costly endeavor, with 

a low success rate. Accurately predicting clinical trial outcomes is there-

fore essential for economic considerations in drug development. Recent 

advances in artificial intelligence have enabled the use of real-world data 

(RWD) to predict trial outcomes with increased accuracy. Companies 

could even use the system to buy and sell pharmaceutical companies in 

financial markets [59]. This part summarizes the findings of several 

studies that have focused on clinical trial outcome prediction using arti-

ficial intelligence. 

In clinical trials, AI has already been applied to personal disease 

prediction. Rajpurkar et al. [60] utilized gradient boosted decision trees 

to predict the progression of depressive symptoms in patients receiving 

antidepressant therapy, incorporating pre-treatment symptom scores and 

electroencephalographic measurements. Hong et al. [61] utilized an en-

semble of classifiers to predict toxicity by considering drug properties 

and target property features. de Jong et al. [62] constructed a model that 

integrates genetics data to anticipate drug response in patients with neu-

rological disorders. Wang and Sun [63] developed a transformer-based 

approach [64] for modeling and predicting the survival rate of breast 

oncology patients. Additionally, they suggested a transferable trans-

former model that utilizes information from various oncology trials to 

improve mortality predictions for individual trials, showcasing its po-

tential adaptability across heterogeneous datasets [65]. 

However, while most previous works have focused on patient-level, 

trial-level prediction is more challenging due to the complex relation-

ships and features among the trial components. 

Gayvert et al. (2017) used the structures and properties of drugs 

and targets to predict drug toxicity based on a random-forest model [66]. 

Lo et al. (2019) explored seven commonly used classifiers and found 

that kNN gives the highest AUCs (0.81) in predicting drug approvals 

[67]. Seo et al. proposed an outer product-based convolutional neural 

network that employs the augmented outer product to combine chemical 

features of drugs and target-based features to predict the odds of clinical 
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trial outcomes. Vidhya et al. employed a combination of biological ac-

tivities, physicochemical properties, target-related features, and NLP-

based compound representation to accurately forecast trial outcomes. 

This was achieved through the integration of Graph Database and En-

semble Learning techniques [68]. Qi and Tang (2019) built a recurrent 

neural network model to predict phase III trial outcomes based on pa-

tient records from the previous phase II trial [71]. Siah et al. (2020) pre-

dicted drug approvals using a statistical machine learning approach that 

considers both drug characteristics and trial characteristics [67]. Abidi 

et al. (2020) developed a machine learning model that predicts clinical 

trial enrollment rates based on historical data and trial characteristics, 

allowing sponsors to optimize their recruitment strategies.  

There is a lack of benchmark data for trial-related tasks, with only 

a small portion of clinical trial records available for use. To encourage 

further research and compare different trial prediction method, it would 

be beneficial to create and release benchmark data. One notable excep-

tion is the TOP benchmark developed by Fu et al. [75], which focuses 

on predicting trial outcomes. This dataset comprises information about 

drugs, diseases, and eligibility criteria from a total of 17,538 clinical tri-

als. The success rates vary across phases. Phase I (1,787 trials) has a 

success rate of 56.3%, phase II (6,102 trials) has 49.8%, while phase III 

(4,576 trials) has the highest success rate at 67.8%. HINT [75] involved 

the integration of various sources of real-world data (RWD), such as 

drug compounds, disease ontology, and trial eligibility criteria. This in-

tegration was aimed at facilitating outcome predictions for trials across 

all phases. SPOT [77] employed a meta-learning technique to organize 

trials with the same subject into a chronological sequence, leveraging 

insights from related trials and their predictive advancements. Other 

methods which are not specifically designed for clinical trial outcome 

prediction also are compared including Logistic regression (LR) [67], 

Random Forest (RF) [67] , XGBoost [67], Adaptive boosting (AdaBoost) 

[69], k Nearest Neighbor (kNN) + RF [67] and deep learning models, 

such as Feedforward Neural Network (FFNN) [70], DeepEnroll [21], 

COMPOSE [22] . The latest results of the benchmark are shown in Table 

1. 

3. Challenges  

However, the development of accurate and reliable representations 

faces several challenges. These challenges include data heterogeneity, 

limited data availability, data quality, interpretability, bias and general-

izability, and scalability. 

3.1 Comprehensive factor 

 As discussed in Section 2.1 regarding clinical text embedding, 

there are some challenges in achieving accurate representation. Firstly, 

EHR is longitudinal and high-dimensional which poses challenges for 

AI models to learn statistical properties from complex data. Secondly, 

the medical field involves concepts of varying granularity, making it 

challenging to align medical concepts across different data modalities 

with heterogeneous levels of detail. For instance, a patient exhibiting 

pleuropericardial adhesion in their EHRs may be eligible for a clinical 

trial focused on broader cardiovascular conditions [22]. Thirdly, detailed 

information such as numerical values or units is often overlooked in ex-

isting work. Information like ages, values of lab results and medication 

dosage could significantly impact the results. Therefore, building accu-

rate feature requires not only professional data processing but also a 

well-designed network for information extraction. Fourthly, some eligi-

bility criteria may have temporal aspects, such as a patient's medical his-

tory over a certain time frame. Modeling these temporal dependencies 

requires specialized techniques. 

Apart from EHRs and EC, various other different biomedical com-

ponents, such as molecules or proteins, also present challenges at the 

intersection of biology and artificial intelligence. 

Table 1:  Trial outcome prediction results for three phase trials. 

Method Phase I Phase II Phase III 

PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC 

LR[67] 0.500 ± 

0.005 

0.604 ± 

0.005 

0.520 ± 

0.006 

0.565 ± 

0.005 

0.555 ± 

0.006 

0.587 ± 

0.009 

0.687 ± 

0.005 

0.698 ± 

0.005 

0.650 ± 

0.007 

RF[67] 0.518 ± 

0.005 

0.621 ± 

0.005 

0.525 ± 

0.006 

0.578 ± 

0.008 

0.563 ± 

0.009 

0.588 ± 

0.009 

0.692 ± 

0.004 

0.686 ± 

0.010 

0.663 ± 

0.007 

XGBoost[67] 0.513 ± 

0.06 

0.621 ± 

0.007 

0.518 ± 

0.006 

0.586 ± 

0.006 

0.570 ± 

0.009 

0.600 ± 

0.007 

0.697 ± 

0.007 

0.696 ± 

0.005 

0.667 ± 

0.005 

Ada-

Boost[69] 

0.519 ± 

0.005 

0.622 ± 

0.007 

0.526 ± 

0.006 

0.586 ± 

0.009 

0.583 ± 

0.008 

0.603 ± 

0.007 

0.701 ± 

0.005 

0.695 ± 

0.005 

0.670 ± 

0.004 

kNN+RF[67] 0.531 ± 

0.006 

0.625 ± 

0.007 

0.538 ± 

0.005 

0.594 ± 

0.008 

0.590 ± 

0.006 

0.597 ± 

0.008 

0.707 ± 

0.007 

0.698 ± 

0.008 

0.678 ± 

0.010 

FFNN[70] 0.547 ± 

0.010 

0.634 ± 

0.015 

0.550 ± 

0.010 

0.604 ± 

0.010 

0.599 ± 

0.012 

0.611 ± 

0.011 

0.747 ± 

0.011 

0.748 ± 

0.009 

0.681 ± 

0.008 

DeepEn-

roll[21] 

0.568 ± 

0.007 

0.648 ± 

0.011 

0.575 ± 

0.013 

0.600 ± 

0.010 

0.598 ± 

0.007 

0.625 ± 

0.008 

0.777 ± 

0.008 

0.786 ± 

0.007 

0.699 ± 

0.008 

COM-

POSE[22] 

0.564 ± 

0.007 

0.658 ± 

0.009 

0.571 ± 

0.011 

0.604 ± 

0.007 

0.597 ± 

0.006 

0.628 ± 

0.009 

0.782 ± 

0.008 

0.792 ± 

0.007 

0.700 ± 

0.007 

HINT[75] 0.567 ± 

0.010 

0.665 ± 

0.010 

0.576 ± 

0.008 

0.629 ± 

0.009 

0.620 ± 

0.008 

0.645 ± 

0.006 

0.811 ± 

0.007 

0.847 ± 

0.009 

0.723 ± 

0.006 

SPOT[77] 0.689 ± 

0.009 

0.714 ± 

0.011 

0.660 ± 

0.008 

0.685 ± 

0.010 

0.656 ± 

0.009 

0.630 ± 

0.007 

0.856 ± 

0.008 

0.857 ± 

0.008 

0.711 ± 

0.005 
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For molecules, constructing AI models to accurately represent 

them is a challenging endeavor due to the inherent complexity and vast 

combinatorial space of molecular structures. The challenge lies in cap-

turing the intricate spatial arrangements of atoms, the diverse chemical 

bonds, and the nuanced interactions between atoms and functional 

groups. Additionally, molecules can exist in multiple conformations, 

making it essential for AI models to encompass the flexibility and dy-

namics of these structures. MPNN [72] performs iterative message pass-

ing between nodes in a graph, allowing information to propagate 

through the graph's structure to predict molecular property, SphereNet 

[73] takes into account the 3D position information of the node, EGNN 

[74] maintains molecular invariance or equivariance under certain trans-

formations such as translation or rotation. In future work, quantum me-

chanical effects also need to be considered for accurate representation, 

but it can be computationally intensive and may require specialized tech-

niques. 

For proteins, intricate three-dimensional structures, dynamic con-

formational changes, and diverse functional roles are inherent to these 

biomolecules. Capturing the complex interplay of amino acid interac-

tions, hydrogen bonding, hydrophobicity, and electrostatic forces de-

mands a nuanced understanding of biophysical principles. 

3.2 Data availability 

Limited data availability poses a significant challenge to the pro-

gress of AI in healthcare, particularly in the context of small sample 

sizes and privacy concerns [76]. Additionally, clinical trial data can be 

noisy, incomplete, and error-prone, impacting the performance of the AI 

models.  

Artificial Intelligence Generated Content (AIGC) has achieved 

considerable success in image generation [78-79] and chatbots [80]. It 

is natural to apply related techniques, such as Generative Adversarial 

Networks (GANs) [81] and the Diffusion model [82], to synthesize trial 

data for AI training. Many GAN-based approaches have been applied to 

the EHR generation, including CONAN [83], CorGAN [84], EHR-M-

GAN [85], EMR-WGAN [86], HGAN [87], MedGan [88], MedWGAN 

[89], SynTEG [90]. However, these GAN-based methods have limita-

tions when generating sparse and high-dimensional data like EHR data. 

To address this issue, Theodorou et al. [91] proposes a Hierarchical Au-

toregressive Language Model for generating longitudinal high-dimen-

sional EHR, capturing the hierarchical distribution of EHR records and 

their temporal relationships without the need for variable selection or 

aggregation. Another consideration is that GANs are challenging to train 

and prone to mode collapse. EHRDiff [92] introduces diffusion models 

for realistic EHR synthesis, achieving better quality of synthetic EHR 

data for the first time.  

However, when using AIGC to generate clinical data, it is crucial 

to also prioritize the protection of private information in real training 

EHR data. Researchers need to establish a valid filter for this infor-

mation. 

3.3 Data Imbalance 

Clinical trial data can often exhibit a significant imbalance. Certain 

data modalities, such as imaging or genomic data, may not be available 

for a given clinical trial, posing a challenge in integrating diverse data 

types in a meaningful manner. This challenge may result in the develop-

ment of models that are biased towards specific modalities, affecting 

their accuracy and generalizability.  

To deal with issue of missing data, various imputation techniques 

can be utilized. Fu et al. [75] designed an imputation module to handle 

missing molecular data from disease and protocol. Lo et al. [67] experi-

mented with an AI model employing four distinct imputation techniques 

to handle missing data. 

As an increasing number of scientific research institutions dissem-

inate their data, the issue of data imbalance is expected to be partially 

alleviated. 

3.4 Model generalizability 

The generalization of AI models is critical for their clinical appli-

cation. In short, the generality of the model can be expressed in two ways: 

the first scenario is the performance of the prediction model on data with 

a similar distribution and the second scenario is predicting how the 

model behaves on data from different distributions. These differences 

may include information related to time, treatment regimens, geography, 

and so on. However, the reality is that most AI models perform well on 

training data but struggle to maintain consistent performance during in-

ternal and external independent validation, indicating poor generaliza-

tion. The majority of clinical trials focus on common diseases with lim-

ited attention given to rare diseases. This imbalance presents significant 

challenges when applying AI models to rare disease clinical trials. One 

of the main obstacles faced by AI models in generalizing to rare diseases 

is the issue of data distribution shifts. Since most clinical trial datasets 

primarily consist of data from common diseases, there is a lack of di-

verse and representative data for rare conditions. As a result, AI models 

trained on such imbalanced datasets struggle to accurately predict out-

comes or make informed decisions when applied to new unseen trials 

involving rare diseases. Furthermore, small sample sizes pose another 

hurdle for achieving decent out-of-distribution (OOD) performance us-

ing AI models in this context. Rare diseases often affect only a small 

number of individuals within the population, making it challenging to 

gather sufficient data for robust model training and evaluation. The scar-

city of labeled samples limits the ability of AI algorithms to effectively 

learn patterns specific to these conditions. Addressing limitations and 

improving OOD performance for new, unseen trials involving rare dis-

eases is challenging. Typically, transfer learning was devised to tackle 

this problem by initially pretraining certain representations on extensive 

unannotated datasets and subsequently adjusting them for guiding other 

tasks [93]. 

In healthcare applications, recent models for domain generalization 

(DG) are typically designed in collaborative settings across different in-

stitutions to eliminate the distinct covariates of each individual hospital. 

[94-97]. Relevant techniques have been employed to construct domain 

generalization methods with a wider scope, including style-based data 

augmentations [98-100], episodic meta-learning strategies [101-103] 

and domain-invariant feature learning [104] using heuristic metrics 

[105-106] or adversarial learning [107]. Most of these methods [108-

109] limit the scope to CNN-based models [110] and batch normaliza-

tion architecture [111] for image classification tasks. 

Despite these improvements, achieving decent performance for 

new, unseen trials using AI models remains a challenge. Designing large 

models, such as ChatGPT, represents a promising direction for improv-

ing the generalizability of AI models in clinical trials. 

3.5 Model interpretability 
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One key challenge is interpretability. The relationship between AI 

model-based prediction results and the occurrence, development, and 

associated features of diseases is unclear, relying solely on machine 

learning methods to analyze the data. This approach is insufficient to 

explain the relationship among the different components of clinical trials.  

A common method involves mechanisms incorporated within deep 

learning models to explore whether the attention region of the model has 

clinical diagnostic decision-making significance [112-114]. Ma et al. 

[115] employed attention mechanisms and RNNs to achieve interpreta-

ble predictions of medical codes. Kang et al. [117] applied an attention 

mechanism to multi-omics data [118] to interpret gene expression pre-

dictions.  

Other post-hoc interpretability techniques such as saliency maps 

rely on qualitative visual interpretations commonly used in computer vi-

sion applications. Chen et al. [119] achieved modality-specific interpret-

ability through Grad-CAM [120] for whole slide image. 

 However, saliency maps may not fully meet the requirements of 

biological interpretability, and the associated error is significant. In ad-

dition, some relationships of biological potential may be found in med-

ical imaging AI studies. For instance, certain imaging features with high 

predictive power might be linked to the high expression of specific genes 

or proteins. Exploring the connection between these genes or proteins 

and clinical endpoint events can further enhance the biological interpret-

ability of AI models. 

4. Conclusion 

In this review, papers under three main topics related to clinical 

trial outcome prediction, clinical text embedding, complex trial relations, 

and trial prediction methods are systematically reviewed. These studies 

demonstrate that AI has the potential to extract features from multimodal 

biomedical data and make valid predictions. However, there is still much 

room for improvement, especially in terms of representing biomedical 

data more comprehensively, processing missing or imbalanced data, and 

enhancing the generalizability of AI models. 

As AI techniques continue to improve and more data becomes 

available, it will be important for researchers, clinicians, and regulators 

to collaborate in addressing these challenges. This collaboration is es-

sential for harnessing the full potential of AI in clinical trial outcome 

prediction, enabling us to better manage complex diseases and provide 

personalized medical treatment to patients. 
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