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Abstract 15 

  The extensive use of human-made chemicals in our daily lives results in chronic exposure to 16 

complex mixtures of potentially harmful substances. We investigated chemical exposures in 17 

pregnant women in New York City by applying a non-targeted analysis (NTA) workflow to 95 18 

paired prenatal urine and serum samples (35 pairs of preterm birth) collected as part of the New 19 

York University Children’s Health and Environment Study. The goal was to i) study chemical 20 

exposures in this population, ii) explore differences in the chemical profiles comparing urine 21 

vs. serum samples, and comparing preterm vs. term birth samples, and iii) investigate potential 22 

associations between exogenous chemicals and endogenous metabolites. We analyzed all 23 

samples using liquid chromatography coupled with Orbitrap high-resolution mass spectrometry 24 

(LC-Orbitrap HRMS) in both positive and negative electrospray ionization modes (ESI+ and 25 

ESI-), employing full scan and data-dependent MS/MS fragmentation (ddMS2) scans. We 26 

detected a total of 1,524 chemical features for annotation, with 12 chemicals confirmed by 27 

authentic standards. Two confirmed chemicals dodecyltrimethylammonium and n,n-28 

dimethyldecylamine n-oxide appear to not have been previously reported in human blood 29 

samples. We observed a statistically significant differential enrichment between urine and 30 

serum samples, as well as between preterm and term birth (p < 0.0001) in serum samples. When 31 

comparing between preterm and term births, an exogenous contaminant, 1,4-32 

cyclohexanedicarboxylic acid (tentative), showed a statistical significance difference (p = 0.003) 33 

with more abundance in preterm birth in serum. An example of chemical associations (12 34 

associations in total) observed was between surfactants (tertiary amines) and endogenous 35 

metabolites (e.g., bioactive lipid mediators and fatty acid amides). 36 
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Synopsis 39 

Non-targeted analysis of urine and serum samples from pregnant women reveals a potential 40 

link between environmental contaminants and preterm birth.  41 
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1. Introduction 42 

  Human beings are already exposed to hundreds of thousands of synthetic chemicals through 43 

exposure to consumer products, packaged and processed food, contaminated drinking water, 44 

and polluted air, and the number is only increasing.1 Many of these chemicals may be adsorbed 45 

by the human body and potentially pose a threat to human health. In addition new compounds, 46 

also known as transformation products, might form through biotic and abiotic processes when 47 

these chemicals are exposed to different environments.2, 3 Approximately 350,000 registered 48 

chemical substances have been used for commercial production and use over the past 40 years 49 

across 19 countries and regions.4 Moreover, the United States Environmental Protection 50 

Agency (US EPA) has listed over 1,218,248 chemicals of environmental importance on EPA’s 51 

CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/). Recent estimates 52 

suggest that only 10% of chronic human diseases can be attributed to genetics, leaving 90% 53 

potentially related at least in part to environmental factors.5 54 

  Pregnant women are routinely exposed to human-made chemicals from the ambient 55 

environment that may result in adverse outcomes for both the mother and fetus. Previous studies 56 

have highlighted that maternal exposure to environmental contaminants can increase the risk 57 

of obesity,6 asthma,7 and various conditions in offspring, including pre-term birth.8 The timing 58 

of exposure is also an important factor as the effects of an exposure likely depend on the 59 

developmental processes that it coincides with. Epidemiological evidence indicates that 60 

exposure to environmental contaminants at any time between preconception and birth can 61 

restrict fetal growth, resulting in a fetus not reaching its full growth potential (lower birth weight 62 

than expected).9 The fetal brain is particularly susceptible to prenatal exposure to endocrine-63 
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disrupting chemicals, as neurulation and neuronal proliferation begin within the first trimester, 64 

while other processes such as neural migration, myelination, synaptogenesis, and apoptosis start 65 

mid-gestation and continue rapidly until birth.10, 11 Investigating chemical exposure during the 66 

critical windows can provide insight on underlying biological mechanisms. 67 

  Traditional monitoring of contaminants in human samples relies on prior hypotheses, the 68 

availability of analytical standards, and the existence of a validated chromatographic method. 69 

Approximately 450 environmental chemicals are regularly measured in human samples (e.g., 70 

whole blood, serum, and urine) by the US National Health and Nutrition Examination Survey 71 

(NHANES).12 This only accounts for approximately 0.5% and 0.04% of chemicals listed under 72 

a US federal law of Toxic Substances Control Act (TSCA) and EPA’s CompTox Chemicals 73 

Dashboard, respectively. Such conventional approaches cannot capture the totality of chemical 74 

exposures and consequently important associations with various health outcomes may be 75 

missed. Recent advancements in high-resolution mass spectrometry (HRMS) have improved 76 

our ability to analyze thousands of different chemicals in a single run due to its high resolving 77 

power (> 30,000 FWHM), mass accuracy (1-5 ppm), and high scan speed.13 Combined with a 78 

pre-separation technique such as gas or liquid chromatography (GC/LC), HRMS shows great 79 

promise in detecting unknown chemicals across various domains.14 In recent years, non-80 

targeted analysis (NTA) using HRMS has successfully been used to screen human samples, 81 

resulting in the discovery of numerous exogenous compounds (e.g., pesticide metabolites, 82 

endocrine‑disrupting compounds, and poly- and perfluoroalkyl substances).15-17 Numerous 83 

studies for unknown compounds have focused on the possible compounds that were postulated 84 

with suspect lists.18 There is currently a great need for the application of NTA to characterize 85 
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different pathways of exposures in public health studies.   86 

  Based on previous NTA methods,17, 19, 20 we developed a workflow to comprehensively 87 

profile all detectable chemical exposures and metabolites in biospecimens from a racially and 88 

socioeconomically diverse sample of pregnant women from New York City. The aims of this 89 

study were threefold: (1) to analyze 95 paired serum and urine samples from pregnant women 90 

using NTA and study their chemical exposures, (2) characterize differences in chemical 91 

enrichment between urine and serum, within each biospecimen type, between preterm and term 92 

births, and (3) explore the associations of endogenous metabolites with exogenous chemicals. 93 

2. Materials and methods 94 

2.1 Study participants information 95 

  For this study we used paired urine and serum samples collected between 2020 and 2022 96 

during the same prenatal study visit from 95 participants in the New York University Children’s 97 

Health and Environment Study (NYU CHES). NYU CHES is an ongoing pregnancy and birth 98 

cohort study that has been recruiting pregnant patients  18 years of age and < 18 weeks of 99 

gestation from NYU Langone Health-affiliated hospitals since March, 2016. The samples were 100 

mostly collected in the first trimester with 2 and 5 pairs for the second and third trimesters, 101 

respectively. Participant characteristics are presented in Table 1. All samples, including 10 102 

blinded quality control (QC) samples consisting of synthetic urine and serum, were stored in 103 

bisphenol- and phthalate-free polypropylene tubes at -80°C.  104 

  105 
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Table 1. Characteristics of NYU CHES participants included in this analysis (N=95). 106 

Demographic parameters Value 

Participant's race/ethnicity n(%) 

Hispanic 31.1 

Non-Hispanic White 43.4 

Non-Hispanic Black 2.8 

Asian 18.9 

Other 1.9 

Mixed race 1.9 

Pre-pregnancy body mass index (BMI, kg/m2) 

Underweight (BMI < 18.5), % 3.8 

Normal weight (BMI = 18.5 – 25), % 58.1 

Overweight (BMI = 25 – 30), % 25.7 

Obesity (BMI > 30), % 12.4 

Maternal Education* (%) 

High school or less 26.0 

Some college but no degree 6.0 

Associate degree 4.0 

Bachelor's degree 28.0 

Post-graduate degree 36.0 

Missing  6.0 

Income* (%) 

< $30,000 12.2 

$30,000 – $49,999 8.2 

$50,000 - $74,999 10.2 

$75,000 - $99,999 2.0 

≥$100,000 49.0 

Missing value 24.5 

Number of preterm births 35 

Maternal age at enrollment (years), mean (std) 31.6 (5.1) 

Pre-pregnancy weight (kg), mean (std) 64.5 (16.3) 

Maternal height (cm) 161.2 (7.4) 

Gestational Age (weeks), mean (std) 38.3 (2.3) 

Smoking* (%) 1.9 

Alcohol use during pregnancy* (%) 11.9 

Missing value (%) 2.8 

* When a parameter has missing data, it means that the participant chose the option “Prefer not 107 

to answer” / “Don’t Know” from the questionnaires. The values in the parentheses correspond 108 

to the unit in the column of demographic parameters. Std indicates the standard deviations.  109 
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2.2 Workflow 110 

  The NTA workflow contained three major steps: (1) sample treatment and chemical analysis, 111 

(2) data cleansing and processing, and (3) data analysis (Figure 1). In this work, the individual 112 

samples and pooled samples were aimed to obtain MS1 and MS1/MS2 spectra, respectively. The 113 

MS2 spectra from pooled samples were matched to MS1 spectra from the individual samples for 114 

database match. We used MS1 data to examine the differences in chemical enrichment between 115 

different groups of samples, MS2 spectra to match available databases composed of authentic 116 

standards and in silico predicted spectra, and to match to authentic standards in our laboratory. 117 

The chemical abundances in the diluted urine samples were adjusted using the creatinine 118 

normalization approach (Details in Text S1, Supporting Information). Chemical 119 

identifications and annotations were ranked based on the system proposed by Schymanski, et 120 

al. 21 The various confidence levels are as follows: Level 1, structure confirmed by a chemical 121 

standard with MS/MS and retention time (RT) matching; Level 2, probable structure deduced 122 

by spectrum database matching or other diagnostic evidence (e.g., parent ion information and 123 

MS/MS); Level 3, tentative candidate(s) supported by partial evidence for possible structure(s), 124 

but insufficient evidence for the exact structure(s); Level 4, an unequivocal molecular formula 125 

can be assigned through the spectral information but no enough information to propose possible 126 

structures; Level 5, only exact mass (m/z) with insufficient information to assign a formula.  127 

  Considering the complexity and heterogenous components in the present samples, different 128 

methods and tools were applied to explore and analyze the MS data (Figure 1). Following this 129 

workflow, we first used MS-DIAL to export the MS data for statistical analysis and MS/MS 130 

database matching. Python was used as the programing language for data analysis. All python 131 
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scripts are available on GitHub at the following link: 132 

https://github.com/jixiaowen4321/Jixiaowen. We also applied Thermo FreeStyle 1.8 for ion 133 

peak identification and Compound Discoverer 3.2 for matching with the Thermo mzCloud 134 

database. The details of each step in this workflow are described in the sections below. 135 
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Figure 1. Workflow diagram of sample treatment and chemical analysis, data cleansing and 136 

processing, and data analysis for the urine and serum samples collected from 95 pregnant 137 

participants in NYU CHES. 138 
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2.3 Sample preparation and analysis 139 

  All samples were completely thawed at room temperature (~21°C) and homogenized using 140 

a vortex mixer before extraction. For individual samples, 100 µL of sample was pipetted into a 141 

microcentrifuge tube. For pooled samples, 15 pools each of serum and urine were constructed 142 

from 10 individual 20 µL samples (200 µL total) randomly selected based on sample IDs using 143 

Python’s random.choices() method. For extraction, 400 µL methanol was added to the tube, 144 

which was then shaken using a vortex mixer and centrifuged at 5000 rpm for 10 min. The upper 145 

clear layer of methanol was immediately filtered into an auto-sampler vial with an insert using 146 

a nylon membrane (pore size: 0.2 µm, Phenomenex, Torrance, CA). Triplicates of HPLC water 147 

were used as laboratory blanks and followed the same sample preparation procedure. 148 

  Analysis of the extracts was conducted using a Vanquish UHPLC and Orbitrap Exploris 240 149 

MS (Thermo-Scientific, Waltham, MA). LC separation was achieved with an Ascentis® 3 µm 150 

C18 HPLC column (150 × 2.1 mm) (Sigma-Aldrich Supelco, St. Louis, MO) by gradient elution 151 

with 5% methanol + 95% HPLC water (A) and 100% methanol (B), both containing 0.1% 152 

formic acid at a flow rate of 0.2 mL min-1 and column temperature of 45 °C. The gradient 153 

method started at 5%B, ramping linearly to 100%B over 15 min, held for 5 min, and returning 154 

to starting conditions for column re-equilibration between 20.1 – 25 min. 155 

  The compounds in the samples were ionized using a heated electrospray ionization (HESI) 156 

probe in both positive (ESI+) and negative (ESI-) modes. The Orbitrap MS method used the 157 

following global parameters: sheath gas flow = 35; aux gas flow = 10; sweep gas flow = 1; 158 

vaporizer temperature = 400 °C; spray voltage = 3300/2000 (positive/negative); S-lens RF = 159 

70%; ion transfer tube temperature = 352 °C. A full MS/data-dependent MS2 spectra acquisition 160 
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(ddMS2) method was used with the following scan settings: 90,000/12,000 resolution, 161 

normalized AGC target = standard, max injection time = auto, normalized HCD collision 162 

energy (%) = 30, 50, 70, full MS scan range of 100-1000 m/z and ddMS2 isolation window of 163 

0.7 m/z and scan number of 10. To confirm the selected chemicals with annotations from Levels 164 

2 and 3, a full MS/product ion scan was conducted for authentic standards and samples. 165 

2.4 Chemical annotations and source attributions 166 

  It is critical to discern whether the detected compounds are exogenous or endogenous, 167 

especially those expected in urine and serum samples. Many compounds enter the human body 168 

through food ingestion (e.g., nutrients and natural products) and drugs (including intermediate 169 

chemicals during pharmaceutical production) and their derivatives. The metabolic processes in 170 

the human body create a plethora of transformation products from the parent compounds. 171 

  A challenge that we encountered when trying to attribute sources to the detected compounds 172 

was that compounds often have multiple uses and can be both endogenous and exogenous.22 173 

Another challenge when dealing with chemical databases related to the human exposome is 174 

that, in many cases, only the monoisotopic mass of the chemical is available for matching, and 175 

the MS2 spectra are missing. To confirm the chemicals in our samples, all data were first 176 

matched by the databases containing MS1 and MS2 from authentic standards, i.e., MS-DIAL 177 

metabolomics, MassBank of North America, Massbank Europe, and mzCloud. Afterwards, the 178 

sources of compounds were attributed by searching the ChemSpider database 179 

(http://www.chemspider.com/), Blood Exposome Database (https://bloodexposome.org/), 180 

Human Metabolome Database (https://hmdb.ca/), EPA CompTox Chemicals Dashboard 181 

(https://comptox.epa.gov/dashboard/).  182 
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  We compiled information from multiple sources to reflect whether the compounds are 183 

intentionally ingested and whether they are industrial or natural products. The integrated data 184 

of identified compounds (Levels 1 and 2) are listed in Supporting Information Spreadsheet 185 

S1, where we present five categories of sources and uses: 186 

(1) Endogenous Metabolites: Substances naturally produced from human issues during the 187 

metabolism process. 188 

(2) Natural Products: substances derived from food or nutrients.  189 

(3) Drugs: Substances intentionally ingested by people for different treatments, such as 190 

therapeutics/prescription drugs. 191 

(4) Personal Care Products (PCPs): Substances used in cosmetics or other personal care 192 

products. 193 

(5) Exogenous Contaminants: Substances present in human working/living environments, 194 

such as additives in house furnishings. 195 

  If there was no source indicated, the source of the compound was marked as “unknown”. 196 

While it is generally expected that one compound will be attributed to one category, it is often 197 

the case that one compound can have multiple sources. For example, d-camphor (CAS: 464-198 

48-2) was attributed to several sources because it is a constituent of various foods, medicines 199 

(such as treatment of colds and topical analgesics), and various cosmetics in the US. Some 200 

derivatives were annotated based on their parent compounds. 201 

2.5 Data processing  202 

2.5.1 Imputation and batch effects 203 

  All data processing was done using Python (version 3.11.5) as the programming language 204 

https://doi.org/10.26434/chemrxiv-2024-zh59c ORCID: https://orcid.org/0000-0002-0507-7520 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-zh59c
https://orcid.org/0000-0002-0507-7520
https://creativecommons.org/licenses/by-nc/4.0/


15 
 

and the following packages for data handling, data analysis and visualizations: pandas, numpy, 205 

matplotlib, seaborn, and scipy. The scripts were written using the JupyterLab and Spyder 206 

interfaces. Before data analysis, the dataset was processed for imputation (substituting missing 207 

data) and batch correction. We first calculated the frequency of each chemical feature among 208 

the samples and selected a frequency of 70% as the cutoff for imputation. The method detection 209 

limits (MDLs) were set as the minimum peak area (≥ 10,000). To fill in the data points below 210 

the MDLs, we used a previously developed imputation method.17 Briefly, the peak areas were 211 

first log-transformed and then the missing values imputed from the left tail of the distribution 212 

that was fit to the data. The imputation algorithm inputs random values between the absolute 213 

minimum value (0) and the measured minimum value that originated from the cut-off points 214 

generated during processing of chromatographic peaks with MS-DIAL. 215 

  In total, 190 samples (95 serum and 95 urine) were analyzed in four batches (~47 samples 216 

each batch) for instrumental analysis. For each batch, randomly positioned samples consisted 217 

of both urine and serum samples. To avoid systematic differences between batches, urine 218 

samples were run with their corresponding serum samples. The remaining batch effects were 219 

corrected using a batch correction package called “ComBat” 220 

(https://github.com/brentp/combat.py). The details of the batch correction method have been 221 

described in the study of Johnson et al.23 This package employs parametric and non-parametric 222 

Bayes methods for adjusting data for batch effects.  223 

2.5.2 Data analysis 224 

2.5.2.1 Unsupervised clustering 225 

  We conducted a principal component analysis (PCA) to examine the differences before and 226 
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after “Combat” batch correction among four batches. We also conducted a correlation analysis 227 

for the correlation of the PCs 1-3 with sample type and batch.  228 

  The differences for groups of similar data points of chemical composition between urine and 229 

serum samples, and between preterm birth and term birth samples were evaluated by employing 230 

hierarchically-clustered heatmap using the Seaborn Python package24. The differential 231 

enrichment of chemical features was quantified by comparing the relative abundance of 232 

chemical features between urine/preterm birth and the corresponding serum/term birth samples. 233 

2.5.2.2 Relationships of chemical features in different sample types 234 

  The relative abundance and detected percentage were used to explore the relationships of 235 

chemical features between urine and serum samples. The abundance was first log-transformed 236 

and then averaged across all 95 samples for each chemical feature. The average values were 237 

used for the linear regression model to examine the correlation between urine and serum 238 

samples.  239 

  We used a volcano plot of average areas of chemical features to assess statistical significance 240 

(p < 0.05) through a t-test and the magnitude of change (fold change > 1.2) between preterm 241 

birth and term birth samples (in serum and urine, respectively), as well as between serum and 242 

urine samples. This approach helps identify chemicals that differ significantly between preterm 243 

and term birth samples and between serum and urine samples. 244 

2.5.2.3 Molecular network analysis for different annotated chemicals 245 

  After annotating chemical features as described in Section 2.4, Pearson correlations between 246 

chemicals annotated as endogenous metabolites and all other annotated chemicals were used 247 

for molecular network analysis. In this study, the network indicates the association between 248 

chemical features. The purpose of the network is to visualize the inter-and intra-molecular 249 
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associations between endogenous metabolites and other chemical features, including 250 

exogenous contaminants. After calculating p values and t-scores between endogenous 251 

metabolites and other chemicals (Schymanski Levels 1-3), the p values were adjusted using the 252 

Benjamini–Hochberg false discovery rate of 5% method for multiple comparisons. For the 253 

visualization d3.js (https://d3-graph-gallery.com/graph/network_basic.html) was used to show 254 

the networks for relationships between endogenous metabolites and other chemicals. Because 255 

of the large number of associations in the complex network, we only focused on the Level 1 256 

and 2 compounds with an absolute correlation coefficient (R) > 0.5 and revisualized the 257 

networks based on these chemicals.  258 

2.5.2.4 Statistical analyses 259 

  For conducting correlations, we used Pearson's R, and for statistical differences between two 260 

groups (e.g., preterm and term birth), we used a t-test. The p-values were adjusted using the 261 

Benjamini–Hochberg test with a null hypothesis of 5% false positives. Statistical significance 262 

for two data groups derived from the same dataset (e.g., differential analysis of PC1 for preterm 263 

and term in urine and serum samples) was determined using the Wilcoxon Mann-Whitney Rank 264 

Sum test combined with Bonferroni correction. 265 

2.6 Quality Assurance/Quality Control (QA/QC) 266 

  Batch analyses of samples were conducted by running three blanks, i.e., solvent blank, 267 

laboratory blank, and field blank. Two solvent blanks were run for each five samples. The QC 268 

samples were run at each batch to monitor the stability of the instrument, including RT shifts, 269 

mass accuracy, and peak intensity (Spreadsheet S2). EPA Phthalate Esters Mix (Sigma-Aldrich, 270 

St. Louis, MO) was used for QC with a five-point calibration curve ranging from 50 – 1000 ng 271 
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mL-1. After running each batch, a Python package was run to filter the targeted m/z from 272 

monoisotopic masses (mass tolerance: 5 ppm) and to check the aligned other values, e.g., m/z, 273 

RT, and R values (> 0.5 for all expected compounds) obtained from the linearity (Spreadsheet 274 

S2). All QC compounds were used for ESI+ while only dibutyl phthalate was used for ESI- due 275 

to other compounds being poorly charged in negative polarity. In addition to commercial 276 

standard mixes for QC, we also made a mixture solution consisting of 17 analytical standards, 277 

following the same running and checking procedure as the EPA mixture (Results are shown in 278 

Spreadsheet S2). The field and laboratory blanks used HPLC water to do the same extraction 279 

for the same containers used during the collection procedure. The data collected from all blank 280 

samples were used to remove the chemical features of which the abundances were 3 times lower 281 

in real samples than those in the blank samples.   282 

3. Results  283 

3.1 Filtering and confirmation of chemical features  284 

  After the alignment of 4 batches, the total amount of chemical features in both urine and 285 

serum samples (n total = 190 samples) without clean-up processing from the full scan was 286 

112,737 for ESI+ and 82,335 for ESI- (Figure S1, Supporting Information). After eliminating 287 

the features that were adducts that were linked to other ion(s) and frequency below 70%, the 288 

processed dataset was decreased to 21,952 features for ESI+ and 10,006 features for ESI-. By 289 

merging the ESI+ and ESI- datasets (± monoisotopic H: 1.00782), the pair of 2219 features in 290 

both ESI+ and ESI- was observed based on the RT time difference < 0.5 min and mass difference 291 

≤ 5 ppm.  292 

  These features were then matched to the dataset from the pooled samples run by full 293 
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scan/ddMS2 (ESI+: 408,610; ESI-: 270,533), then further reduced by filtering the ions with 294 

product ions, resulting in 1,524 features (Levels ≥ 3). The features identified from pooled 295 

samples using ddMS2 scans matched those found in individual samples using full scans.  296 

3.2 Batch correction 297 

  In the dataset without batch correction for serum samples, no clusters of PC1 and PC2 298 

loadings were observed for preterm and term birth sample types (Figure 2a-1). After batch 299 

correction, two distinct clusters corresponding to preterm and term birth samples were observed 300 

in serum (Figure 2a-2). Post-correction, a negative correlation (R = -0.752) between PC1 and 301 

preterm-term birth sample types was observed (Figure S2a). Additionally, significant 302 

differences were found between PC1 and preterm-term birth sample types (p < 0.01), as well 303 

as between PC2 loadings and preterm-term birth samples (p < 0.01) (Figure S2b). No batch 304 

effect was observed after correction (Figure 2a-4), compared to the four distinct clusters of 305 

PC1 and PC2 loadings before correction (Figure 2a-3). 306 

  In urine samples, clusters of PC1 and PC2 loadings for preterm and term birth were not 307 

separated before batch correction (Figure 2b-1), and were only partially separated after batch 308 

correction (Figure 2b-2). Post-correction, no correlation was observed between PC loadings 309 

and sample type or batch (Figure S2a). However, a significant difference was observed 310 

between PC1 loadings and preterm-term birth sample types (p < 0.01) (Figure S2b). The batch 311 

effect in the four batches of urine samples was not pronounced before correction (Figure 2b-3) 312 

and was absent after correction (Figure 2b-4). 313 

  In the combined serum and urine dataset before batch correction, PC1 and PC2 loadings were 314 

able to separate serum and urine samples, though some data points were not well separated 315 
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(Figure 2c-1 & 2). After batch correction, a positive correlation (R = 0.521) was observed 316 

between PC1 loadings and sample type (serum and urine) (Figure S2e). Significant differences 317 

were observed between PC1 loadings and sample type or batches (p < 0.01), as well as between 318 

PC3 loadings and sample type or batches (p < 0.01) (Figure S2f). Similar to urine samples, the 319 

batch effect was not strong in the combined dataset before correction (Figure 2c-3) and was 320 

eliminated after correction (Figure 2c-4).321 
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Figure 2. Data analysis before and after “Combat” batch correction for the four individual 323 

batches in serum (a), urine (b), and combined urine & serum samples (c). The example results 324 

demonstrate the following: For preterm and term birth samples in serum or urine (a/b): (1) 325 

color-labeled principal components analysis (PCA) loadings by preterm and term birth, and (2) 326 

color-labeled PCA loadings by batch. For combined serum and urine samples (c): (1) color-327 

labeled PCA loadings by sample type (serum and urine), and (2) color-labeled PCA loadings 328 

by batch.329 
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3.3 Chemical Annotation 330 

  The processed chemical features merged from ESI+ and ESI- modes were used for database 331 

matching. Out of 1,524 chemical features with MS2 information, we were able to annotate 344 332 

features, with a match score of over 90% using MS-DIAL and Compound Discoverer, and 18 333 

features were found to be common in both ESI+ and ESI- (Spreadsheet S1). The classification 334 

of the 327 chemicals was as follows: endogenous metabolites (203), exogenous contaminants 335 

(96), drugs (101), natural products (38), and PCPs (45). Additionally, many compounds were 336 

annotated in multiple categories: 37 in more than two categories, 29 in more than three, 16 in 337 

more than four, and 2 in more than five (Figure S3).  338 

  From the analytical standards in our laboratory, twelve chemicals were confirmed by 339 

comparing RT, and precursor ion/product ions (difference < 5 ppm) (example shown in Figure 340 

S4). The matches were confirmed for chemicals with an RT difference < 0.05 and a mass 341 

difference < 5 ppm. These included two organophosphorus compounds (triisobutyl phosphate 342 

and tributyl phosphate), three amines (triisopropanolamine, tributylamine, and diphenylamine), 343 

three phenol derivatives (4-nitrophenol, 3-aminophenol, and 2-aminophenol), 344 

dodecyltrimethylammonium, n,n-dimethyldecylamine n-oxide, propiconazole, and 2,2,6,6-345 

tetramethyl-4-piperidinol (Spreadsheet S3). The enrichment of chemicals (Levels 1-3) differed 346 

between serum and urine samples (Figure S5), with most chemicals being more prevalent in 347 

serum and categorized as Level 3 (unknown, no database match observed). The annotated 348 

chemicals (Levels 1-2) identified as exogenous contaminants, which were detected more 349 

frequently in preterm birth samples (serum and urine, respectively), are shown in Figure 3a-b. 350 

The detection frequency of all annotated exogenous contaminants is shown in Figure S6. We 351 

https://doi.org/10.26434/chemrxiv-2024-zh59c ORCID: https://orcid.org/0000-0002-0507-7520 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-zh59c
https://orcid.org/0000-0002-0507-7520
https://creativecommons.org/licenses/by-nc/4.0/


24 

 

found that four confirmed chemicals (2-phenylindole, n,n-dimethyldecylamine, propiconazole, 352 

and triisopropanolamine) were detected more frequently in preterm birth samples, in both serum 353 

and urine (Figure 3a & b)354 
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355 

Figure 3. The detection frequency (%) of annotated chemicals (Levels 1 and 2) classified as 356 

exogenous contaminants in preterm and term birth samples: chemicals with higher detection 357 

frequency in preterm birth for both serum: (a) and urine (b); chemicals with higher detection 358 

frequency in only serum (c); and chemicals with higher detection frequency in only urine (d). 359 

The chemical names in red represent the confirmed chemicals (Level 1) by the authentic 360 

standards.361 
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3.4 Data analysis 362 

3.4.1 Difference between preterm and term birth 363 

  In serum, clusters of different chemicals’ enrichment were observed between preterm and 364 

term birth samples (Figure 4a). The statistical differences in PC1 loadings between preterm 365 

and term birth samples were significant after batch correction (p < 0.0001) (Figure 4a). Among 366 

the 1,547 significantly different LC-MS features between preterm and term birth samples (p < 367 

0.05), 3 out of 17 chemicals from the downregulated area (log2fold < -1.2) and 8 out of 72 368 

chemicals from the upregulated area (log2fold > 1.2) could be tentatively annotated 369 

(Spreadsheet S4). For example, the annotated chemicals in the downregulated area have 370 

polyethylene glycol (PEG) n6 (m/z: 283.1755 [M+H+]) and centrimonium (m/z: 284.3313 371 

[M+H+]) (Figure 5a). Those in the upregulated area have n-acetylhistidine (m/z: 198.0848 372 

[M+H+]), and deoxycholic acid (m/z: 391.2858 [M+H-]) (Figure 5a). The annotated chemicals 373 

in the upregulated area include an exogenous contaminant (1,4-cyclohexanedicarboxylic acid, 374 

m/z: 173.0783 [M+H+]) and other seven compounds identified as natural products, drugs, and 375 

endogenous metabolites, while those in the downregulated area were identified as exogenous 376 

contaminants, drugs and personal care products (Figure S7a). 377 

  In urine, we did not observe distinct chemical enrichment between preterm and term birth 378 

samples (Figure 4b), despite significant differences in PC1 loadings (p < 0.0001). Among the 379 

9,225 significantly different LC-MS features between preterm and term birth samples (p < 0.05), 380 

19 out of 427 features were tentatively annotated and they were all situated in the 381 

downregulated area (Spreadsheet S4). Some of these features annotated were shown as in the 382 

volcano plot, e.g., didecyldimethylammonium (m/z: 326.3782 [M+H]+) and adebosine (m/z: 383 
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268.1002 [M+H]+) (Figure 5b). The largest number of annotated chemicals belonged to 384 

endogenous metabolites and exogenous contaminants (Figure S7b). Only one feature 385 

(unknown, m/z: 704.5230 [M+H]+) was present in the upregulated area.386 
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Figure 4. Clustering heatmap after batch effect correction for serum and urine samples. The chemical features reveal the differential enrichment in preterm 388 

versus term births among serum samples (a) and urine samples (b), and between serum and urine samples (c) after multiple testing correction (Benjamini-389 

Hochberg test, 5% false discovery rate). For the differential enrichment in preterm versus term birth samples, 1,524 out of 31,958 chemical features in serum 390 

and 812 out of 37,270 in urine showed significant differences (p < 0.05). For the differential enrichment between serum and urine samples, 26,038 out of 37,270 391 

chemical features exhibited significant differences (p < 0.05). The boxplots show the statistical difference of principal component 1 (PC1) between preterm and 392 

term birth samples, and between urine and serum samples using the Mann-Whitney-Wilcoxon test (two-sided) with Bonferroni correction. The bottom and top 393 

of the boxes represent the 25th and 75th percentiles, the error bars denote the 10th to 90th percentiles, and the solid line indicates the median value. 394 
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Figure 5. The volcano plot of the log-transformed ratios and corresponding p-values of chemical features with a cut-off frequency of 70% from ESI+ and ESI- 396 

modes illustrates the data: the statistical differences in chemical features between preterm births and term births in serum (a) and urine (b), and between serum 397 

and urine (c). The horizontal dashed line indicates the cutoff for the log p-value (p < 0.05), and the vertical dashed lines indicate the cutoff for fold change (Log2 398 

fold change = 1.2). The arrow graph (d) indicates the regulation status of the same annotated chemical across different volcano plots (a, b, and c). Up arrows 399 

represent up-regulated areas, while down arrows indicate down-regulated areas. Red balls denote annotated categories, and grey balls represent non-annotated 400 

categories. DCA: Deoxycholic Acid, 4-EEB: 4-Ethoxy ethylbenzoate, 4-HBA: 4-Hydroxybenzaldehyde, MEDHHP: Methyl 2-[4-ethenyl-2,6-dihydroxy-3-(3-401 

hydroxyprop-1-en-2-yl)-4-methylcyclohexyl]prop-2-enoate, DHDDIAD: 1,4-dihydroxy-1,4-dimethyl-7-(propan-2-ylidene)-decahydroazulen-6-one, BC: 402 

Benzoic Acid.403 
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3.4.2 Difference between urine and serum 404 

  The mean log abundances of chemical features from urine and serum samples showed a 405 

positive correlation (R² > 0.5), with some chemical features diverging from the regression line 406 

before imputation and batch correction for the initial dataset (Figure S8a), after imputation and 407 

batch correction for the initial dataset (Figure S8b), and after imputation and batch correction 408 

for the chemical features that have a frequency >70% (Figure S8c). A significant difference in 409 

most chemicals was observed between urine and serum samples after batch correction (Figure 410 

4c), with two distinct clusters separated with a p-value < 0.0001 for PC1 between urine and 411 

serum samples (Figure 4c). 412 

  From the volcano plot of 25,885 chemical features (serum versus urine, p < 0.05), chemicals 413 

were more predominant in serum (3,369 chemicals in the upregulated area vs. 739 chemicals 414 

in the downregulated area) (Figure 5c). The chemicals with the largest fold change in the 415 

downregulated and upregulated areas were tentatively annotated as docosahexaenoic acid 416 

(log2fold = -10.25, m/z: 327.2333 [M-H]-) and 4-ethoxy ethylbenzoate (log2fold = 5.54, m/z: 417 

195.1018 [M+H]+). In the upregulated and downregulated areas, 109 and 20 chemicals, 418 

respectively, were tentatively annotated (Spreadsheet S5), with endogenous metabolites and 419 

exogenous contaminants being the most frequently annotated (Figure S6c). 420 
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3.4.3 Association among different chemicals 421 

  Twelve significant associations (absolute Pearson R > 0.5) in all samples were found between 422 

endogenous metabolites and exogenous contaminants (Spreadsheet S4), which only was 423 

observed in serum samples. For example, p-cresyl sulfate positively correlated with 4-424 

(hydroxymethyl)benzenesulfonic acid and 4-phenol sulfonic acid (Figure S9).  425 

  The molecular network for significant associations (R2 > 0.5) between endogenous 426 

metabolites and exogenous chemicals were shown in Figure 6. Endogenous-exogenous 427 

compound correlations included d-sphingosine with n-methyldioctylamine, octadecanamine, 428 

and bis(2-ethylhexy)amine. The amine compounds like octadecanamine (primary amine) and 429 

bis(2-ethylhexyl) amine (tertiary amine) showed significant associations. Other correlations 430 

involved r-palmitoyl-(2-methyl) ethanolamide and centrimonium, and oleamide with bis(2-431 

ethylhexyl) amine and bis(2-ethylhexyl) amine and dodecyltrimethylammonium, slightly more 432 

occurring in preterm birth (~53%). Among exogenous compounds, PEG n5 was positively 433 

correlated with an endogenous metabolite, 2,3-dihydroxypropyl 12-methyltrideacanote. Citric 434 

acid was positively correlated with two endogenous metabolites, isocirtic acid and 1,3,4,5-435 

tetrahydroxycyclohexanecarboxylic acid.436 
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Figure 6. Molecular interaction networks for endogenous (red) and exogenous compounds’ features (green) in serum samples (N=95). The network indicates 438 

that the features of MSn had a score of 50, a coverage value of 70, and a minimum number of fragments of 3. The correlation in the networks had R values > 439 

0.5. The correlations shown in the network are all positive (brown line). The thickness of the line indicates the strength of the correlation. The red circle and 440 

green circle represent the endogenous and exogenous compounds, respectively. The blue circle represents the unknown chemicals. The size of the circle indicates 441 

the size of the integrated area of the chemical feature. Endogenous and exogenous compounds belong to Level 2 and unknown compounds belong to Level 3 442 

based on Schymanski, Jeon, Gulde, Fenner, Ruff, Singer and Hollender 21 for the annotation confidence (Details in Chapter 2.1). The pie charts show the average 443 

percentages of preterm and term births associated with exogenous compounds in all serum samples where these compounds were detected, such as the average 444 

percentage of polyethylene glycol compounds (PEGs).445 
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4. Discussion  446 

  Among the confirmed compounds, two chemicals, dodecyltrimethylammonium and n,n-447 

dimethyldecylamine n-oxide, widely used in PCPs and as surfactants for various industrial 448 

products, appear to not have been previously reported in human samples, based on our searches 449 

with the Blood Exposome Database and the Human Metabolome Database. In addition, we 450 

found that the azole fungicide propiconazole, a heavily used agricultural agent with 451 

carcinogenic25 and endocrine-disrupting effects on humans.26 Three tertiary amine compounds 452 

(triisopropanolamine, tributylamine, diphenylamine) are used in numerous industrial 453 

applications such as surfactants and stabilizers, with diphenylamine and its derivatives listed as 454 

propriety pollutants by the European Union.27 Two phosphate ester flame retardants, tributyl 455 

phosphate and triisobutyl phosphate, were found to have higher detection rates and average 456 

concentrations in serum samples compared to paired urine samples (semi-quantification shown 457 

in Figure S10). This is similar to previous reports where tributyl phosphate was the 458 

predominant substance in blood samples from Beijing28 and Shenzhen29, China. However, 459 

triisobutyl phosphate has not been reported in human samples. 2,2,6,6-Tetramethyl-4-460 

piperidinol, found in PCPs such as cosmetics, was detected in human blood.30 4-Nitrophenol, a 461 

metabolite of the organophosphate pesticide methyl parathion, which is illegally applied to the 462 

interiors of homes in the US,31 it was also detected in our samples. For aminophenols, 2-463 

aminophenol and 3-aminophenol could not be differentiated based on RTs (difference < 0.05 464 

min) and were confirmed by product ions (Figure S4b). Aminophenols and their derivatives 465 

are commercially important in dyes, petroleum additives, and pharmaceutical industries. 466 

Interestingly, the commonly used 4-aminophenol was not detected in our samples, while 2- and 467 
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3-aminophenols, which we did detect, are less frequently reported in human samples. All pairs 468 

of samples found both 2-aminophenol and 3-aminophenol with good correlation between urine 469 

and serum (R2= 0.988), suggesting that products exposing pregnant women might contain both 470 

aminophenols. We also found that 39 out of the 325 chemicals were not included in the blood 471 

exposome database (Spreadsheet S7).30 Among these chemicals, except for 472 

dodecyltrimethylammonium (Level 1), citroflex (Level 2) was annotated as exogenous 473 

contaminants and PCPs but it is not included in the Human Metabolome Database and the Blood 474 

Exposure Database. According to the blood paper count from the Blood Exposure Database 475 

(Spreadsheet S8), several compounds showed a very limited number of studies: 476 

dodecyltrimethylammonium (0), n,n-dimethyldecylamine n-oxide, triisopropanolamine (1), 477 

and tributylamine (3). Additionally, we identified eleven tentatively annotated compounds with 478 

similarly limited study numbers (Spreadsheet S8). These compounds require further 479 

investigation to determine their presence in the human body.  480 

  Based on the chemical profiles of the samples, we were able to distinguish between preterm 481 

birth and term birth in only serum (Figure 4a). Preterm birth is a medical condition with a 482 

complex pathogenesis.32 Previous reports have shown potential associations of environmental 483 

contaminants with preterm birth compared with the control samples, e.g., the pesticide DDT 484 

(dichlorodiphenyltrichloroethane),33 lead,34 and phthalates.35-37 For phthalates, diheptyl 485 

phthalate (Level 2) was found in preterm birth samples. This is not surprising since phthalate 486 

esters are widely used in the plasticizer industry and have been detected in human samples from 487 

adults and children in Asia and North America.38 While previous studies have reported 488 

significant associations of phthalates and their metabolites with the gestational age in other 489 

https://doi.org/10.26434/chemrxiv-2024-zh59c ORCID: https://orcid.org/0000-0002-0507-7520 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-zh59c
https://orcid.org/0000-0002-0507-7520
https://creativecommons.org/licenses/by-nc/4.0/


38 

 

New York City pregnancy cohorts, 39 40 we were unable to find any associations of chemical 490 

features between preterm birth and term birth in either blood or urine samples. Due to the 491 

limited sample numbers, we do not further elucidate this observation. It should be noted that 492 

phthalates are ubiquitous and can leach from medical supplies41 and laboratory equipment,42 as 493 

seen in our current raw dataset where many phthalates were present in laboratory controls and 494 

even in solvent blanks, complicating source identification. Therefore, we do not further 495 

speculate on the sources of diheptyl phthalate from our samples.  496 

  In serum, among all annotated chemicals with features significantly different (p < 0.05) in 497 

preterm birth samples and 1.2-fold higher abundances compared to term birth samples (Figure 498 

5a), only 1,4-cyclohexanedicarboxylic acid was categorized as an exogenous contaminant. This 499 

compound is used in the production of nylon and polyester resins for various purposes, such as 500 

enhancing plasticizing efficiency and hardness.43 Exposure to this compound may occur 501 

through ingestion and inhalation of its products in the environment. Although 1,4-502 

cyclohexanedicarboxylic acid is currently under the TSCA, it is not listed in the Blood 503 

Exposome Database. To our knowledge, no studies have reported the detection of 1,4-504 

cyclohexanedicarboxylic acid in human samples. Other compounds, such as p-coumaric acid, 505 

ellagic acid, and bisoprolol, are commonly used in drugs or health products for dietary 506 

antioxidants, antioxidant activity, and hypertension management. These chemicals may suggest 507 

that some preterm births, which are often medically necessary, could be linked to the mother’s 508 

use of medications for underlying complications. Regarding endogenous metabolites, 509 

deoxycholic acid, a bile acid, is one of the main bile acids present in the meconium of preterm 510 

infants, entering the fetus through placental transfer. More recent studies have also shown that 511 
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changes in total bile acids are directly related to preterm birth rates.44, 45  512 

  For the annotated chemicals that were significantly different (p < 0.05) in preterm birth 513 

samples, with lower abundances compared to term birth samples, we identified two exogenous 514 

contaminants in serum and six in urine. However, these contaminants were not detected with 515 

higher frequency in preterm birth samples or in either urine or serum. The negative fold change 516 

in these chemicals might be attributed to individual sample variations compared to endogenous 517 

metabolites and differences in sampling times for urine. We do not further explain this 518 

observation. 519 

  We also observed that adenosine (an endogenous metabolite), which was significantly 520 

different in preterm birth, showed decreased abundances in both serum and urine samples 521 

(Figure 5d). Adenosine is a common endogenous nucleoside that generally counteracts ATP-522 

induced effects, such as inflammation.46 It has been demonstrated that adenosine levels can 523 

increase during normal pregnancy due to platelet activation and elevated nucleosidase 524 

activity.47 Interestingly, adenosine, a marker of oxidative stress, has been found to be 525 

significantly higher in pregnant women with preeclampsia compared to those without the 526 

condition.48 Lower levels of adenosine in both urine and serum might be linked to preterm birth 527 

outcomes. Although endogenous metabolites were not the primary focus of this study, the levels 528 

of adenosine associated with preterm birth have not been reported. his warrants further attention 529 

from researchers, especially since adenosine is also used as a drug for treating supraventricular 530 

tachycardia during pregnancy.49 Generally, we observed a broader range of chemicals, both 531 

endogenous and exogenous, in serum samples (Figure 3c). This allows for the identification of 532 

both biomarker chemicals and exogenous contaminants. Nonetheless, some exogenous 533 
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contaminants, such as centrimonium, were found to be more enriched in urine samples. 534 

  We found that paired prenatal urine and serum samples have different enrichment of chemical 535 

features (Figure 4c), despite some endogenous chemicals showing a significantly higher 536 

proportion in the serum samples (Spreadsheet S1). Of the tentatively identified compounds we 537 

detected (Level 2, Spreadsheet S1), many were endogenous compounds or pharmaceuticals 538 

and their transformation products as part of metabolism in the human body. 539 

  Some endogenous chemicals showed an association with exogenous contaminants. For 540 

example, p-cresyl sulfate (p-CS) correlated with 4-phenolsulfonic acid (4-PSA) and 4-541 

(hydroxymethyl)benzenesulfonic acid (4-HMBSA) (Figure S9). p-CS is a prototype protein-542 

bound molecule derived from the secondary metabolism of p-cresol, where increased 543 

concentrations can be associated with deteriorating kidney function.50 4-PSA is a common 544 

intermediate/component of surfactants, detergents, pharmaceuticals, and dyes. 4-HMBSA is a 545 

derivative of substituted benzenesulfonic acids, widely used as intermediates for organic 546 

compound synthesis. 4-PSA has been listed in the ToxCast database,51 while the human toxicity 547 

for both 4-PSA and 4-HMBSA is not clear. In the current network, significant relationships 548 

were observed among PEGs, composed of polyether compounds with repeating ethylene glycol 549 

units. PEGs are used as components in drugs and PCPs. Narrowly defined molecular weight 550 

ranges of PEGs are often produced as a commercial mixture,52 similar to our data showing a 551 

correlated pattern with the loss of ethylene oxide (C2H4O, 44.02585 Da) among PEGs n5-8. 552 

PEG n5 was observed to have a positive connection to 2,3-dihydroxypropyl 12-553 

methyltrideacanote, an endogenous metabolite from the 12-methyltridecanoate fatty acid chain, 554 

and a complex microbial-related metabolite in gastric cancer.53 Only high-molecular-weight 555 
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PEGs (> 400 Da, e.g., PEG n8) have shown toxic effects in animals54, and we were not able to 556 

find any toxicity studies on the various PEGs. Another interesting correlation was observed 557 

between a group of tertiary amine compounds, used as chemical intermediates/surfactants, with 558 

a mass defect of -CH2- group (14.0115 Da), e.g., centrimonium and octadecanamine, and fatty 559 

acid amide (oleamide) and bioactive lipid metabolites (d-sphingosine and r-palmitoyl-(2-560 

methyl) ethanolamide) (Figure 6). This suggests that these amine compounds might interfere 561 

with lipid and fatty acid metabolism. This can be referenced by a relevant report indicating that 562 

surfactants solubilize lipid membranes and transform them into lipid-surfactant micelles, while 563 

fatty acids transform lipids into cubic and hexagonal phases.55 All these associations indicate 564 

the potential direct or indirect intervention of exogenous contaminants on the metabolism 565 

processes in human bodies. 566 

This NTA analysis of urine and serum samples used full scan and MS/MS spectra match from 567 

pooled samples by ddMS2 scan. Batch effects were significant but could be corrected by the 568 

Combat package (Figure 2). This is consistent with previous study that found differences in 569 

characteristics of LC/MS metabolomics data before batch correction.56, 57 The raw dataset 570 

showed many features in blanks and field controls. Chemical features in QC samples showing 571 

peak areas that were five times higher than those of the blanks. ESI+ and ESI- revealed the most 572 

ions eluted from 10 to 20 min during chromatography (Figure S1). ESI+ covered a higher range 573 

of charge-to-mass ratios at the beginning and end of the run. Only 344 features (~0.05% of the 574 

merged features) were matched across ESI+ and ESI- datasets, highlighting varied chemical 575 

properties in current samples.  576 

  In our dataset, most matched chemical features could not be fully confirmed without 577 
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analytical standards. The endogenous metabolites and exogenous contaminants groups had 578 

significantly more compounds in them than drugs, natural products and personal care products 579 

(Figure S3). Given the abundance of environmental contaminants and their observed 580 

associations with endogenous metabolites, many of these contaminants could substantially 581 

contribute to the exposome 58 disturb metabolic pathways such as lipid metabolism and 582 

inflammation regulation.59  583 

  Our study provided a comprehensive non-targeted analysis of small molecules in serum and 584 

urine samples from pregnant women, highlighting differences between sample types and 585 

between preterm and term births. Approximately ~22% of features (Level ≥ 3) were tentatively 586 

annotated by matching to spectral databases, and 12 chemicals were confirmed by authentic 587 

standards. NTA is a critical tool in the assessment of a broad spectrum of environmentally-588 

concerned chemicals in biological samples. At present, there is a need for larger MSn databases 589 

and analytical standards in order to increase the number of confirmed compounds.  590 

5. Limitations and recommendations 591 

  While our study presents some evidence associating chemical exposures with preterm birth, 592 

our study is not a comprehensive epidemiological study, but a human exposure study. Our main 593 

goal was to identify new target chemicals and highlight them for further toxicity studies. We 594 

have four limitations in our study that need to be acknowledged: 595 

(1) We were limited to only 95 participants with paired urine and serum samples (including 596 

35 pairs from preterm births).  597 

(2) Although we observed clustering in the serum heatmap at a chemical detection frequency 598 

cut-off of 70% (as well as at 60% and 80%, as shown in Figure 4a and Figure S11) 599 
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between preterm and term births, we did not observe a similar pattern of chemical 600 

enrichment in the paired urine samples across detection frequencies of 60-80% (Figure 601 

4b and Figure S12). This discrepancy may be due to the different sampling times for 602 

urine and the more pronounced matrix effects in urine. 603 

(3) This study focused on environmental contaminants. We observed that numerous 604 

annotated chemical features had a very low detection frequency. For example, among 605 

the 344 annotated chemical features, 38 and 49 chemicals identified as exogenous 606 

contaminants were detected in less than 60% of serum and urine samples, respectively. 607 

This may suggest that serum is a more comprehensive matrix for detecting small 608 

molecule contaminants. 609 

(4) The analytical instrument presents challenges related to varying setting parameters 610 

across different mass spectrometers and manufacturers, especially for soft ionization 611 

techniques. In non-targeted analysis (NTA), the desired mass resolving power may not 612 

be achieved for specific masses. For Orbitrap HRMS in NTA, the upper limit of mass 613 

resolving power can lead to ion loss and dephasing of oscillations. The limited number 614 

of ions per unit time entering the C-trap (AGC targets) could significantly affect the 615 

sensitivity for small molecule chemicals with lower detection frequencies in our study. 616 

We recommend multiple scans for pooled samples with a dynamic MS2 data window to 617 

mitigate the limited AGC targets per scan. Additionally, it is advisable to combine 618 

various analytical approaches to expand chemical space coverage, such as using GC 619 

separation for volatile and highly nonpolar chemicals in conjunction with Quadrupole 620 

Time-of-Flight (QTOF) MS.  621 
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Spreadsheet S6. The Pearson correlation (R) matrix was analyzed between exogenous contaminants and 

endogenous metabolites in serum samples (no correlation was found in urine samples). 
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Text S1. The Creatinine normalization approach to diluted urine samples. 

Urine samples can be diluted under various conditions, such as increased water intake or diuretic use. 

According to the Substance Abuse and Mental Health Services Administration (SAMHSA) guidelines 

(https://www.federalregister.gov/d/2023-21734), a urine sample is considered diluted if the creatinine 

concentration is below 20 mg/dL. In our study, we used the creatinine normalization method, as employed 

in similar research.1, 2 Based on the creatinine concentrations from 95 pregnant women in our study, we 

established 25.22 mg/dL as the reference concentration for undiluted samples. For quantification, we 

employed a six-point calibration curve ranging from 1 to 95 mg/dL, spiked with 50 µg/L of an internal 

standard (creatinine-d3), using isotope dilution (with linearity > 0.99 for creatinine). Data acquisition and 

processing were carried out with Xcalibur v. 4.3 (including Freestyle 1.6 and Quan browser). The chemical 

abundances in diluted urine samples were adjusted using the following equation: 

Chemical abundance after normalized creatinin = initial abundance ×
Reference Creatinine

Sample Creatinine
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Figure S1. The highest point or peak of a chromatographic or mass spectrometric signal and abundances 

(log transformed) of retention times (RT) and molecular mass (g/mol). The plot shows ions from full scan 

from both positive and negative electrospray ionization modes.
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Figure S2. The dataset analysis was conducted after processing with the “Combat” batch correction to 

examine correlations and statistically significant differences among principal component (PC) loadings, 

batch, and sample type. The batch correction was applied for preterm and term birth samples across four 

batches in both urine and serum, as well as for combined urine and serum samples in four batches. The 

Pearson R values and p-values were reported for urine (a and b), serum (c and d), and combined serum & 

urine (e and f). PT: preterm and term birth sample types,  SvU: serum and urine sample types.
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Figure S3. Level 2 chemicals annotated as endogenous metabolites, exogenous contaminants, drugs, 

natural products, and personal care products. The bar chart shows the full tally of annotated chemicals in 

each specific category, plotting with the decreasing number of chemicals. The red and grey balls represent 

the annotated category and non-annotated category, respectively.
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Figure S4. Examples of compounds using authentic standards detected by UHPLC-Orbitrap MS with ESI- (a) and ESI+ (b) polarities. The 

chromatographic plot of 4-nitrophenol and aminophenol isomers in the authentic standards and real samples. The compounds were initially selected 

by comparing different databases and were further confirmed by authentic standards. The differential plot of the deconvoluted spectrum between 

real samples and authentical standards. 
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Figure S5. Clustering heatmap of chemical abundances after batch effect correction for serum (S) and urine samples (U) (a) and the boxplot for the 

significant difference (p < 0.001) of PCs 1-3 between serum and urine samples using Mann-Whitney-Wilcoxon test two-sided with Bonferroni 

correction (b). The bottom and top of boxes represent the 25th and 75th percentiles, the error bars denote 10th to 90th percentiles, the solid line 

means the median value.  The total number of chemical features (combing ESI+ and ESI-) is 1524 with the annotation levels 1-3 from the classification 

of Schymanski, et al. 3. 
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Figure S6. The heatmap of detection frequency (%) for annotated chemicals (Levels 1 and 2) classified as 

exogenous contaminants in preterm and term birth in serum and urine samples, respectively. The specific 

number of frequencies is shown in the spreadsheet S1.
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Figure S7. The bar chart of the number of chemicals that were successfully annotated, located in the down- 

(p < 0.05, log2fold < -1.2) and up- regulated areas (p < 0.05, log2fold >1.2) of the serum vs. urine samples 

/ preterm and term birth samples in serum or urine from the volcano plot (Figure 5). 
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Figure S8. Linear regression correlation analysis between urine and serum abundances in logarithm scale (n = 190 urine and serum). The results 

show: (a) all original dataset before imputation and batch correction, (b) all dataset after imputation and batch correction, and (c) the ions filtered 

by the cut-off frequency of 70% for imputation and batch correction. 
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Figure S9. Correlation between p-cresylfulfate and 4-(hydroxymethyl)benzenesulfonic acid, and p-

cresylfulfate and 4-phenolsulfonic acid in logarithm scale (n = 190 urine and serum). 
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Figure S10. The semi-quantification of confirmed compounds (level 1) in urine and serum samples based 

on the integral peak areas of 500 ng/mL analytical standards. 
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Figure S11. Clustering heatmap after batch effect correction (between preterm and term birth) for serum 

samples. The chemical features reveal the differential enrichment in preterm versus term births among 

serum with the cut-off detection frequencies of 60% and 80% after multiple testing correction (Benjamini-

Hochberg test, 5% false discovery rate). For the differential enrichment in preterm versus term birth samples, 

1,791 out of 43,450 chemical features in a detection frequency cut-off of 60% and 1,214 out of 25,323 in a 

detection frequency cut-off of 80% showed significant differences (p < 0.05). 
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Figure S12. Clustering heatmap after batch effect correction (between preterm and term birth) for urine 

samples. The chemical features reveal the differential enrichment in preterm versus term births among 

serum with the cut-off detection frequencies of 60% and 80% after multiple testing correction (Benjamini-

Hochberg test, 5% false discovery rate). For the differential enrichment in preterm versus term birth samples, 

9,518 out of 49,350 chemical features in a detection frequency cut-off of 60% and 8,398 out of 29,448 in a 

detection frequency cut-off of 80% showed significant differences (p < 0.05).   
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