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Abstract

Training machine learning models for tasks such as de novo sequencing or spectral clustering requires
large collections of confidently identified spectra. Here we describe a dataset of 2.8 million high-confidence
peptide-spectrum matches derived from nine different species. The dataset is based on a previously
described benchmark but has been re-processed to ensure consistent data quality and enforce separation
of training and test peptides.

Background & Summary
De novo sequencing of proteomics tandem mass spectrometry data, in which observed fragmentation spectra
are translated into corresponding peptide sequences, has been an open challenge for more than 40 years [1].
Recently, as in many other areas of science, considerable progress toward solving this challenge has been
made using deep learning, in which multi-layer neural networks with millions of parameters are trained to
generate peptide sequences from observed spectra. The first such deep learning method, DeepNovo [2], has
been followed by at least 22 additional publications (reviewed in [3]).

The standard method for evaluating these de novo sequencing methods is to use a gold standard produced
via database search. In this approach, mass spectrometry data derived from a single species is searched
against the reference proteome for that species, yielding a ranked list of peptide-spectrum matches (PSMs).
Including in the peptide database a collection of reversed or shuffled “decoy” peptides provides a rigorous
way to set a threshold in this list of PSMs while controlling the false discovery rate (FDR) among the PSMs
above the threshold [4]. The resulting set of high-confidence PSMs can be used either to train or evaluate a
de novo sequencing model.

Some version of the above protocol has been used to develop labeled training and validation data for
essentially every published deep learning de novo sequencing method. One exception is methods that use
spectra from synthesized peptide sequences for training [5, 6, 7]. However, even in these cases, a gold
standard derived from database search is used for evaluation of the method.

Unfortunately, creating a high quality gold standard set of labeled spectra can be tricky. One challenge is
ensuring that the search strategy employs appropriate parameters. For instance, one widely used benchmark
dataset [2] used a search strategy that failed to account for missassigned isotopic peaks during the acquisition
stage. This error led to frequently assigning a deamidation modification, when the observed mass shift was
better explained by an isotopic mass shift on the precursor m/z [3]. A second challenge relates to the notion
of train/test leakage, in which information used to train the model leaks into the evaluation procedure. In
the de novo setting, a common mistake is to randomly segregate a given set of labeled spectra into training
and test sets, without regard to the associated peptides. As a result, spectra generated by the same peptide
sequence may occur in both the training and test sets. Such duplicated peptides give an unfair advantage to
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PRIDE Species UniProt Files Spectra Main Balanced Pre Frag
PSM Pep PSM Pep

PXD005025 Vigna mungo UP000087766 24 932,848 108,402 11,638 102,255 11,557 20 0.05
PXD004948 Mus musculus UP000000589 13 306,786 25,522 5630 25,522 5630 10 0.05
PXD004325 Methanosarcina mazei UP000033058 72 3,728,183 267,183 15,220 100,485 11,934 10 0.05
PXD004565 Bacillus subtilis UP000001570 106 4,336,428 1,351,938 28,364 113,234 17,481 30 0.05
PXD004536 Candidatus endoloripes UP000094849 11 2,272,023 82,514 8080 82,514 8080 20 0.05
PXD004947 Solanum lycopersicum UP000004994 60 603,506 177,553 48,459 100,056 35,787 15 0.05
PXD003868 Saccharomyces-cerevisiae UP000002311 27 1,477,397 585,846 19,102 108,973 13,285 20 0.05
PXD004467 Apis mellifera UP000005203 17 823,169 194,604 21,081 102,285 18,630 20 0.05
PXD004424 H. sapiens UP000005640 26 684,821 44,555 10,848 44,555 10,848 20 0.02
Total 343 15,165,161 2,838,117 168,422 779,879 133,232

Table 1: Two versions of the nine-species benchmark. Counts of the number of annotated spectra
and distinct peptide sequences are provided for the main and balanced versions of the benchmark. The final
two columns specify the precursor window size (in ppm) and fragment bin size (in Da) used in the database
search step.

the sequencing method, and the leakage will be even more useful to parameter-rich methods that are capable
of memorizing many features of the training data.

In this work, we revisit the nine-species benchmark dataset that was employed in the first deep learning
de novo sequencing method, DeepNovo [2]. This is a widely used dataset, which has been employed for
training or evaluation in at least 15 subsequent studies [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 6, 19, 20, 21].
The setup is quite straightforward. The authors downloaded nine publicly available datasets, all of which
were generated on a Thermo Scientific Q Exactive mass spectrometer, and each of which was carried out
in a different species. Each dataset was searched against the corresponding reference proteome, using a
target-decoy strategy to accept a set of PSMs subject to a PSM-level FDR threshold of 1%. Because the
data are derived from different species, the peptides in each set are largely (but not entirely) disjoint. To
use the benchmark, it is typical to apply a cross-validation strategy, in which a model is trained on eight
species and tested on the held-out species, and the procedure is repeated nine different ways.

In developing our Casanovo de novo sequencing model, we identified several problems with the nine-species
benchmark [21]. These included the deamidation problem mentioned above, as well as some uncertainty
regarding how the FDR was controlled. Perhaps most importantly, we recognized that a non-negligible
proportion of peptides are shared among the different species, with the highest overlap between human and
mouse.

In light of these difficulties, we downloaded the same datasets from the PRIDE repository and system-
atically reanalyzed all of the data, using a standard search procedure—the Tide search engine [22] followed
by Percolator [23] with PSM-level FDR control at 1%. We then filtered the PSMs to prevent any peptide
sequence from appearing in more than one species. The resulting data set was used to evaluate Casanovo
[21]. Finally, because some of the single-species datasets are markedly larger than others, we produced a
more balanced version of the dataset. Hence, we make publicly available both versions of this dataset: the
peptide-disjoint dataset that can be used to avoid train/test leakage (“main”), and the reduced peptide-
disjoint dataset if you want your analysis to run more quickly (“balanced”). In addition, we make available
all of the intermediate files, for use in validating the benchmark.

Methods
Data sets
For our benchmark, we used the same nine studies originally identified by Tran et al. [2].

1. Paiva et al. investigated the protein expression response of the cowpea plant (Vigna unguiculata) to
infection by Cowpsea severe mosaic virus (CSMV) by carrying out label-free proteomic analysis of
cowpea leaves that were inoculated with CSMV compared to mock inoculation controls [24].

2. Nevo et al. studied a rare autosomal recessive lysosomal storage disorder, cystinosis, by carrying out
SILAC proteomic analysis of engineered mouse cell lines that harbor a known pathogenic mutation of
the causative gene, CTNS [25].
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3. Cassidy et al. evaluated two different analytical approaches for carrying out full proteome analysis while
identifying short open reading frames: a high/low pH reversed phase LC-MS bottom-up approach and
a semi-top-down strategy involving separation of proteins in a GelFree system followed by digestion
and LC-MS analysis [26]. The experiments were carried out using the methane producing archaeon
Methanosarcina mazei.

4. Reuss et al. carried out proteomic analyses on a series of minimized strains of the model bacterium,
Bacillus subtilis, with genomes reduced by ∼36% [27].

5. Petersen et al. performed proteomic analysis of Candidatus endoloripes, which are bacterial symbionts
of the Lucinidae family of marine bivalves [28].

6. Mata et al. characterized the proteome of the tomato pericarp at its ripe red stage [29].

7. Seidel et al. analyzed the global proteomic stress response in wildtype and two yeast knockout strains
for the gene PBP1 [30].

8. Hu et al. studied honeybees that exhibit a suite of behaviors (Varroa sensitive hygiene—VSH) associated
with infection with the Varroa destructor virus [31]. Proteomic analysis was carried out on mushroom
bodies and antennae of adult honeybees with and without VSH.

9. Cypryck et al. characterized extracellular vesicles released from human primary macrophages after
infection with influenza A viruses [32].

All nine studies were performed using a Thermo Scientific Q Exactive mass spectrometer.
We downloaded the RAW files from the corresponding PRIDE projects (Table 1) and converted them

to MGF format using the ThermoRawFileParser v1.3.4. We downloaded the corresponding nine UniProt
reference proteomes and constructed a Tide index for each one, using Crux version 4.2. Note that, for one
species (Vigna mungo) no reference proteome is available, so we used the proteome of the closely related
species Vigna radiata.

Database search and FDR control
We assigned peptide labels to spectra using the Tide search engine followed by post-processing with
Percolator. In creating the Tide index, we specified Cys carbamidomethylation as a static modification
and allowed for the following variable modifications: Met oxidation, Asn deamidation, Gln deamidation,
N-term acetylation, N-term carbamylation, N-term NH3 loss, and the combination of N-term carbamylation
and NH3 loss by using the tide-index options --mods-spec 1M+15.994915,1N+0.984016,1Q+0.984016
--nterm-peptide-mods-spec 1X+42.010565,1X+43.005814,1X-17.026549,1X+25.980265 --max-mods
3. Note that one of the nine experiments (Mus musculus) was performed using SILAC labeling, but we
searched without SILAC modifications and hence include in the benchmark only PSMs from unlabeled
peptides. Tide automatically added to each index a shuffled decoy peptide corresponding to each target
peptide. Thereafter, each MGF file was searched against the corresponding index using the precursor
window size and fragment bin tolerance specified in the original study (Table 1). The search engine
employed XCorr scoring with Tailor calibration [33], and we allowed for 1 isotope error in the selection of
candidate peptides. All search results were then analyzed jointly per species using the Crux implementation
of Percolator, with default parameters. For the benchmark, we retained all PSMs with Percolator q value <
0.01. We identified 13 MGF files with fewer than 100 accepted PSMs, and we eliminated all of these PSMs
from the benchmark. At this point in the processing pipeline, the dataset contains 2,898,611 annotated
spectra (PSMs) drawn from 339 RAW files and associated with 168,422 distinct peptides.

Avoiding train/test leakage
To avoid train/test leakage, we post-processed the PSMs to eliminate peptides that are shared between
species. Among the 168,422 distinct peptides, we identified 4121 (2.4%) that occur in more than one species.
For each such peptide, we selected one of the associated species at random and then eliminated all PSMs
containing that peptide in other species. Note that when identifying shared peptides between species, we
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considered all modified forms of a given peptide sequence to be the same, and we converted all isoleucines
to leucines. Hence, if a given peptide appears in more than one species, then that peptide, including all
its modified forms, is randomly assigned to a single species and eliminated from the others. The final,
non-redundant benchmark dataset (“main”) consists of 2,838,117 PSMs corresponding to 168,422 distinct
peptides.

Balancing the benchmark
At this stage, the benchmark was quite imbalanced, in the sense that some species had a much larger number
of associated PSMs. We therefore used a random downsampling procedure to produce a benchmark that is
more evenly balanced across species. Among the nine species, the one with the fewest PSMs is Mus musculus,
with 25,522. Downsampling all of the other eight species to have 25,000 PSMs would reduce the size of the
dataset from 2.8 million PSMs to 225,000—a reduction of 92%. To avoid producing such a small dataset,
we therefore opted to downsample each dataset to approximately 100,000 PSMs. This approach yields a
slight imbalance, because three species have fewer than 100,000 PSMs (44,555 for H. sapiens and 82,514
for Candidatus endoloripes), while retaining a larger percentage of the original data. Our downsampling
procedure involved randomly permuting the order of the MGF files for each species and then selecting
the files in order until at least 100,000 PSMs have been accepted. The final, balanced benchmark dataset is
approximately one quarter the size of the main benchmark, consisting of 779,879 PSMs from 133,232 distinct
peptides.

Data Records
The dataset contains files resulting from various steps in the generation of the benchmark:

• Spectrum files in MGF format, produced by ThermoRawFileParser.

• Reference proteome files in FASTA format, downloaded from UniProt.

• Search results files for both targets and decoys, in tab-delimited format, produced by Tide.

• PSM-level Percolator results files for targets, in tab-delimited format. ‘

• Annotated MGF and corresponding mzSpecLib [34] files for both versions of the benchmark (main and
balanced).

Also included are log files for the steps of the analysis pipeline carried out using Crux [35] (Tide indexing,
Tide search, and Percolator). The data is available at https://doi.org/10.5281/zenodo.12819175.

Technical Validation
Data quality and interpretability varies dramatically from study to study, due to differences in sample type,
sample preparation protocols, chromatography and instrument settings, and database size. To assess the
overall rate of successful identification of spectra in each data set, we plotted the number of accepted PSMs as
a function of PSM-level FDR threshold (Figure 1a). As is typical in proteomics database search, the curves
go up rapidly before leaving the y-axis, corresponding to the many spectra with highly confident peptide
assignments. To better understand the relative quality of the datasets, we also computed the proportion of
spectra that were accepted at 1% PSM-level FDR per species (Figure 1b). Here we observe that some datasets
yield much higher rates of accepted PSMs than others, up to 39.7% for Saccharomyces cerevisiae and down
to 3.6% for Candidatus endoloripes. Despite this large variance in the rate of accepted PSMs, characterizing
the proportion of the total peak intensities that is explained by matched b- and y-ions (Figure 1c) suggests
that the quality of the accepted PSMs is high. Notably, the proportion of matched b- and y-ions does not
appear to be strongly correlated with the rate of accepted PSMs per species.
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Figure 1: Validation of the benchmarks. a. Each series indicates, for a given species, the number of
accepted PSMs as a function of PSM-level FDR. b. The bar plot indicates the proportion of spectra that
were accepted at 1% PSM-level FDR per species. c. Each histogram shows, for one species, the distribution
of the proportion of total ion current that is matched by b- or y-ions per accepted PSM, using a matching
tolerance of 0.05 m/z.
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Code Availability
All code required to generate the various benchmarks and to produce the figures in this manuscript is
available with an Apache license at https://github.com/Noble-Lab/multi-species-benchmark, with a
snapshot of the repository stored at https://zenodo.org/doi/10.5281/zenodo.12926326.
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