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Abstract 12 

Permeability is an important molecular property in drug discovery, as it co-determines pharmacokinetics 13 
whenever a drug crosses the phospholipid bilayer, e.g., into the cell, in the gastrointestinal tract or across 14 
the blood-brain barrier. Many methods for the determination of permeability have been developed, 15 
including cell line assays, cell-free model systems like PAMPA mimicking, e.g., gastrointestinal 16 
epithelia or the skin, as well as the Black lipid membrane (BLM) and sub-micrometer liposomes. 17 
Furthermore, many in silico approaches have been developed for permeability prediction. 18 

Meta-analysis of publicly available databases for permeability data (MolMeDB and ChEMBL) was 19 
performed to establish their usability. Firstly, experimental data can only be measured between 20 
thresholds for the lowest and highest permeation rate obtainable within physical boundaries. These 21 
thresholds vary strongly between methods. Secondly, computed data do not obey these thresholds but, 22 
on the other hand, can produce incorrect results. Thirdly, even for the same method and molecule, there 23 
is often a strong discrepancy between individual measured values. These differences are based not only 24 
on the statistics but also on the varying approaches and evaluation of the measured data. Thus, when 25 
working with in-house measured or published permeability data, we recommend to be cautious with 26 
their interpretation. 27 
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Introduction 28 

Passive permeability is a critical molecular property studied in drug discovery because of its strong 29 
influence on pharmacokinetics. It plays an essential role in the gastrointestinal absorption of oral drugs, 30 
penetration of the blood-brain barrier (BBB), and renal reabsorption.1 31 

The permeability coefficient (cm∙s−1) is the quantitative measure of permeability, often presented as a 32 
decimal logarithm (logPerm). Numerous methods for their determination have been developed because 33 
of the importance of permeability coefficients in pharmaceutical research. We can, in general, divide the 34 
approaches into cell-based in vivo experimental assays, membrane-based in vitro experimental essays 35 
and in silico approaches.  36 

Among the oldest and best-established methods of permeability measurement are the cell-based colon 37 
carcinoma cell line permeability assay (CACO-2)2 and Madin-Darby Canine Kidney cells (MDCK)3. 38 
Permeability measurements are realized in transwell plates. Each well is divided into a donor and an 39 
acceptor compartment, separated by a membrane. In the case of CACO-2 and MDCK, the membrane 40 
consists of a cell monolayer cultured on a solid support. Despite their different origins, the CACO-2 and 41 
MDCK are composed of morphologically analogous cells and are widely used as model intestinal 42 
membranes4. 43 

Apart from cell-based experiments, there are several in vitro membrane-based methods. The most often 44 
used one is the parallel artificial membrane permeability assay (PAMPA)5. The membrane on which 45 
PAMPA methods are based is artificially made and chosen depending on the membrane the assay 46 
mimics. To this date, many variants of PAMPA have been published. The examples include DS-47 
PAMPA6, which mimics gastrointestinal absorption, blood-brain barrier PAMPA7, SkinPAMPA8, or 48 
nasal-PAMPA9. Another long-time-known experimental method of permeability measurement is BLM 49 
(Black Lipid membrane), first published by Mueller et al.10. In this experimental setup, membranes are 50 
prepared in the form of very thin lipid films. This method is suitable as a model of more complex natural 51 
membranes.11,12 Unlike CACO-2 or MDCK, which employ a monolayer of complex living cells, PAMPA 52 
and BLM methods both use simpler membranes that are unable to effect active transport (influx as well 53 
as efflux), paracellular transport, metabolism, or ion-trapping in lysosomes.13,14 54 

Experimental methods for the determination of membrane permeability have been supplemented by 55 
in-silico approaches, which can be divided into three main categories: molecular dynamics simulations, 56 
physics-based computational methods, and machine-learning statistical models. 57 
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Molecular dynamics (MD) simulations are in silico methods based on time-resolved simulations of 58 
complex systems at the atomistic level15. We can derive many thermodynamic and kinetic properties of 59 
the system from the MD simulations15. Thanks to the current level of computational power and 60 
MD methods, we can now study the behavior of substances on membranes even at the atomic level16, 61 
but they are so far limited by the quality of membrane force fields17,18, long time scales necessary for 62 
membrane permeation and hysteresis artefacts for advanced sampling methods19. Hence, the availability 63 
of these data in large quantities is still quite limited, and MD is used more to model how molecules 64 
permeate the membranes20,21. 65 

The PerMM22 and COSMOperm23 are examples of physics-based calculated methods. PerMM is based 66 
on the solubility diffusion model24 and the positioning of proteins in membranes (PPM) method25,26. 67 
PerMM can also calculate the permeability coefficient across four types of membranes (DOPC, BLM, 68 
CACO/MDCK, and BBB)22. COSMOperm is a mechanistic method for the prediction of membrane 69 
permeability based on quantum chemical solubility calculations. Its basis is the calculation of the free 70 
energy profile across the membrane. In general, this approach can calculate logPerm on any membrane.23 71 

Machine learning (ML) approaches are trained statistically over the existing experimental data, while 72 
the data quality and size are extremely important. The QSAR (quantitative structure-activity 73 
relationship) model is a mathematical model which identifies statistically significant correlations 74 
between the structure of molecules and their properties, such as biological activity27. The structure of 75 
molecules is described by a variety of descriptors. Choosing the fitting descriptor is one of the key points 76 
during the QSAR process. The history of QSAR is long, and countless various permeability QSAR 77 
models have been developed, e.g. QSAR models for CACO-2 cell permeability28, intestinal 78 
permeability29, blood-brain barrier (BBB)30 and skin31, etc. QSAR models were recently generalized 79 
with ML (machine-learning) models. These models are fitted to train data produced by experimental 80 
methods. Experimental methods often used for the construction of these models are CACO-2 (e.g., Wang 81 
et al.32 or Frelund et al.33) and PAMPA (e.g., Sun et al.34 or Gousiadou et al.35).  Sometimes these models 82 
are created for a given type of molecule, e.g. cell-penetrating peptides36 or macrocycles37. As their 83 
performance can be, in principle, only as good as the original data, we will not discuss them further here. 84 

Because of the importance of permeability and the growing volume of published data obtained by 85 
various methods, permeability data are available in well-established cheminformatics databases 86 
(e.g., PubChem38 or ChEMBL39 ). Nevertheless, these databases do not primarily focus on this type of 87 
data, unlike the MolMeDB database. 88 

MolMeDB40 (https://molmedb.upol.cz) is a comprehensive, freely available database of membrane 89 
interaction data, including permeation for small molecules. This database stores the manually obtained 90 
data from scientific papers as well as the permeability data obtained from ChEMBL by data mining 91 
workflow. Currently, there are more than 900,000 interactions for almost 500,000 molecules in 92 
MolMeDB. Most of the data is permeability data from 56 theoretical or experimental methods on 93 
48 various membranes. 94 

This paper compares and interprets the results of four experimental methods – PAMPA, CACO-2, 95 
MDCK, BLM/Liposomes, and two calculated – PerMM and COSMOperm – available in MolMeDB. 96 
However, in order to understand this data properly, we must first understand the methods and their 97 
constraints. Therefore, this paper has three main aims: (i) to compare methods with each other to put the 98 
logPerm quantity in a real-world context, (ii) to identify and explain the limits of the mentioned methods, 99 
and (iii) to put the logPerm quantity in a real-world context.  100 

 101 

https://doi.org/10.26434/chemrxiv-2024-ndc8k-v2 ORCID: https://orcid.org/0000-0001-9472-2589 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://molmedb.upol.cz/
https://doi.org/10.26434/chemrxiv-2024-ndc8k-v2
https://orcid.org/0000-0001-9472-2589
https://creativecommons.org/licenses/by/4.0/


Methods 102 

Data sources 103 

Data was sourced from MolMeDB and ChEMBL. The data in ChEMBL was fetched by the ChEMBL 104 
data web service. For this purpose, the KNIME41 semi-automatic workflow was created. This workflow 105 
fetched information about molecules (SMILES, name, ChEMBL ID), publication (DOI), and 106 
interactions. All interactions were converted to decimal logarithms, and all units of interactions were 107 
converted to cm∙s−1. Fetched data are available in MolMeDB. This data is labelled as ChEMBL in the 108 
Secondary reference column in MolMeDB. The content of MolMeDB was exported as a .csv file. This 109 
is possible on the website https://molmedb.upol.cz/stats/show_all. 110 

Analysis of permeability data - MolMeDB data selection 111 

Data was sourced from the MolMeDB database. The PAMPA method included methods that were 112 
referred to as EPAM, EBAMP42(for apparent PAMPA), and EPAMOL (for insintic PAMPA).The 113 
BLM/liposomes included methods EBLM and ELIP in MolMeDB (for more details see: 114 
https://molmedb.upol.cz/browse/methods). 115 

In the cases of scatter plots (Fig.2and Fig. S1), a mean logPerm value for molecules that have more than 116 
one logPerm value in MolMeDB was calculated. The mean values were calculated according to the rules 117 
described in the Colab notebook. Cleveland dot plots (Fig. 4 A and B) is created from median values of 118 
logPerm. 119 

For greater inter-comparability of data, we excluded data other than that measured or calculated on the 120 
cell membranes, generic membranes, and membranes of the intestine according to the MolMeDB 121 
classification system (for more details, see: https://molmedb.upol.cz/browse/membranes). MolMeDB 122 
stores permeability coefficients (logPerm) uniformly in the logarithmic form of cm∙s−1. 123 

Next, the dataset was narrowed down to data for small molecules (MW ≤ 800 Da). For the computational 124 
methods (PerMM and COSMOperm), interactions where the molecules were in a neutral state were 125 
included, since only neutral form is usually eligible to penetrate the lipid membrane43–45. In the case of 126 
experimental methods (CACO-2, MDCK, PAMPA, BLM/liposomes), only interactions for which the 127 
pH was between 7.1 and 7.5 were included. Also, molecules with unknown pH were included. Only data 128 
pertaining to a temperature of (20−25 °C) were included. 25 °C is the default temperature value in 129 
MolMeDB. In the case of the data from ChEMBL, the value of temperature is unknown, and for this 130 
reason, the approx. temperature of 25 °C is given in these cases. The resulting dataset contained data on 131 
5483 interactions for 4218 unique molecules (by SMILES). 132 

Analysis was done using KNIME workflow, and figures were created by R programming language 133 
version 4.3.246 or by Python 3.10.12. The Colab notebook47 for figures preparation is available on 134 
MolMeDB GitHub (https://github.com/MolMeDB/MolMeDB), and the KNIME workflow is available 135 
on WorkflowHub48 (https://workflowhub.eu/workflows/772). The UpSet plot was created by UpSetR 136 
Shiny App49.  137 

In the analyzed dataset, data originated from four different experimental methods – cell-based CACO-138 
2 (1415 molecules) and MDCK (402 molecules); membrane-based PAMPA (2592 molecules) and 139 
BLM/liposomes (88 molecules); and two computational methods – PerMM (444 molecules) and 140 
COSMOperm (504 molecules). 141 

 142 
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Apparent and intrinsic permeability 143 

In order to compare and analyze values of permeability, we must be able to distinguish between two 144 
concepts - apparent permeability and intrinsic (or molecular) permeability.  145 

In a stirred container, the solute concentration is equalized in the bulk of the liquid. However, close to 146 
the membrane surface, molecules only move by diffusion rather than by convection. As a solute flows 147 
through the membrane, a concentration gradient builds up in close proximity to the membrane, 148 
weakening the driving force.50 149 

According to equation 1, so-called measurable apparent permeability (papp) is composed of 150 
contributions:   151 
pUWL, fneutral and pM.51 152 

1

𝑝𝑎𝑝𝑝
=  

1

𝑝𝑈𝑊𝐿
+  

1

(𝑓𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑀)
                                                    (1) 153 

where pUWL is the permeation through an unstirred water layer (UWL), fneutral is the fraction of molecule 154 
that is in a non-ionized state in the donor compartment, and pM is the molecule’s intrinsic permeability. 155 
This equation is plausible for the cases where the permeability of ionized species is negligible. That is 156 
often valid, but there are specific examples when this assumption is not fulfilled52,53. UWL is a static 157 
layer of water directly adjacent to the surface of a membrane, acting as an additional resistance to 158 
permeation. This value can vary with different stirring of donor and acceptor compartments, but for the 159 
most common experimental setting of CACO-2/MDCK or PAMPA assay, this value is around −3.9.13  160 

Intrinsic permeability is often obtained from the calculation based on measuring the permeability scale 161 
at different pH levels. This approach can be found in publications by Huque et al.54, Avdeef et al.55, or 162 
Tsinman et al.56. Furthermore, other implementations of this approach showed Velický et al.57, where 163 
the permeabilities are measured at different hydrodynamic regimes and from that, intrinsic permeability 164 
can also be calculated.  165 

Here, it can be noted that the apparent permeability is easily calculable from the intrinsic permeability 166 
by taking into consideration the fraction of non-ionized  molecules (from pKa) and the permeation rate 167 
through an unstirred water layer, which is specific to the experimental setup and can be determined from 168 
data for fast-permeating molecules. Conversely, the determination of intrinsic permeability from the 169 
apparent one is only feasible when the apparent permeability is not close to the diffusion limit. This 170 
relation limits the usefulness of published apparent permeability data for intrinsic permeability models. 171 

 172 

Results and discussion 173 

Repeatability of the data 174 

Firstly, we wanted to analyze the repeatability of the data to get the gist of the reported value variability 175 
necessary to establish error estimation. For this purpose, permeability measurements for the same 176 
molecules were considered using the same method at similar conditions (see Method section). The most 177 
prevalent experimental method in the MolMeDB is PAMPA. We have taken seven most studied 178 
molecules. They are listed in Table 1, along with the number of measured data points, average 179 
permeability, and standard deviation. 180 

  181 
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Table 1: Molecules with the most data measured by the PAMPA method. Data taken from MolMeDB. 182 
Pintr - number of intrinsic permeabilities, Papp - number of apparent permeabilities 183 

 Pintr Papp Average 

LogPerm 

(cm/s) 

Standard 

deviation 

(cm/s) 

Minimum 

value 

(cm/s) 

Maximum  

value 

(cm/s) 

Antipyrine 1 6 -5.70 0.34 -6.09 -5.09 

Carbamazepine 1 7 -4.83 0.65 -5.8 -3.89 

Ketoprofen 1 12 -5.50 0.49 -6.39 -4.32 

Naproxen 2 4 -4.38 1.62 -6.2 -1.69 

Propranolol 3 14 -4.10 1.48 -6.68 -0.21 

Theophylline 3 5 -5.94 0.78 -7.4 -5.07 

Verapamil 3 6 -3.74 1.81 -5.19 -0.89 

 184 

When visualizing the data from these seven molecules measured by PAMPA (Fig. 1), we see several 185 
different behaviors of molecules, that can be discerned between intrinsic and apparent permeabilities.  186 

Firstly, there are molecules with very low variance between measured values, such as antipyrine or 187 
ketoprofen, within 0.5 log unit. Further molecules, such as carbazepine or theophylline, have reasonable 188 
variances within 1 log unit. The Table 1 shows several molecules with variance within 2 log units – 189 
hence individual permeability measurements differ by more than 2 magnitudes. However, these large 190 
errors can be explained by the mixing of apparent and intrinsic permeability, that Fig. 1 show to be 191 
several log units different for those molecules. 192 

Unfortunately, the information on whether intrinsic or apparent permeability is reported is not always 193 
properly described in the literature or databases (e.g., we had to implement PAMPA Pintr into MolMeDB 194 
upon preparation of this manuscript). The lack of distinction between apparent and intrinsic permeability 195 
can lead to complications, especially when comparing data from multiple papers using the PAMPA 196 
method. 197 

 198 
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Fig. 1: Box plot of seven molecules with the most data measured by the PAMPA method 

(in MolMeDB). A – apparent permeability, B – intrinsic permeability. Rhombuses represent mean 

values of permeability, and the line corresponds to the median value of the dataset. Dots represent 

outliers. 

 199 

A similar lack of information affects cell-based methods. There is crucial information about the direction 200 
of measurement or membrane transport proteins. There are two possible directions – either from apical 201 
to basolateral (from A to B) or from basolateral to apical (from B to A). The difference of permeabilities 202 
in direction can be large, e.g. in Colabufo et al.58. The direction affects the value of measured 203 
permeability because these cells have an asymmetrical expression of pharmacologically relevant 204 
proteins that influence molecular transport.59 These proteins are (i) efflux transporters, 205 
e.g., P-glycoprotein (MDR1, ABCB1), MRP2 (ABCC2) or BCRP (ABCG2), and (ii) uptake proteins, 206 
e.g., OCT2 (SLC22A2), OATP2B1 (SLCO2B1), or PEPT1 (SLC15A1)59,60. In the case of these 207 
measurements, not only the direction in which the permeability is measured but also the presence of 208 
transporter inhibitors plays a role33,59. The inhibitors increase the permeability of substrates of efflux 209 
transporters33. Gene knockout techniques can also alter the expression of these transporters in the cells60. 210 
Unfortunately, this information is often not sufficiently reported together with permeability data in the 211 
public available databases. 212 

Comparison of methods  213 

In this analysis, we have studied the correlation between each pair of permeability methods to see how 214 
they can be supplemented with each other if needed. A mean logPerm value for each molecule and 215 
method was calculated, and for molecules that were measured/calculated by at least two methods, these 216 
data were compared. The comparison of all possible pairs of methods is available in Supporting 217 
Information (Fig. S1). Here, we discuss the most prominent and illustrious examples. 218 

The first finding is the strong correlation (R2 = 0.82) between CACO-2 and MDCK (Fig. 2A). This 219 
correlation is expected because both methods are cell-based methods, and their strong correlation was 220 
described by Irvine et al.3 221 

From the previous section, we know the PAMPA dataset contains a mixture of apparent and intrinsic 222 
permeabilities that need to be differentiated if the data are to be compared. Fig. 2B is the correlation 223 
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among CACO-2 & MDCK vs intrinsic PAMPA. This correlation is very weak (R2 = 0.03) because, in 224 
contrast to PAMPA, the CACO-2 and MDCK methods can provide only apparent permeability. On the 225 
other hand, Fig. 2C shows the correlation (R2 = 0.44) between CACO-2 & MDCK vs apparent PAMPA. 226 
This correlation is unsurprisingly stronger because the PAMPA apparent permeabilities correlate well 227 
with CACO-2 and MDCK data. This observation is consistent with the literature because the correlation 228 
among these methods was already described in the literature (PAMPA and CACO-2 were described by 229 
Zhu et al.61, MDCK and PAMPA were published by von Richter et al.62). However, in addition to the 230 
membranes, the cell-based methods CACO-2 and MDCK also have membrane transport proteins, which 231 
can influence the transport of molecules through the membrane, and thus lower the correlation. 232 
However, the correlation between CACO-2 and PAMPA and MDCK and PAMPA indicates passive 233 
diffusion as a dominant transport mechanism in the case of both cell monolayers11,63. A good correlation 234 
between CACO-2 & MDCK vs apparent PAMPA can indicate a smaller role of membrane transporters 235 
in this dataset.  236 

Fig. 2D shows a strong correlation (R2 = 0.73) between the calculated methods (PerMM and 237 
COSMOperm) and BLM / liposomes (abbreviated “BLM”). The BLM method is a very important 238 
experimental method because, in contrast to other experimental methods, the BLM is the diffusion-239 
unlimited method. Thus, molecular permeability is easily determined using BLM. The BLM is not 240 
widespread, and therefore, we do not have as much data available as the PAMPA method. 241 

The authors of both calculated methods validated these methods against BLM  experimental data22,23. 242 
Bittermann et al.64 report that COSMOperm has RMSE = 0.62 log units for neutral molecules and RMSE 243 
= 0.7 log units for ions. The PerMM method has RMSE = 1.15 log unit by Lomize et al.22. Therefore, it 244 
is no surprise that these methods correlate strongly. In addition, highly similar BLM datasets were used 245 
for validation, and this validation data comprises the majority of the BLM data in the MolMeDB 246 
database. We also see that the values are wide ranged because BLM, COSMOperm, and PerMM are 247 
methods that are not constrained by diffusion limits and provide intrinsic permeabilities. 248 

Fig. 2E is a correlation between calculated (PerMM and COSMOperm) (R2 = 0.58). This correlation is 249 
not surprising, given what has been said about these methods above. Both methods are unlimited by 250 
diffusion limit and can predict intrinsic permeabilities. 251 

Fig. 2F is an example of the weak correlation between diffusion-limited method (PAMPA) and -252 
unlimited method (PerMM). More examples can be found in Supporting information (Fig. 1S H and O). 253 
As we can clearly see, PAMPA data are located in the range of values (approx. from −8 to 4 log units), 254 
but the PerMM method is in the wider range of values (approx. from −16 to 4). Differences between the 255 
logPerm values from PerMM and PAMPA can be huge (several log units), although the PerMM method 256 
was successfully evaluated by PAMPA-DS (PAMPA-DS: R2 = 0.75, RMSE = 1.59 log unit) by Lomize 257 
et al. 22. Our correlation is weaker (R2= 0.27) than Lomize’s because our dataset contains apparent 258 
permeabilities and intrinsic permeabilities, whereas Lomize used only intrinsic permeabilities from one 259 
source. 260 

Apart from the correlation, it is often more useful to calculate mean absolute error (MAE) for each 261 
comparison (Table 2). It shows that the closest pair of methods are both cell-based methods (CACO-2 262 
and MDCK) followed by their pairs with their membrane-based counterpart sharing similar range – 263 
apparent PAMPA. The error between BLM and both computational methods is comparable to the MAE 264 
in between them, but their similarity to cell-based methods is weak with the largest error. As a negative 265 
control, we have tried mean predictor, i.e. we calculated MAE of each method towards the mean average 266 
value calculated on its dataset. This value serves as a negative control for the fit to that dataset. If the 267 
MAE value for pair is lower or at least similar than MAE to mean predictor, then it can be combined.  268 
This comparison has shown that we can combine both cell-based methods (CACO-2 and MDCK) 269 
together with apparent PAMPA. Similarly, both computed physics-based methods (COSMOperm and 270 
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PerMM) can be used to predict membrane-based BLM method and to some extent also to intrinsic 271 
PAMPA. 272 

 273 

Table 2. Mean absolute errors (MAE) for each pair of methods. Colors define indicate the ranges – green 274 
has MAE range < 1 log units, yellow has MAE range between 1 and 3 log units, and red has MAE range 275 
> 3 log units. Diagonal shows MAE of mean predictor, i.e. towards mean average value of each dataset. 276 
This value serves as a negative control for the fit to that dataset. If the MAE value for pair is lower or at 277 
least similar than MAE to mean predictor, then the datasets can be combined.   278 

MAE CACO MDCK 
PAMPA 

app. 

PAMPA 

intr. 
BLM 

COSMO

perm 
PerMM 

CACO 0.72 0.34 0.73 2.81 2.39 2.79 4.02 

MDCK 0.34 0.65 0.74 2.00 3.49 2.76 3.34 

PAMPA 

app. 
0.73 0.74 0.85 2.53 3.30 3.56 3.95 

PAMPA 

intr. 
2.81 2.00 2.53 1.59 3.26 1.78 2.44 

BLM 2.39 3.49 3.30 3.26 1.90 0.97 1.42 

COSMO

perm 
2.79 2.76 3.56 1.78 0.97 1.71 1.98 

PerMM 4.02 3.34 3.95 2.44 1.42 1.98 3.11 

  279 
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Fig. 2: Mean logPerm values of molecules that are present in overlaps between A: CACO-2 and MDCK 

datasets; B: CACO-2 & MDCK and intrinsic PAMPA datasets, C: CACO-2 & MDCK and apparent 

PAMPA datasets D: COSMOperm & PerMM and BLM/Liposomes datasets, E: PerMM and 

COSMOperm datasets, F: PerMM and PAMPA datasets (apparent and intrinsic permeabilities). The solid 

line represents the parity of permeation values, and the dashed lines represent a logPerm difference of ±1 

between methods. All data is displayed in a log of cm∙s−1. N is the number of unique molecules in overlap, 

and R2 is the coefficient of determination. 
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Overlaps of the methods 280 

All the above-mentioned methods are well-known, and the permeabilities of small molecules determined 281 
by these methods have been published in many publications. 282 

The UpSet plot (Fig. 3) shows overlap between all six methods by molecules (MolMeDB IDs). The 283 
biggest overlap is between both calculated methods (176 molecules); the second biggest one is the 284 
overlap among PerMM, COSMOperm, and BLM (63 molecules), and all other overlaps are much 285 
smaller. 286 

 287 

Fig. 3: Upset plot of six methods (created with UpSetR Shiny App). Columns in the graph represent 

a number of molecules that were measured by the combination of methods shown by black circles 

only. The first column shows molecules that were measured by PAMPA only, and the last column 

shows molecules that were measured by PAMPA, calculated by PerMM but which are not present in 

any other dataset. This figure includes only intersections with more than one molecule. The overlap 

among all six methods is highlighted by red rectangle. 

 288 

Overlap among all six methods contains three well-known drugs (hydrocortisone, salicylic acid, and 289 
acetylsalicylic acid). Fig. 4A is the Cleveland dot plot of logPerm median values from individual 290 
methods for each of these molecules. Fig. 4B shows median permeability values for molecules that are 291 
present in all datasets except BLM due to the low number of molecules in the BLM/liposome dataset. 292 
The data shown in Fig. 4 underline the phenomena from the previous chapter. MDCK, CACO-2, and 293 
apparent PAMPA (purple, pink, and light blue points) often give very similar results. In the case of 294 
atenolol, verapamil, or warfarin, the difference between apparent PAMPA (light blue points) and 295 
intrinsic PAMPA (navy blue points) can be huge. Also, the figure demonstrates the variability of logPerm 296 
values from all calculated methods (green and yellow points).  297 

 298 
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Fig. 4: Cleveland dot plot of median permeability coefficients for molecules in the overlap of MDCK, 

CACO-2, PAMPA, BLM / Liposomes, COSMOperm, and PerMM datasets. 

 299 

The limits of permeability of the compared methods 300 

Distributions of values for individual methods have shown that each method has some limits of reported 301 
permeability that differ. Fig. 5 shows that almost all CACO-2 and MDCK experimental values fall in a 302 
fairly narrow range from −8 to −4 log units. The lower limit is probably due to the duration of the 303 
experiments. It is hard to measure slower permeation in experimental conditions within ambient times. 304 
The upper limit (around −3.9) corresponds to the diffusion limit through an unstirred water layer 305 
(UWL),13 as explained above. Here, it can be noted that at least 40% of molecules studied using CACO-306 
2 or MDCK assays were close to this diffusion limit. Therefore, a significant amount of measured 307 
permeability is, in fact, diffusion of the unstirred water layer, and their intrinsic permeability is thus 308 
anywhere between −4 and 4. However, for example Stenberg et al, published CACO-2 data where they 309 
tried to reduce the effect of UWL on permeability by stirring65. 310 

Data from the PAMPA experimental assay (Fig. 5 PAMPA) has a visible peak around logPerm = −4, 311 
though higher permeation rates were also measured. This phenomenon is again caused by the above-312 
mentioned mixture of apparent and intrinsic PAMPA permeabilities in the literature. Some publications 313 
(e.g. refs. 63,66,67) report the apparent permeability as a direct experimental value of permeation, which 314 
is related to CACO-2 permeability. On the other hand, other publications of PAMPA permeation data 315 
(e.g. refs. 54,55) report the intrinsic permeability, thus mixing permeability values.  As can be seen from 316 
the figure, the apparent permeability (light blue) peaks between the values -8 and -4, while the intrinsic 317 
permeability (navy blue) is shifted to higher values. However, some values of apparent permeability are 318 
over −4 threshold. This phenomenon can be explained by e.g. effort to reduce the UWL layer in 319 
permeability assay by increasing of stirring speed68. Fujikawa et al present e.g. for Desipramine  logPerm 320 
= −4.77 (0 rpm), logPerm = −4.00 (200 rpm), and logPerm = −3.81 (250 rpm)67. 321 
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Permeabilities measured by the BLM/liposome method are typically higher than −4, likely due to the 322 
relatively large membrane area in liposomal systems. Although the BLM/liposome method also provides 323 
apparent permeabilities, the UWL, in this case, is significantly smaller than that of CACO-2, MDCK or 324 
PAMPA, and its contribution is practically negligible. The lowest experimentally measured permeability 325 
value is −13.1 log units for saccharose from Brunner et al. 69.  Its authors say that any value lower than 326 
−10 log unit is hardly measurable. 327 

With the computational approaches – PerMM and COSMOperm (Fig. 5 PerMM and COSMOperm), we 328 
observe a broad distribution of permeation rates from very slow permeation (logPerm ≤ −8 cm∙s−1) to 329 
very fast permeation (logPerm ≥ −4 cm∙s−1). This is typical for calculated methods because they have 330 
no experimental limits. We can compare the result from the experimental method with the result from 331 
the calculation, but only up to the limits of the experimental methods. Beyond these limits, there is no 332 
possibility of comparison. The permeabilities obtained by these calculated methods can be categorized 333 
as intrinsic permeabilities.  334 

In addition, it is interesting to mention differences in averages of octanol/water partition coefficient 335 
(LogP) and molecular weight (MW) for different methods.  336 

CACO-2, MDCK, and PAMPA have considerably higher averages of both values than the other three 337 
methods. This is probably caused by the fact that most of the permeating molecules measured in these 338 
assays in scientific publications are drug-like molecules, and the molecular weight of around 400 Da 339 
and logP around 3 corresponds to a typical drug candidate. 340 

BLM/liposome methods have much lower MW and logP (MW = 159.4 Da, logP = 0.3). This is probably 341 
because these methods are not commonly used for extensive drug candidate molecule assays; rather, 342 
there are only a few measurements of typical small molecules (e.g., benzoic acid). These data are then 343 
often used as training/validation of different computational methods since they are not influenced by the 344 
-8 and -4 thresholds that are hard (or even impossible) to overcome for other experimental methods. 345 

Computational methods (COSMOPerm, PerMM) can predict the permeabilities of a wide range of 346 
molecules. Their average LogP of around 1.8 and MW of around 260 Da is lower than for experimental 347 
methods. This has at least two co-occurring reasons. Firstly, using computational methods, it is possible 348 
to calculate small molecules (oxygen, water, carbon dioxide) that are commonly not measured in 349 
permeation assays. Secondly, the calculation difficulty scales with molecular weight, and therefore, it is 350 
more expensive to calculate molecules with larger MW.  351 
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 352 

  

  

  

Fig. 5: Distribution of selected LogPerm values (uncharged molecules, 25 °C, smaller than 800 

Da) from MolMeDB database according to selected methods. Datasets – number of unique 

datasets (by primary reference), LogP – mean logP of unique molecules, MW – mean molecular 

weight of unique molecules, n - number of unique molecules (by SMILES) in combined datasets. 

All data is displayed in a log of cm/s, bin size = 0.5.  The vertical lines emphasize values −12, −8, 

−4, 0, +4, as discussed above. Occurrences are in log scale. 
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Interpreting permeability coefficients real-world time scales 354 

For the interpretation of the limits we observed within the previous sections, we have designed several 355 
simplified boundaries as a multiplication of 4 log units, that can help to explain the limitations of 356 
permeability coefficients in real world examples of the time scale for permeation events (Fig. 6).  357 

 

Fig. 6: Illustration of permeability coefficients in the context of timescale 

The lowest experimental value of logPerm is −13.1 log units in our dataset (Fig 3 BLM/liposomes)69. 358 
Hence, the first line of logPerm around −12 log units corresponds to the lowest permeation rates still 359 
measurable by single-membrane experimental methods. It is close to the practical limit of the slowest 360 
passive permeation that still results in a biologically feasible amount of e.g. highly toxic compounds 361 
permeating over a physiologically relevant amount of time. For a permeation area equal to that of an 362 
entire human intestine (30 m2)70 and 0.1 L as a volume of the intestinal fluid,71 only 0.25 % of a permeant 363 
will have permeated in ten days at such rate with logPerm = −12 log units. 364 

The second line is logPerm around −8 log units. This area corresponds to the lowest limit of cell-based 365 
methods (e.g., CACO-2 or MDCK) as well as PAMPA. With the typical measurement setup for these 366 
measurements (donor volume 0.5 mL, permeation area 1.4 cm2),72 the compound with logPerm = −8 log 367 
units will permeate approx. 2% of the permeant in 10 days. The same limit is observable in, e.g. Deur 368 
et al. 73 for CACO-2, Chiba et al.74 for MDCK, or Flaten et al. 75  for PAMPA. 369 

The third important value of logPerm is −4 log units. This represents the value of −3.9 log unit that 370 
corresponds to the effect of an unstirred water layer (UWL) as we already discussed earlier in previous 371 
section. Hence the typical permeability coefficient values will fall in between logPerm −8 to −4 log 372 
units.  373 

Fourth line of logPerm around 0 log units relates to an unrestrained diffusion in water and represents the 374 
maximum permeability measurable by experimental methods in water medium. Such logPerm values 375 
correspond to the permeation of molecules through water slice of similar thickness to membrane, where 376 
there is no energy barrier for permeation and diffusion coefficient is equal to the water self-diffusion 377 
coefficient. Then, the homogeneous solubility model for the permeation coefficient is valid: 378 

𝑃 =  
𝐾∙𝐷

𝐿
                                                    (2) 379 

where K is the partition coefficient between the membrane and water phase (considered equal to 1, if 380 
there is no extra partitioning into the slice due to no energy barrie), D is the diffusion coefficient 381 
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(3×10−9 m2/s  for water self-diffusion, taken from ref. 76), and L is the thickness of the membrane (the 382 
thinnest experimentally possible membrane with a thickness around 4 nm). Then, P is 75 cm/s, and 383 
logPerm is +1.9 log units. Since drugs are bigger molecules than water, they usually have diffusion 384 
constant lower by order of magnitude or more (e.g., ibuprofen has D = 5.5×10−10 m2/s)77, we have set 385 
this simplified limit to 0 log unit.  386 

The rightmost highlighted value of logPerm is around +4 log units. This value of logPerm presents the 387 
theoretical upper limit of permeability, describing an unrestrained molecule travelling through a vacuum 388 
(together with a spherical chicken from classical physics joke). This was calculated using the formula 389 
for the root mean square velocity of a gas molecule (equation 3): 390 

𝑣 = 𝑠𝑞𝑟𝑡(3𝑘𝑇
𝑚⁄ )         (3) 391 

Where k is the Boltzmann constant, T is the temperature (K), and m is the mass of the molecule. If we 392 
assume the mass of the molecule as 200 g∙mol−1 and a temperature of 37 °C, we get a velocity of 393 
6000 m∙s−1, which can be considered as a gas permeability limit (logPerm = +5.8 log units of cm∙s−1) 394 
but only in the case of a negligible thickness of the membrane, area of permeation equal to the projection 395 
is of the molecule itself and maximum possible concentration difference. This value is purely 396 
hypothetical and does not correspond to the biomembrane permeability in real liquid conditions. It is 397 
only stated here as the absolute upper limit of the permeability. Even the 60 times smaller value of 398 
permeability (logPerm = +4 log units of cm∙s−1) is still purely hypothetical and impossible to get in 399 
biomembrane permeation; thus, this limit is used in graphs and discussion below due to the 4 orders of 400 
magnitude difference between all other limits. 401 

Conclusions 402 

In summary, we have meta-analyzed a large amount of permeability data from freely available databases 403 
MolMeDB and ChEMBL. Permeability is, among other things, the basis of classifying drug substances 404 
into the Biopharmaceutics Classification System (BCS)78 and this classification forms the basis of 405 
product formulation and regulatory approval strategy decisions, hence it is important to have reliable 406 
data for permeability. Moreover, permeability as an important pharmacological property is of interest to 407 
many researchers who try to create machine learning algorithms for its prediction. The variability 408 
between individual measurements, even for the same methods, has shown that efforts should be made 409 
to develop robust methods that would enable consistent inter-laboratory values to be measured and 410 
stored in FAIR manner, e.g. in MolMeDB database. Next the analysis of individual methods observed 411 
their data limits. Meta-analysis in-between the datasets has shown that cell-based methods such as 412 
CACO-2, MDCK are comparable with apparent PAMPA, but all of these methods correlate less with 413 
calculated physics-based methods (COSMOperm and PerMM) and with single membrane-based 414 
BLM/liposomes or intrinsic PAMPA, which are based on molecular permeabilities. This needs to be 415 
considered when permeability data are from different methods compared or used in machine-learning 416 
approaches. Finally, we have devised a scale with five significant permeability values as a multiplier of 417 
4 log units of cm∙s−1 to help a comprehensive understanding of the permeability data within their 418 
physical context. 419 
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