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Abstract

Quantitative comparison of ligand-target interaction profiles is often challenging

due to subjective interpretations in visual inspection or limitation to predefined in-

teractions in analytical methods. Moreover, traditional analyses tend to overlook the

dynamic nature of the interactions, focusing instead on mean energy values. By describ-

ing ligand-residue interactions as energy distributions, we account for these dynamics.

Assuming a Gaussian distribution, the mean and standard deviation are sampled from

molecular dynamics simulations. Using the Sørensen-Dice similarity index, we con-

structed a metric where the overlap between Gaussian interactions quantifies their
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similarity. For ligand comparison, the average per-residue similarity is employed. This

method allows for post-processing techniques like clustering and dimensionality reduc-

tion. We applied it to the focal adhesion kinase (FAK) type II inhibitors targeting the

ATP binding site, identifying interaction patterns among the inhibitors.

Introduction

In drug discovery, it is crucial to understand the interaction between a small molecule and its

target to identify interaction patterns, which dictate the efficacy and specificity of a drug and

can contribute to a better design and optimization of potential drug leads. Experimentally,

the determination of ligand-protein interactions can be challenging due to the complexity of

the procedures and the high cost associated with them, among other factors. In this context,

computer-aided drug design (CADD) plays a central role, as it employs computational tools

to relate a drug’s structure to its biological activity. These methodologies are often divided

into two categories: ligand-based and structure-based. The latter includes molecular dock-

ing, molecular dynamics simulations (MD),1 and molecular mechanics in combination with

Poisson-Boltzmann or generalized Born surface area methods (MM/PBSA and MM/GBSA,

respectively). Molecular docking is employed to propose molecular complexes between lig-

ands and a biological target, while MD is used to simulate the time evolution of the system

and to sample the conformations of each ligand within the target.2 From the sampled con-

formations, MM/PBSA or MM/GBSA are used to estimate the binding free energy between

the ligands and the target and to decompose the binding energy into separate contributions

from each part of the target, like amino acids or nucleotides in the case of proteins and DNA,

respectively.

Interaction fingerprints (IFPs) are used to condense the information from the ligand

binding. The most common IFPs are one-dimensional vectors with binary values, where each

component encodes the presence (1) or absence (0) of a predetermined interaction, such as

hydrogen bonds (HBs), hydrophobic contacts, cation-π interactions, etc., for each residue in a
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particular target. In recent years, IFPs have gained relevance as inputs for machine learning

models or when used to calculate the likeness between ligand pairs employing similarity

coefficients.3 The IFPs used in these comparisons are usually based on interactions derived

from predefined molecular patterns (e.g., the use of pairwise distances, angles, dihedrals

angles, and atom types to identify hydrogen bonds, salt bridges, hydrophobic contacts, etc).

These IFPs are restricted by the predefined interactions recognized and their definitions,

and could be missing relevant stabilizing interactions between the ligand and the target.

Moreover, these approaches are usually made over a particular ligand-target conformation

and do not contemplate the dynamic nature of the binding complex.

Here, we propose a comparison based on fingerprints derived from ligand-residue inter-

action energies to provide more generality than an analysis based on predefined types of

interactions. The interaction energies are extracted from a MD trajectory previously an-

alyzed using the MM/GBSA method and condensed into an energy distribution so that

energetic fluctuations caused by the dynamic binding are taken into account. The obtained

fingerprint is then a vector composed of energy distributions for each ligand-residue pair.

Finally, we propose a new similarity index, denominated SDC (vide infra) to perform lig-

ands comparisons taking these fluctuations into account. The Kinase domain of the focal

adhesion kinase (FAK), a previously studied target in our group, was chosen as a test case to

implement the similarity analysis based on energetic distributions. FAK is a tyrosine kinase

protein of 125 kDa (1052 residues) that has been extensively studied as a molecular target

for the development of new antitumor therapies4 because it is upregulated in both solid and

non-solid tumors and plays a crucial role in the oncogenic signaling.

To date, eight inhibitors have been tested in clinical assays: PF-562271, GSK2256098,

CEP-37440, PND-1186, Defactinib, BI 853520, Conteltinib, and APG-2449. In addition,

other potential inhibitors have been designed based on these compounds to improve the

antitumor potency.5 In an attempt to compare their binding interaction patterns with FAK

and quantify the similarity between the interaction profiles of clinical inhibitors, we applied
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the energetic distributions based on the MM/GBSA decomposition energies. In addition,

ten other inhibitors, which were subjected only to preclinical testing, were included in this

study.

Materials and methods

Structure preparation

The experimental human FAK structures with inhibitors selected for this study were those

deposited in the Protein Data Bank6 (PDB) with the IDs 2ETM, 2JKK, 3BZ3, 4GU6, 6I8Z,

6YOJ, 6YQ1, 6YT6, 6YVS, and 4GU6. The 4GU6 structure7 was chosen as the target for

docking and MD simulations because it is complete around the ATP binding site, although it

lacks two distant residues (444-445). The missing residues were built using the MODELLER

server (ModLoop).8,9

Molecular docking studies

Molecular docking was performed to find and score protein-ligand binding poses on FAK us-

ing Smina 1.2.0 with the Vinardo scoring function,10 and FRED, included in the OEDocking

4.2.0 suite, OpenEye.11

For SMINA runs, ligand PDBQT files were generated using prepare ligand4.py12 and

then docked using a rigid receptor approach. A docking box (27.38 Å x 25.88 Å x 28.12 Å)

was defined around the ATP binding site.

To perform molecular docking with FRED, multiple ligand conformations were generated

with OMEGA13 using the ”pose” mode with default settings. The target structures were

converted to receptor format using the pdb2receptor program included also in the OEDocking

4.2.0 suite. FRED was run with their default settings.11 The pose selection was made using

a consensus approach14 with Smina and FRED. In this approach, we calculated the cross

root-mean-square deviation (RMSD) between the best poses and considered an RMSD value
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below 2 Å as a match. To validate the protocol, the docking results were compared for those

inhibitors with an experimental structure with FAK.

Molecular dynamics simulations

The best poses obtained by docking were submitted to MD simulation. The complexes have

a positive net charge, consequently, chlorides were added as counterions with Leap to achieve

electroneutrality. The neutralized complexes were immersed in a box of TIP3P waters which

extended up to 15 Å from the solute. The ligands were described using the Generalized

Amber Force Field (GAFF)15 with charges derived from the restrained electrostatic potential

(RESP) approach, which were calculated with the Antechamber module16 and Gaussian03

D.01,17 while the target was described using AmberFF14SB force field.18 The topology was

assigned using Leap and Antechamber, which are included in the AmberTools 21 package.19

All MD simulations were run using the NAMD 2.14 software.20 The van der Waals

interaction cutoff distances were set at 9 Å and long-range electrostatic forces were computed

using the particle mesh Ewald (PME) summation method with a grid size set to 1.0 Å. The

1–4 contributions were multiplied by a factor of 0.83 to match the AMBER force field

requirements. Prior to simulations, the systems were subjected to a series of minimization

steps: first applied only to hydrogen atoms, then extended to ligand and water molecules,

followed by residue side chains, and finally the entire system was minimized. MD began by

heating from 0 to 300 K over 30 ps and then continued at 300K for 40 ns. The constant

temperature was maintained using Langevin dynamics with a damping coefficient of 2 ps,

while pressure was kept constant at 1 atm through the Nose-Hoover Langevin piston method

with a damping time constant of 50 fs. A time step of 1 fs was adopted for all simulations.

Bonds involving hydrogen atoms of water were constrained using the SHAKE algorithm.21

RMSD values were depicted as a line-style plot to determine the convergence and stability

of simulations (Figure SM1).
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MM/GBSA calculations

Ligand-FAK binding free energies were calculated for all complexes using the MM/GBSA

method, which involves calculating the difference between the bound and unbound states

of the protein and ligand.21 The solvation-free energy (∆Gsolv) was separated into polar

and non-polar contributions. The polar contribution to ∆Gsolv was calculated using the

generalized Born (GB) model22 implemented in MMPBSA.py module,23 with igb 2 as the

selected model. The hydrophobic contribution to ∆Gsolv was determined using the solvent-

accessible surface area (SASA). The protein–ligand binding free energy was calculated using

a single trajectory (for ligand, receptor,and complex) based on 1000 snapshots taken from

the last 10 ns portion (10 ps interval) of the MD simulation trajectories. Additionally, the

binding energy was decomposed into ligand–residue pairs to obtain a detailed representation

of the ligands/FAK interactions and create interaction profiles. The selected residues were

those within 5 Å of any ligand atom. These calculations were performed using a pairwise

energy decomposition scheme (idecomp option 3) also with the MMPBSA.py module.

No entropic term is calculated, as we assume that the ligands are alike, and therefore

their conformational entropy is of the same order.

Geometrical interaction fingerprints

In order to perform a complementary analysis, interaction fingerprints were computed using

the Python library ProLIF (Protein-Ligand Interaction Fingerprints).24 This library uses a

predefined list of interactions, which are defined as two groups of atoms (belonging to the

ligand and target) that satisfy geometrical constraints based on distances and/or angles.

The ProLIF library generates interaction fingerprints by calculating the presence of specific

atomic interactions between the protein and ligand, such as hydrogen bonding, hydrophobic

contacts, and pi-stacking interactions. These interactions are represented as a binary vector,

where each element corresponds to a specific interaction type. The resulting vector is then

used as a fingerprint to represent the protein-ligand complex.
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ProLIF can quantify the presence of different interactions during an MD trajectory and

return an occupancy metric to indicate their prevalence. This methodology was applied on

the last 10 ns of the molecular dynamics trajectories (1000 snapshots). The chosen active

site included amino acids within 5 Å of any ligand.

FAK inhibitors selection

The ATP competitive inhibitors selection was done based on the availability of structural

information, interaction patterns, and inhibitory activity in preclinical and clinical stages

(see Table 1). The molecular structures of these inhibitors are shown in Figure 1. Also,

a short description of selected compounds is given below, highlighting the most interesting

features of each one.
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PF-562,271 TAE226 BI-4464

10N 7PY PHM16

P4N PVT P7N

PND-1186 GSK2256098 Conteltinib

APG-2449CEP-37440 Mitoxantrone

PKE Defactinib BI 853520

Figure 1: Molecular structure of the selected FAK kinase inhibitors.

• TAE226 consists of a core bis-anilino pyrimidine, and it was designed by Novartis

Pharmaceutical Company to bind to the ATP-binding site of FAK, although it is

also able to bind to other PTKs such as Insulin-like Growth Factor 1 Receptor (IGF-
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Table 1: Summary of the selected inhibitors

Name/s FAK Inhibitory Activity (IC50) Clinical status PDB ID
TAE226 (NVP-TAE226) 5.5 - 6.24 nM Preclinical 2JKK

PF-562,271 1.5 nM Preclinical 3BZ3
PHM16 400 nM Preclinical 4C7T
BI-4464 17 nM Preclinical 6I8Z

Mitoxantrone – Preclinical –
7PY 200 nM Preclinical 2ETM
10N – Preclinical 4GU6
P4N – Preclinical 6YOJ
PVT – Preclinical 6YVS
P7N – Preclinical 6YQ1
PKE – Preclinical 6YT6

GSK2256098 1.5 nM Clinical Phase I –
CEP-37440 2.3 nM Clinical Phase I –
BI 853520 1 nM Clinical Phase I –

PND-1186 (VS-4718) 1.5 nM Clinical Phase I –
Defactinib (VS-6063) 0.6 nM Clinical Phase II –
Conteltinib (CT-707) 1.6 nM Clinical Phase I –

APG-2449 – Clinical Phase I –

1R), Pyk225 and mutant forms of Epidermal Growth Factor Receptor (EGFR).26–28

In fact, TAE226 exhibits more affinity by the mutant form of EGFR L858R/T790M

than by EGFR wild-type form.27 The crystal structure and molecular dynamics of this

compound have confirmed the stabilization in the site by hydrogen bond, electrostatic,

and hydrophobic interactions.29

• PHM16 is a small inhibitor in both FAK and FGFR2, and it has been co-crystallized

in a complex with FAK (PDB ID 4C7T) and it exhibits a binding mode proposed

similar to TAE226/FAK complex.30

• BI-4464 is a highly selective ATP competitive inhibitor a close analog of the 2-

aminophenyl-4-phenoxypyrimidine BI 853520, a clinical inhibitor included in the dataset

selected.31

• Mitoxantrone is a dihydroxyanthraquinone antibiotic used in the treatment of acute

leukemia, lymphoma, prostate, and breast cancer, but also for severe late-stage multiple
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sclerosis. This compound and its derivative A18 were proposed as FAK inhibitors

through the combination of molecular docking and biological assays. Mitoxantrone

was included in our studies because the anthraquinone core may bind to FAK in a

different way from the ones occurring with other competitive FAK inhibitors.32

• 7PY and 10N are molecules with inhibitory activity over FAK and limited experi-

mental studies. They were selected based on differences in interaction patterns in the

crystalline structure. Particularly, 7PY does not form hydrogen bonds with Asp56433,34

• PF-562,271 is a methane sulfonamide diaminopyrimidine of first-generation developed

by the Pfizer pharmaceutical company. Although PF-562,271 is a dual inhibitor, that

is, inhibits both FAK and Pyk2, it exhibits effects four times more powerful over the

former.35

• P4N, PVT, P7N, PKE are structural analogs of PF-562,271, designed to assess

essential features of molecules to FAK inhibition. They exhibit a wide range of activities

toward FAK, but they are not in preclinical development as potential FAK inhibitors.36

• GSK2256098 is a FAK inhibitor developed by GlaxoSmithKline Pharmaceutical

Company and tested in phase I of clinical trials. GSK2256098 appears to be more

selective to FAK than to other PTKs family members. It is approximately 1000 times

more selective to FAK than to Pyk2.37

• CEP-37440 is a potent and highly selective dual inhibitor of both FAK and anaplastic

lymphoma kinase (ALK) with IC50 of inhibition of the catalytic activity of 2.3nM and

3.5nM respectively. The binding mode of CEP-37440 to FAK and ALK was predicted

by molecular docking.38

• BI 853520 is a potent and highly selective FAK inhibitor with an inhibition IC50 of

1 nM over recombinant FAK.39
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• PND-1186 also called VS-4718 is a small substituted pyridine FAK inhibitor of

second-generation developed by Verastem Inc. It has been evaluated in phase I of

clinical trials alone and in combination with antitumor drugs.40

• Defactinib (VS-6063, PF-04554878) is a second-generation inhibitor of FAK and Pyk2

developed by Pfizer Pharmaceutical Company. It has been demonstrated to be a potent

inhibitor of FAK and Pyk2 activity with an IC50 of 0.6 nM (in both kinases) and it is

100-times more selective to them than to other members of the Protein Kinase Family

(PTKs)39

• Conteltinib (CT-707) is a small FAK inhibitor (IC50: 1.6 nM) developed by Centau-

rus Biopharma that recently has been tested in clinical trials. The information about

this molecule is limited, although it has achieved an objective clinical response.41

• APG-2449 is another FAK inhibitor and recently, the results of a clinical trial carried

out over patients with solid tumors have been released, with promising results.42

Results

Evaluating the performance of docking methodology: Redocking of

crystalized compounds

In order to determine a suitable docking methodology, we conducted a redocking analysis of

the crystalized FAK inhibitors. FRED and Smina were evaluated as docking software. The

re-docking was carried out over ten crystal complexes, listed in Table SM1, selected from the

PDB. The inhibitor was removed from the complex, and then a docking was performed over

the FAK structure from PDB 4GU6 to recover the experimental pose. The RMSD between

the best docking pose and the corresponding aligned experimental structure was used to

assess performance. An RMSD value lower than 2 Å is considered as a good accuracy of

the docking program to reproduce the experimental structure.14 Both FRED and Smina
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reproduced accurately the crystal structures of the inhibitors, except for 7PY with Vina,

which yielded an RMSD value greater than 2 Å. Based on these results, we conclude that

these programs adequately generate binding poses for this system, and these calculations are

extensible to ligands that lack experimental structure. As both programs have successfully

reproduced the experimental poses, we have decided to combine their outputs using a pose

consensus approach to select the final pose. In this approach, the top three ranking poses

from the two programs are compared and the match pose proposed by Cavasotto et. al14

between them is finally selected for subsequent studies.

Docking of non-crystallized inhibitors

For the inhibitors GSK2256098, BI 853520, CEP-37440, PND-1186, Defactinib, Conteltinib,

APG-2449, and Mitoxantrone (Table 1) there are no publicly available co-crystallized com-

plexes with FAK despite preclinical studies demonstrating their interaction at the ATP

binding site, and having undergone clinical trials (except mitoxantrone). Therefore, to pro-

pose the binding conformations to FAK, we employed consensus docking, as described in the

Materials and Methods section.

All complexes show a similar position and orientation within the binding site; thus in

principle, they could bind in a similar fashion.

However, it’s important to note that even while two molecules may seem to interact

similarly, relying solely on docking is insufficient for a comprehensive assessment of the

binding strength and the identification of subtle differences in their binding modes.

Molecular dynamics and energetic analysis

To evaluate the stability of the proposed binding poses and explore specific binding patterns

in the active site, the FAK inhibitor complexes were submitted to the MD protocol, with

40 ns of equilibration/production. All systems stabilized within 25 ns of simulation, as

evidenced by the RMSD profiles, both for ligand and protein (Figure SM1). The RMSD

12

https://doi.org/10.26434/chemrxiv-2024-jzk7n ORCID: https://orcid.org/0000-0001-8678-4237 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-jzk7n
https://orcid.org/0000-0001-8678-4237
https://creativecommons.org/licenses/by-nc/4.0/


values showed that the crystallized inhibitors maintained their initial position. As expected,

the non-crystallized inhibitors and/or surrounding residues showed small fluctuations during

the early relaxation period of the MD simulation, but all of them reached stability similar

to that of the crystallized ligands (Figure SM2). This finding strongly suggests that the

selected poses are representative of stable complexes.

We used MM/GBSA to calculate the binding affinities (∆Ebind) of these complexes, as

previously described. According to these results, the crystallized inhibitors show a ∆Ebind

in the range of -38.3 to -54.3 kcal mol−1 (see Table SM2). The eight inhibitors without

structural information have energies of the same order as the crystalized inhibitors. Although

the correlation is not perfect, a trend is observed between the interaction energy presented

by the ligands with FAK and their inhibition activity (see Figure SM3).

Subsequently, per-residue energy interaction profiles were obtained using the MM/GBSA

method over the last 10 ns of the MD trajectories. This approach allowed us to discern the

energetic contributions of active site residues. The heatmap plot (see Figure 2) shows the

contribution of each residue to the total binding energy for the eighteen inhibitors. A similar

heatmap plot for the standard deviations is shown in Figure SM6). A limitation of this

analysis is that it does not identify the specific types of interactions between the ligands and

the active site.
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Figure 2: Heatmap of MM/GBSA mean binding energy contribution by residue for FAK
inhibitors (values are in kcal mol−1)

MM/GBSA-based similarity quantification using the Sørensen–Dice

coefficient

Ligand-protein binding is a complex process influenced by changes in the atomic dynamics

of both the ligand and the protein. During a MD simulation, an ensemble of conformations

is generated, each one representing a particular state of the ligand-target complex. The vast

amount of information obtained is generally reduced to a single binding energy averaging

over all the interaction energies using free energy estimation techniques. Or, at the very

best, this mean energy is separated on contributions from each residue.

Rather than relying solely on average energies, consider including the full set of energies

for each pose obtained throughout the simulation, and then describe the interaction energy

as an energy distribution instead of a single value. This way, the fluctuations are (to some

degree) considered in the analysis and not directly discarded. This distribution could be

done on a per-residue basis, thus encoding an energy distribution for each ligand-residue
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interaction, offering information about the strength of each interaction.

Additionally, to simplify the treatment, we hypothesize that for each ligand-residue in-

teraction, the distribution of the energies during an MD simulation could be effectively

represented by a Gaussian function, denoted as g(x). This distribution g(x) is defined by the

mean energy (µ) and the standard deviation (σ), both obtained from the sampled energies.

This way, the treatment only uses information from a MMGBSA.py run, without the need of

additional runs. Alternatively, an energy distribution could be estimated from the sampled

energies using, e.g., kernel density estimation (KDE), but we show below that the Gaussian

assumption is sufficient and more efficient.

As a net result, our description takes into account an extra parameter, σ, to characterize

the ligand-residue interactions, besides µ. This σ is related to the dispersion of energies

during the simulation, and we understand it as an indicator of the lability of the interaction

(Figure 3). A stable binding mode will have little movement, and therefore a small dispersion

of the ligand-target interaction energies, while a more labile binding mode will produce

deviations from the mean energy value as the ligand moves around the binding site.

Of course, this analysis is useful to a specific binding mode, and when multiple binding

modes are possible or occur during the simulation, they should be analyzed separately.
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Figure 3: This scheme depicts the distribution of interaction energies of two ligands, a and
b with the same residue of the target during an MD simulation. Leaving aside the absolute
energy values, ligand b has a lower dispersion of energies around the mean energy value than
ligand a. The b-target interaction is not easily perturbed by the movements during the MD
in comparison to the a-target interaction. Therefore, we believe that the standard deviation,
as a measure of dispersion around the mean value and in combination with the mean value,
is valuable as an indicator of how labile an interaction is.

To test our assumptions, we first evaluated the reliability of describing the sampled ligand-

residue interaction energies with a Gaussian distribution. In order to do this, we represented

the original distribution of energies with a function K(x) obtained using KDE over the

sampled energies. The KDE estimation was done using Gaussian Kernels as implemented

in Scipy,43 with Scott’s rule. By calculating the overlap between g(x) and K(X), we get

an indicator of the quality of the assumption, which we call Gaussianity. Therefore, a

Gaussianity closer to 1 indicates a better description of the interaction with g(x).

The molecule BI 853520 was randomly selected as a test case from the set, and the cal-

culated overlap values ranged from 0.81 to 0.98 (see Figure SM4 and Table SM3). Figure 4

illustrates the comparison between the real energy distribution and its Gaussian approxima-

tion for two residues. Notably, the real energy distribution is highly similar to the Gaussian
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approximation, and a pronounced overlap between the distributions is observed, highlighting

a significant similarity.

In summary, we consider that using a Gaussian distribution to represent the distribution

of ligand-residue interaction energies is an acceptable approximation.

(a)

(b)

Figure 4: Comparison between the Gaussian KDE estimation of the real interaction energy
distribution and its Gaussian approximation for ligand BI 853520 with the residues (a)
Lys581 and (b) Lys454. These residues have the greatest and smallest overlap between the
KDE and Gaussian estimations (respectively) for this ligand, i.e., the gaussianity.

Then, to measure the similarity between two of these energy distributions g(x), which
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represent the interaction of residue i with ligands a and b, g(Ei
a) and g(Ei

b), respectively,

we use the superposition between the Gaussian functions (Figure 5). Since the energy dis-

tributions are normalized, intuitively, two populations (or samples) are similar when their

distribution functions overlap.

Figure 5: Overlap of two Gaussian functions, which represent the distribution of ligand-
residue interaction energies for the same protein residue with different ligands a and b

As the functions g(x) are normalized, this overlap is equivalent to the Sørensen-Dice

Coefficient (SDC) between the distributions.44 For two data sets, the SDC is twice the

number of matching elements (A ∩ B) relative to the total number of elements (A+B) (Eq.

1). For two Gaussian distributions g(Ei
a) and g(Ei

b), which are normalized (|A| = |B| = 1),

the SDC reduces to the intersection, i.e., the overlap between the distributions. The SDC

coefficient ranges from 0 (no similarity) to 1 (perfect similarity).45,46

SDC(A,B) =
2|A ∩B|
|A|+ |B|

∴ SDCi(g(E
i
a), g(E

i
b)) = |A ∩B| =

∫ ∞

−∞
g(Ei

a) · g(Ei
b) dE (1)

To compare the whole interaction profile of both ligands, the individual ligand-residue simi-

larities (SDCi) are averaged. The global similarity coefficient between two ligands, denoted

as GSDC is then a value in the (0, 1) range (Eq. 2).
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GSDC(A,B) =
1

N

∑
i

SDCi(A,B), i = Res1,Res2, . . . ,ResN (2)

This GSDC serves as a quantitative indicator of the overall similarity in binding modes

between the ligands across all residues, taking into account the dynamic nature of the inter-

actions. The minimum value of GSDC(A,B) = 0 indicates that g(Ei
a) and g(Ei

b) are distinct

for all residues, suggesting a low degree of similarity between the binding modes of the lig-

ands with the target. On the other hand, a maximum value of GSDC(A,B) = 1 represents

a perfect matching in binding modes between ligands, indicating identical behavior.

The SDC exhibits heightened sensitivity, especially when the standard deviation is low

(Figure 6). A smaller σ leads to a more sharply defined and concentrated Gaussian distri-

bution around the mean energy value. The overlapping area may introduce errors, prompting

us to establish a lower limit for σ at 0.3 units to mitigate potential calculation errors in the

overlapping region.

The coefficient was calculated using a custom Python script developed in-house, available

athttps://gitlab.com/gqc/gsdc_md.

Figure 6: In each graph the SDCi is calculated for a pair of Gaussian functions g1 and g2,
with standard deviations σ1 and σ2, with means separated by ∆E1,2 units.
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Finally, the selection of the Gaussian function to describe the energy distributions was

suitable for the real behavior. Overall, these observations underscore the importance of care-

fully adjusting parameters to optimize the accuracy and reliability of the SDC in distribution

analysis.

Use of the GSDC coefficient to cluster FAK inhibitors binding

modes

Assessing the similarity of binding modes between a pair of ligands is a crucial aspect of the

GSDC. Instead of simply comparing the structures of ligands, the GSDC delves into studying

how these ligands bind to the receptor. In the context of FAK ligands, the GSDC was cross-

calculated, obtaining values in the 0.62 to 0.90 range (see Figure 7). In specific instances,

molecules with significantly different binding modes, as illustrated by Mitoxantrone, can

be easily discerned, showcasing low similarity and a considerable distance from the overall

group.
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Figure 7: Global Sørensen–Dice coefficient values for FAK inhibitors. For GSDC values see
Figure SM5.

As with other similarity measures, the GSDC determines amongst a group of objects

which pairs are the closest, enabling the grouping or clustering of the data and easing the

visualization and analysis of relationships within the data. To this end, we employed hier-

archical clustering and dimensionality reduction methods.

In hierarchical clustering, each compound starts as its cluster and then the most similar

clusters are merged until all compounds end up in the same and only cluster. In each step,

the clusters with the closest points are merged (Figure 8.a).

In addition, we applied the t-distributed Stochastic Neighbor Embedding (t-SNE) and

Multidimensional Scaling (MDS) dimensionality reduction algorithms to aid in the depiction

of the data points in a two-dimensional space (Figure 8 b-c). These visualizations enhance

the intuitiveness and readability of the relationships between inhibitors, but, as a lot of
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information is lost in the projection, it should be used with care. In this regard, MDS

focuses on the preservation of distances, losing some of the local information, while t-SNE

tends to aggregate the closest points, with more inexact distances.

The compounds of each cluster share binding features that are responsible for differential

interaction modes concerning other clusters. In our particular case, MDS and hierarchi-

cal clustering proved successful in isolating compounds with a low degree of similarity as

Mitoxantrone, however, t-SNE was unable to maintain a significant distance between this

compound and the others.
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(a) (b)

(c)

Figure 8: Comparison between the Gaussian KDE estimation of the real interaction energy
distribution and its Gaussian approximation for ligand BI 853520 with the residues (a)
Lys581 and (b) Lys454. These residues have the greatest and smallest overlap between the
KDE and Gaussian estimations (respectively) for this ligand, i.e., the gaussianity.

To quantify the distinctiveness of a specific ligand-residue interaction, we define the per-

residue SDC for ligand A and residue i (RSDCi(A)) as the mean similarity of a residue
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interaction to the interactions of all the other ligands with the same residue.

RSDCi(A) =
1

N

∑
B ̸=A

SDCi(A,B) (3)

It is a useful indicator of a characteristic interaction for a particular ligand (all SDCi will

be close to 0, and so the RSDCi) and common interactions for a group of ligands (all SDCi

will be close to 1, and so the RSDCi). The RSDCi is dependent on the ligands included in

the analysis.

We calculated the RSDCi for all the ligands and the selected residues (Figure 9). The

RSDCi sheds light on hierarchical clustering, identifying the particular interactions of cluster

outliers, and common interactions within clusters. Residues His437, Val451, Lys485, Leu507-

Ala549, Val554-Leu562, and Ser574-Ser580 were identified as regions where interactions are

similar for all or most inhibitors. Regarding clusters (see Figure 8), Cluster O has particularly

different interactions with residue Glu430, meanwhile, cluster R does it with residues Ile428,

Gly429, and Glu506. Members of cluster V exhibit a differential interaction with Tyr577, a

key residue within the activation loop that undergoes phosphorylation during the activation

process of FAK. Unclustered ligands each have particular interactions that are not shared

with any other ligand, such as Glu500 for Conteltinib or Val484 for PKE.

7PY and Mitoxantrone show markedly different interaction patterns from other inhibitors

due to their distinct chemical features. 7PY shows variations in the Leu562-Ser568 region

that comprises the DFG-out motif and Mitoxantrone has few common interaction points

with the other inhibitors.
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Figure 9: Per-residue RSDCi for all the ligands investigated. Regions with common interac-
tions and regions where no interaction is similar can be discerned. Furthermore, distinctive
interactions with residues for each ligand can be identified in blue, and, for some clusters
similar characteristic interactions are found.

As demonstrated, the SDC can be employed to analyze and compare the binding modes of

FAK inhibitors. Consequently, the visual analysis with the dimensionality reduction methods

should be complemented with the numerical analysis of a similarity matrix for an optimal

interpretation of clusters.

Geometric interaction analysis with ProLIF

A shortcoming of the purely energetic analysis is a lack of simple interpretability. Even if we

separate MM/GBSA interaction energy into their individual components (electrostatic, van

der Waals, polar and non-polar solvation), it’s hard to understand and interpret the nature

of the interaction taking place. For example, a highly electrostatic interaction could be due

to an HB, salt bridge, cation-π interaction, etc. To this end, we complement the energetic

analysis with a geometric analysis to interpret the obtained results.

We used ProLIF to perform a geometric analysis through the same MD trajectories.
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In the ProLIF analysis, each frame is analyzed to identify predefined interactions and an

occupancy is obtained for each interaction found. The occupancy represents the fraction

of the analyzed frames in which a particular interaction is present, with values in the 0 to

1 range. The occupancy value of an interaction type serves as a measure of the residue’s

behavior with the ligand during the MD simulation (see Figure 10). The inhibitors exhibited

interactions with residues of the active site, including hydrophobic moieties, HB donors and

acceptors, and cationic interactions. HBs with the residues Asp564 and Cys502, as well

as hydrophobic contacts with Ile428, Val436, Leu501, Gly505, Glu506, Asn551, Leu553,

Gly563, and Leu567 were present in most ligands/FAK complexes. These findings were

consistent with previous reports, where Cys502, Asp564, Leu553, and Leu567 were identified

as important interactions with inhibitors in the ATP-binding site.36
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Figure 10: Occupancy values of the last 10 ns of MD simulations, after 40 ns of equili-
bration, for non-crystallized FAK inhibitors. The complete information for all ligands was
processed and condensed onto a dynamic graph usable with any desktop browser, available
at prolif fingerprints.html (Supplementary material).
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Conclusions

In this study, we introduced a set of metrics based on the Sørensen–Dice coefficient to

quantify the similarity between ligand-protein interaction profiles by representing ligand-

residue interactions as Gaussian energy distributions derived from MD simulations. This

approach seeks to capture the dynamic nature of ligand binding, which is often overlooked

in traditional analyses that focus on mean energy values or predefined interaction types. Our

analysis showed that the proposed similarity metrics are sensitive to both the strength and

variability of ligand-residue interactions. This is particularly valuable in cases where ligands

exhibit similar binding energies but differ in the stability or dynamics of their interactions.

The GSDC is useful for clustering ligands based on their binding modes, highlighting both

similarities and differences that might not be apparent from static structural comparisons

alone. Our application of this methodology to FAK type II inhibitors revealed distinct

interaction patterns among the inhibitors. In this case, the GSDC values ranged from 0.62

to 0.90, indicating varying degrees of similarity in binding modes. This analysis successfully

identified ligands with significantly different binding modes, such as Mitoxantrone, which

showed low similarity and distinct interaction profiles compared to other inhibitors.

Hierarchical clustering was successfully used to group ligands with similar binding char-

acteristics while isolating those with unique interaction patterns. Dimensionality reduction

techniques were applied to improve the visualization of these relationships. These methods

allowed data points to be represented in a two-dimensional space, making it easier to inter-

pret the relationships between inhibitors. However, it is important to use these techniques

with caution, as the reduction in dimensionality inherently leads to the loss of information.

MDS prioritizes preserving overall distances, potentially sacrificing local detail, while t-SNE

focuses on clustering similar points together, but may distort distances between dissimilar

points.

On the other hand, the RSDCi provides a detailed measure of similarity for individ-

ual residue interactions, allowing for a granular analysis of specific binding sites, which is
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particularly useful in understanding the contributions of key residues to ligand binding. Ad-

ditionally, with the complement of a geometric analysis, the nature of the key interactions

can be assessed.

In summary, the proposed methodology provides a framework for the quantitative com-

parison of ligand-protein interaction profiles, taking into account the inherent dynamics of

these complexes. This approach is particularly useful in the context of drug discovery, where

understanding differences in binding modes can guide the design and optimization of more

potent and selective inhibitors.
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Table SM1: RMSD values for re-docking tests.

Molecule PDB SMINA FRED
PF-562,271 3BZ3 1.383 1.496

PVT 6YVS 1.923 1.782
PKE 6YQ1 1.513 1.379

TAE226 2JKK 0.774 0.804
10N 4GU6 0.730 1.508
P7N 6YT6 2.382 2.00
P4N 6YOJ 1.886 1.980

BI-4464 6I8Z 0.893 1.054
PHM16 4C7T 1.211 0.678
7PY 2ETM 1.345 1.630

Table SM2: FAK ATP binding site inhibitors. ∆E is the binding enthalpy calculated with
MMPBSA.py. The experimental IC50 activity values were included for better comparison.
The non-crystallized inhibitors are highlighted in boldface.

Molecule ∆Ebind MM/GBSA (kcal/mol−1) IC50 (nM)
PF-562,271 -46.3±3.0 1.5
TAE226 -49.3±3.0 5.5
BI-4464 -54.3±3.3 17
10N -47.2±2.9 195
7PY -38.3±2.6 200

PHM16 -45.2±2.8 400
P4N -51.8±2.9 –
PVT -42.0±3.5 –
P7N -45.9±3.1 –
PKE -40.8±3.0 –

Defactinib -45.3±3.7 0.6
BI 853520 -58.0±3.8 1.0
PND-1186 -52.9±3.0 1.5

GSK2256098 -47.8±2.6 1.5
Conteltinib -54.8±5.3 1.6
CEP-37440 -51.6±3.0 2.3
APG-2449 -49.1±3.0 –

Mitoxantrone -36.0±3.7 –
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Supporting Information Available

Table SM3: Overlapping between real and Gaussian approximation (Gaussianity).

Residue Overlapping
ARG426 0.838
CYS427 0.942
ILE428 0.962
GLY429 0.899
GLU430 0.878
VAL436 0.896
HIS437 0.946
GLN438 0.919
VAL451 0.965
ALA452 0.927
LYS454 0.979
VAL484 0.823
LYS485 0.911
MET499 0.943
GLU500 0.957
LEU501 0.962
CYS502 0.972
THR503 0.843
LEU504 0.926
GLY505 0.946
GLU506 0.897
LEU507 0.966
ARG508 0.971
ALA548 0.957
ALA549 0.952
ARG550 0.970
ASN551 0.941
VAL552 0.954
LEU553 0.925
VAL554 0.954
LYS561 0.964
LEU562 0.960
GLY563 0.965
ASP564 0.964
PHE565 0.963
GLY566 0.962
LEU567 0.976
SER568 0.906
ARG569 0.972
TYR570 0.909
MET571 0.900
SER574 0.975
THR575 0.970
TYR576 0.958
TYR577 0.840
LYS578 0.975
SER580 0.893
LYS581 0.813
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Figure SM1: RMSD of ligands and protein along 40ns MD trajectories.
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Figure SM2: Localization in ATP binding site of non-crystallized ligands after 40ns of MD
(A) BI 853520 (B) APG-2449 (C) PND-1186 (D) CEP-37440 (E) GSK2256098 (F) Defactinib
(G) Mitoxantrone (H) Conteltinib
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Figure SM3: pIC50 vs ∆Ebind for the studied ligands. The cristalized and non-cristalized
inhibitors have similar ∆Ebind values. A subtle correlation is ovserbed between pIC50 and
∆Ebind.
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Figure SM4: Comparison between ligand-residue interaction energy distributions obtained
from an MD simulation of BI 853520 in complex with FAK and the Gaussian approximation.
Energies are shown on the x-axis. The subplots are arranged in descending order according
to their overlapping values.
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Figure SM5: GSDC values for FAK inhibitors.
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Figure SM6: Heatmap of standard deviations fromMM/GBSA by residue for FAK inhibitors.
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