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Abstract

Membrane proteins are about 30% of the human proteome and serve important physiological roles,
including chemical transport, cell signaling, and energy transduction.[1,2] Consequently, they
represent about half of all drug targets.[2-5] Small molecule drugs have been most commonly used
to target membrane proteins, particularly G-protein coupled receptors and ion channels. However,
these small molecules can lack selectivity and produce side effects. Biotherapeutics offer the
potential to target specific conformations of proteins, thereby improving potency and selectivity.[6]
However, membrane proteins present significant challenges for biotherapeutic development,
especially from their instability, insolubility, and limited expression levels.[6-8] In this chapter, we
explore biotherapeutic targeting of different families of membrane proteins, strategies to solubilize
and stabilize membrane proteins for analysis, and mass spectrometry (MS) approaches to study their
structure and interactions. Our focus will be primarily on biotherapeutic applications, but we will
draw on promising emerging technologies that have been used in structural biology.

Membrane Proteins as Challenging Biotherapeutic Targets

Families of Membrane Proteins

Nearly all physiological processes intersect the membrane. As the primary conduits of material and
information across the lipid bilayer, membrane proteins thus play critical biochemical roles. They
account for about 30% of the proteome and roughly half of drug targets. [2-5] However, membrane
proteins are challenging targets for biotherapeutic development for several reasons.[6-8] First,
membrane proteins tend to have low expression levels, which creates an obstacle to gaining enough
purified protein for antibody development.[9,10] Second, they have low stability outside
membranes, so it is challenging to deliver these proteins as immunogens.[11] For example, using
detergents to solubilize membrane proteins can interfere with the exposure of extracellular epitopes
and may be incompatible with in vivo antibody generation.[11] Finally, post-translational
modification, especially glycosylation, can lead to antigenic heterogeneity and are difficult to
correctly reproduce in non-human expression systems.[12,13] In this section, we will begin our
discussion by highlighting the most significant membrane protein families targeted by
biotherapeutics and consider throughout the chapter how these challenges are addressed.[6,14]

Receptor Tyrosine Kinases

Receptor tyrosine kinases (RTKs) play roles in diverse cellular processes, including growth,
differentiation, cell proliferation, metabolism, migration, and vascular function. They are also
involved in oncogenesis, making them important drug targets.[15-17] The extracellular ligand binding
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domain of RTKs generally interacts with protein ligands (Figure 1A), including growth factors,
hormones, and cytokines. When a ligand binds to the extracellular domain, RTKs dimerize to promote
downstream signaling through the intracellular kinase domain.[15,18]

Humans have 58 known RTKs, and they are classified based on their interactions and the structure
of their extracellular domains into 20 subfamilies, including epidermal growth factor receptors
(EGFRs, class I), insulin receptors (IRs, class ll), platelet-derived growth factor receptors (PDGFRs,
class Ill), vascular endothelial growth factor receptors (VEGFR, class V), fibroblast growth factor
receptors (FGFRs, class V), cholecystokinin receptor family (CCK, class VI), and others.[18-20]

Because they are easily accessible on the surface of the cell, targeting the extracellular ligand
binding domain of RTKs has been an effective strategy for biotherapeutics, especially for cancer. The
advantage of this approach is that a truncated, soluble ectodomain can be used for antibody
generation, which avoids issues of membrane protein expression and solubilization.[21] With this
approach, monoclonal antibodies (mAbs) can be developed to inhibit ligand binding to receptors or
to inhibit receptor dimerization/activation after ligand binding (Table 1).[15] For example,

Intracellular

RTK GPCR lon Channel

Figure 1: Examples of Fab binding to different membrane protein types: (A) an example RTK, HER2
(PDB: 1N87 for trastuzumab bound extracellular region, 2KS1 for transmembrane domain, 3PP0O
for intracellular kinase domain); (B) an example GPCR, a serotonin receptor (PDB: 5TUD); (C) an
example ion channel, Na,1.4 (PDB: 5XSY). Fabs (colored in orange and magenta) are antigen-
binding fragment of antibodies. The ice blue color represents the membrane proteins.

trastuzumab, pertuzumab, cetuximab, panitumumab, and nimotuzumab target EGFRs to inhibit cell
proliferation, angiogenesis, and cell survival.[15,22,23] Initially approved as Herceptin, trastuzumab
was the first antibody to target an RTK and was a breakthrough in targeted cancer therapeutics.[15]

https://doi.org/10.26434/chemrxiv-2024-dz7rf ORCID: https://orcid.org/0000-0001-8115-1772 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://doi.org/10.26434/chemrxiv-2024-dz7rf
https://orcid.org/0000-0001-8115-1772
https://creativecommons.org/licenses/by-nc-nd/4.0/

Beyond the EGFR family, the PDGFR family has also shown growing interest as a target for several
cancertypes. For example, olaratumab and tovetumab are directed against PDGFRs for treating solid
tumors.[15] The VGFR family has also been a target in cancer therapy due to their role in
angiogenesis. For example, icrucumab inhibits tumor activation and angiogenesis, ramucirumab
blocks neo-angiogenesis, and tanibirumab shows anti-tumor activity against lung, breast,
colorectal, and glioblastoma cancer models.[15,19,24-26]

Although many mAbs targeting RTKs have been successful, several drug candidates have failed in
clinical trials. For example, onartuzumab, which targeted hepatocyte growth factor receptor, and
cixutumumab, which targeted insulin receptors, failed due to lack of efficacy in cancer
trials.[15,27,28] Other mAb therapies were abandoned because tumors developed resistance. For
antibodies targeting EGFR and HER2, developing resistance within a year is common through
different types of mechanisms including mutations, upregulation or downregulation of signaling, and
activation of alternative pathways.[15,29]

To address challenges with resistance and efficacy, more advanced biotherapeutic strategies can be
used. To improve anti-tumor efficacy and limit resistance, bispecific antibodies can be used to target
two receptors simultaneously.[15,30-32] Similarly, combination therapies, such as trastuzumab and
pertuzumab, can enhance efficacy through synergistic effects.[15,33] Finally, antibody-drug
conjugates can be used to deliver cytotoxic agents to tumor cells, enhancing treatment efficacy and
simultaneously minimizing side effects.[34] For example, Ado-trastuzumab emtansine is a notable
antibody-drug conjugate for HER2-positive breast cancer.[15] As these advanced biotherapeutic
modalities mature, RTKs will continue to be an important membrane protein target for
biotherapeutics.

G Protein-Coupled Receptors

G protein-coupled receptors (GPCRs) are the largest family of membrane proteins in number and one
of the most important classes of proteins for drug discovery.[11] They are involved in diverse cellular
processes, including cell growth, metabolism, sensory perception, immune response, and
neurotransmission.[9,35,36] These diverse functions come from binding diverse ligands, ranging
from small molecules to larger peptides and proteins.[37,38]

There are around 800 GPCRs, but more than half are olfactory or sensory receptors, leaving roughly
370 GPCRs that are considered potential drug targets. GPCRs are grouped into four families: family
A (the rhodopsin family), family B (the secretin and adhesion subfamilies), family C (the metabotropic
glutamate family), and family D (the frizzled family).[9,11] The rhodopsin family represents the largest
and most diverse group of receptors. They are a major focus for drug development with receptors for
histamine, dopamine, glycoprotein hormones, adrenergic agents, neuropeptides, and
chemokines.[11,37] Family B GPCRs are splitinto two subfamilies where secretin binds large peptide
ligands, but so far lacks small-molecule drug targets. Most of the adhesion subfamily ligands have
not been identified yet. Family B of GPCRs is well known for their metabolic function, regulating
homeostasis, endocrine functions, and neuronal activity.[37] The metabotropic glutamate family
binds small metabolites like glutamate, and play important roles in neuronal and calcium
homeostasis. The frizzled family is a promising target because they are involved in developmental
biology and tissue homeostasis. [11,39,40]
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Although GPCRs are important therapeutic targets, they have largely been limited to small molecule
or peptide therapeutics.[6,41] Developing antibodies for GPCRs has been especially challenging for
several reasons. First, unlike RTKs, GPCRs generally do not have large soluble domains that can be
detached for antibody development (Figure 1B). Thus, the immunogenic regions are often limited to
the N-terminal domain and extracellular loops. Second, GPCRs are conformationally dynamic and
difficult to stabilize outside the membrane.[37] Combined with their low expression levels, these
challenges mean that it is difficult to express, purify, and stabilize GPCRs for antibody development.
Finally, the development of GPCR biotherapeutics is also limited by biased signaling, where different
ligands binding the same receptor can induce different downstream signaling responses. [37,42,43]
It can be challenging to develop antibodies that target these biases.

Due to these challenges, only three FDA-approved antibodies are directed toward GPCRs (Table 1).
Mogamulizumab is a humanized IgG1 antibody directed against C-C chemokine receptor type 4
(CCR4) to induce antibody-dependent cellular cytotoxicity for treatment of blood cancers.[44]
Erenumab and eptinezumab are antagonists for calcitonin gene-related peptide (CGRP) and are used
to treat migraine.[37]

There are several GPCR-targeted antibodies currently in clinical trials, but several recent attempts
have failed. For example, plozalizumab failed in the phase 2 trial due to a lack of efficacy for treating
rheumatoid arthritis.[11] Here, one challenge was the low homology between human chemokine
receptor type 2 (CCR2) and other species, which limited preclinical studies in nonhuman
models.[37]

Despite these challenges, innovative new technologies are being employed for GPCR
biotherapeutics. For example, protein mutations are widely used to improve the expression and
stability of GPCRs for large-scale purification.[11,42,45] Similar engineering approaches can also be
used to bias the conformation. Another approach to stabilize the protein for antibody development
is to use different membrane mimetics (discussed below), and a range of these different platforms
have been used for antigen presentation.[37,46] Using these novel approaches, itis likely that future
biotherapeutics for GPCR targets will help to treat a variety of diseases.

lon Channels

lon channels are the second most abundant class of membrane proteins after GPCRs, comprising
almost 400 members. lon channels transport ions across membranes and play crucial roles in
maintaining ion homeostasis.[47,48] Based on their gating mechanisms, ion channels are broadly
classified into three main groups: voltage-gated ion channels, ligand-gated ion channels, and
mechanosensitive ion channels.[47]

Despite their importance in diseases like cancer, glaucoma, infectious disease, inflammation, and
migraine, ion channels are challenging for the development of biotherapeutics for many of the same
reasons as GPCRs. First, they have smaller extracellular loops that limit the potential immunogenic
regions (Figure 1C). They can also be poorly expressing and challenging to stabilize and purify.
Finally, ion channels often have highly conserved sequences between species, so they are not
immunogenic enough to elicit strong antibody responses in mammals used for antibody
development. [47,49]
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Due to these challenges, ion channels are less explored for biotherapeutics than GPCRs, and there
are currently no approved biotherapeutic drugs for these targets.[50] Several companies have
attempted antibody drug development for ion channels. For example, Visterra Inc. developed mAbs
that targeted voltage-gated sodium channels (Na,) for treatment of pain. Here, they used several of
the strategies described above for GPCRs. For example, to improve stability, they engineered a
chimeric construct fused with the more stable prokaryotic form and reconstituted the protein in
nanodisc for efficient immunization.[47] Amgen also explored developing antibodies towards
transient receptor potential ankyrin 1 (TRPA1) by using DNA transfection rather than protein
immunization.[47,51] Unfortunately, none of these mAbs appear to be under ongoing development.

Although there has been considerable focus on Na, channels, other ion channels have been explored
as well. For example, the ligand-gated purinergic channel (P2X) family shows larger extracellular
regions compared to other ion channels, so it is easier to target using biotherapeutics. A polyclonal
antibody that targets nfP2X7, a non-functional form of P2X7, is in phase 1 clinical trials to treat basal
cell carcinoma.[47,52] Also, a mAb targeting the potassium channel, K,1.3, is in preclinical trials for
treatment of autoimmune and inflammatory diseases.[53,54]

Overall, ion channels present challenging but promising targets for biotherapeutic development. For
ion channels and GPCRs, continued advances in molecular biology, protein engineering, and
membrane mimetics will help improve platforms for drug development.[11,15,37,47] For the more
mature field of RTK therapeutics, new modalities to combat resistance will lead to more effective
therapies. The next section will discuss advances in detergents and membrane mimetics to solve
challenges in purification and presentation of membrane proteins. The final section will then discuss
the unique considerations and opportunities for MS analysis of membrane proteins in a
biotherapeutic context.

Table 1. List of FDA-approved mAbs for membrane proteins.[11,15,37,55]

Year of

Name of drug Company Approval Target Protein
Human epidermal
Trastuzumab Genentech ?gg;ember growth factor
receptor 2 (HER2)
Pertuzumab Genentech June 2012 HER2
Epidermal growth
RTK Cetuximab ImClone February 2004 factor receptor
(EGFR)
. September
Panitumumab Amgen Inc 2006 EGFR
. - November
Necitumumab Eli Lilty Co EGFR
2015
. . December
Margetuximab Macrogenics Inc 2020 HER2
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Horizon Therapeutics Insulin-like - growth

Teprotumumab reland January 2020  factor type I
receptor (IGF-IR)
Vascular
Ramucirumab Eli Lilly Co April 2014 endothelial growth
factor (VEGF)
platelet-derived
Olaratumab Eli Lilly Co October 2016 5OV factor
receptor alpha
(PDGFRa)
Bispecific EGFR
Amivantamab Janssen Biotech May 2021 anFj mgsenchymal—
epithelial transition
(MET) receptor
Bevacizumab Genentech February2004 VEGF-A
Brolucizumab Novartis Pharms Corp = October 2019 VEGF-A
. . Fibroblast growth
Burosumab Kyowa Kirin April 2018 factor 23 (FGF23)
C-C chemokine
Mogamulizumab Kyowa Hakko Kirin August 2018 receptor type 4
(CCR4)
Calcitonin  gene-
GPCR Erenumab Amgen Inc May 2018 related peptide
(CGRP)
Lundbeck Seattle
Eptinezumab BioPharmaceuticals, February 2020 CGRP

Inc.

Membrane Protein Solubilization Methods

Many applications of membrane proteins in biotherapeutics require the extraction of membrane
proteins from their natural environments (Figure 2A) into membrane mimetics.[56,57] However,
different membrane mimetics vary in their properties and require different considerations for
analysis.[58-60] Here, we will give an overview of different membrane protein solubilization
techniques and their applications for membrane protein biotherapeutics.

Detergent Micelles

Detergents are the most widely used agents to solubilize membrane proteins (Figure 2b).[61-64]
Detergents are amphiphilic small molecules with a hydrophilic head group and a hydrophobic tail.
The amphiphilic nature of detergents enables them to protect the hydrophobic regions of membrane
proteins inside micelles. There are variety of different types of detergents, and it is important to
choose the right detergent for the target protein and analysis performed.[63,65,66] In particular,
there are trade-offs between effective solubilization and preservation of protein structure.
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Detergents can be broadly classified based on the charge they carry on their hydrophilic head
groups.[59,60,65,66] lonic detergents carry a net charge, such as sodium dodecyl sulfate
(SDS).[60,67] These detergents are generally very effective at solubilization but can be too harsh,
causing denaturing of proteins. Therefore, SDS is typically used for solubilization under denaturing
conditions.

In contrast, non-ionic detergents contain neutral hydrophilic headgroups and offer relatively mild
solubilizing properties. Examples include Triton X-100, n-dodecyl-B-D-maltoside (DDM), and n-octyl-
B-D-glucoside (OG). Because these non-ionic detergents are less likely to disrupt membrane protein
structure and function during the purification process, they are commonly used for membrane
protein extraction and analysis under non-denaturing conditions.[64,67]
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Figure 2. lllustration of different approaches used to solubilize membrane proteins. Membrane
proteins are naturally present in (a) lipid bilayer membranes. Proteins can be extracted from the
membrane into (b) detergent micelles. From here, it can be reconstituted into (¢) amphiphols,
(d) nanodiscs, or (e) liposomes. Alternatively, the protein can be extracted from the membrane
directly into (f)SMALPs. Adapted with permission from Woubshete et al.,, 2024.
https://doi.org/10.1002/cplu.202300678.

Due to theirimportance in structural biology applications, recent research has developed novel non-
ionic detergents with modifications that improve solubilization efficacy, protein stability, and
analytical compatibility.[68,69] Examples of these newer classes of detergents include oligo-glycerol
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detergents,[70,71] neopentyl glycols (such as LMNG),[72,73] and glyco-diosgenin (GDN) [74]. An
important feature of newer detergents like LMNG and GDN is their low critical micelle concentration
(CMC) values, which allow them to be used in dilute solutions like those used in cryo-EM.[68]

Zwitterionic detergents have both positively and negatively charged groups and fall in between ionic
and non-ionic detergents.[60,75] Some zwitterionic detergents, such as fos-cholines, can be harsher
and behave more like ionic detergents.[76] Others, like 3-[(3-cholamidopropyl) dimethylammonio]-
1-propanesulfonate (CHAPS) and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO), tend to be gentler
and have been broadly used in structural biology applications.[75,77,78]

There are several important properties to consider in detergents, including the CMC, aggregation
number, and hydrophilic-lipophilic balance (HLB).[63,69,79] At lower concentrations, detergents
remain as individual molecules in solution. As the concentration increases, they assemble into
micellar structures. The minimum concentration required for detergent molecules to form micelles
is called the CMC, and the average number of detergent molecules per micelle is the aggregation
number.[60,67,75] Both properties are influenced by the length of the detergent's alkyl chain, where
longer chains tend to decrease the CMC and increase the aggregation humber.[80] HLB describes
the surface activity based on the hydrophilic and hydrophobic properties of a detergent. Typically,
detergents with HLB values from 12-15 and at concentrations above the CMC are recommended for
membrane protein extraction.[71,80]

In arecentexample [81], Urner and colleagues created a library of detergents with diverse properties,
such as HLB and packing parameter (a structural property that relates the head group area with the
tail volume [82]). They then solubilized proteins from bacterial inner membranes and used native MS
to measure how each protein co-purified with phospholipids and lipopolysaccharide (LPS) in each
unique detergent condition (Figure 3). By adjusting detergent HLB and packing density (Figure 3a),
they enhanced phospholipid retention during extraction and purification of membrane proteins
(Figure 3b-c). This study demonstrated how detergents can be designed to optimize membrane
protein solubilization and interactions.

Although detergents are useful for solubilizing membrane proteins, they are not natural lipid bilayers
and may not be effective at preserving membrane protein activity and interactions.[63,83-85] In
membrane protein biotherapeutics, identifying optimal detergent conditions to stabilize membrane
proteins is a critical step. Often, a range of detergents need to be screened to find the optimal type.
For example, Kotov and coworkers developed a high-throughput screen that tested 94 detergents to
find which best stabilized different membrane proteins.[86] Although each protein had a unique
profile of optimal detergents, LMNG and DDM tended to be stabilizing, and fos-choline tended to be
destabilizing. Overall, careful selection of the detergent is essential for studying membrane proteins.
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Alternative Membrane Mimetics

To address challenges in using detergents to solubilize membrane proteins, alternative membrane
mimetics have been developed. Although detergents may be required to initially extract proteins from
the membrane, they can be reconstituted into various membrane mimetics for characterization in
defined lipid bilayers (Figure 2). Other mimetics enable direct reconstitution without intermediate
detergent, such as styrene maleic acid lipid particles (SMALPs) or some forms of liposomes. In this
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Figure 3. (a) Structures of detergents with the different HLB and packing parameters. (b)
Schematic of solubilizing different inner membrane proteins from bacteria and using native MS to
quantify delipidation outcomes. (c) Relative intensities of the apo state, protein-phospholipid
complexes, and protein-LPS complexes acquired using native MS. Reprinted with permission
from Urner et al., 2024. https://pubs.acs.org/doi/full/10.1021/jacs.3¢c14358

https://doi.org/10.26434/chemrxiv-2024-dz7rf ORCID: https://orcid.org/0000-0001-8115-1772 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://pubs.acs.org/doi/full/10.1021/jacs.3c14358
https://doi.org/10.26434/chemrxiv-2024-dz7rf
https://orcid.org/0000-0001-8115-1772
https://creativecommons.org/licenses/by-nc-nd/4.0/

section, we will provide an overview of some of the key membrane mimetic systems and their
applications in biotherapeutic development.

Amphipols

Amphipols are amphipathic polymers used to solubilize membrane proteins (Figure 2¢).[87-90]
Different structures of amphipols have been developed,[91,92] with A8-35 being the most
extensively used.[92-94] To incorporate membrane proteins into amphipols, detergent-extracted
membrane proteins are mixed with the amphipol at a predefined ratio and incubated. The amphipol
molecules interact with the membrane proteins, and the detergent is then removed using
polystyrene beads, a detergent removal column, or dialysis.[94,95]

Unlike detergent micelles, which must be above their CMC, the primary advantage of amphipols is
that they bind tightly to membrane proteins and can work at dilute concentrations. However, like
detergents, they do not provide a lipid bilayer environment and thus may not preserve the natural
structure and interactions found in lipid membranes.[83] Overall, although amphipols have been
effectively used for the structural and biophysical characterization of membrane proteins [96-99]
and have been used to study antibody binding to membrane proteins,[100,101] their application in
biotherapeutics has been relatively limited.

Nanodiscs

Nanodiscs are nanoscale discoidal lipid bilayers encircled by two amphipathic membrane scaffold
proteins (MSPs), which are derived from human ApoA1 (Figure 2d).[56,102-105] To reconstitute
membrane proteins into nanodiscs, MSP and lipids dissolved in detergent are mixed with the
membrane protein. Then, porous polystyrene beads are added to the mixture to remove the
detergent and drive self-assembly.

In nanodiscs, the hydrophilic regions of the MSP are exposed to the surrounding solution, and the
hydrophobic regions interact with the lipids in the core.[105-107] The size of the nanodisc can be
adjusted by altering the length of the MSP, and the thickness can be customized by modifying the
lipid composition.[56,84,107,108] Recently, circularized nanodiscs have been engineered by
covalently linking the N- terminus to the C-terminus, which has further improved their homogeneity,
stability, and size range.[109,110]

Due to their stability and biocompatibility, nanodiscs have become a useful platform for a range of
biotherapeutic applications.[105,111,112] To develop therapeutic antibodies targeting membrane
proteins, nanodiscs have been used to present antigens in more natural conformations. One
example developed a single-domain antibody targeting the human apelin receptor (APJ), which is a
GPCR and a target for treating chronic heart failure.[113] Here, Zhang and coworkers reconstituted
APJ into nanodiscs that were then injected into camels as immunogens. Other approaches, such as
by Kossiakoff and coworkers, have used nanodiscs with phage display technology to generate
antibodies against membrane proteins.[114] Finally, it is possible to use nanodiscs for vaccines. In
one study, injecting nanodiscs with embedded influenza hemagglutinin generated a robust and
protective antibody response.[115] However, due to cost and stability limitations, nanodiscs are
more likely to be used in antibody development rather than direct vaccine delivery.
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In addition to presenting membrane proteins for vaccines or antibody development, nanodiscs are
also useful as drug delivery vehicles, especially in delivery of hydrophobic drugs.[108,111] For
example, one study used nanodisc to deliver the anticancer drug, cabazitaxel, where they found a
sustained release profile and higher drug efficacy.[116] Moreover, both the MSP belt and the lipids
can be engineered to attached chemical functionality and enable targeted delivery. For example,
another study attached an antibody that targeted carcinoembryonic antigen to a PEGylated lipid in
nanodiscs.[117] Further conjugation of a radioactive Cu chelator allowed PET imaging of these
targeted nanodiscs and demonstrated localization to the tumor. Future research using nanodiscs as
a drug delivery vehicle holds the potential to develop unique biotherapeutics capable of targeted
delivery of lipids and hydrophobic drugs.

Peptide Nanodiscs

Alongside nanodiscs encircled by protein belts, there are peptide-based nanodiscs that also serve
as membrane mimetics. For example, saposin-lipid nanoparticles (SapNPs) use a small protein,
saposin A, as the belt.[118,119] Unlike MSP, SapA covers both leaflets of the bilayer with a single
monomer without encircling the particle. This modular assembly enables the incorporation of
varying numbers of SapA molecules per complex, making SapNPs adaptable in size and
composition.[120] SapNPs have been used in avariety of structural and biophysical studies[121] and
have been used to present membrane proteins for antibody development.[112]

Another novel peptide nanodisc system is the peptidisc.[122] In peptidisc assembly, hydrophobic
regions of membrane proteins are protected by an amphipathic bi-helical peptide. Unlike nanodiscs,
peptidiscs eliminate the need for additional lipids, incorporating only the copurified annular lipids
with the membrane protein.[122,123] The peptidisc system has been useful in determining
structures of membrane proteins and profiling membrane proteomes.[123-127]

Several recent studies have showcased the use of peptide nanodiscs as vaccines.[128] Here, Moon
and coworkers used a synthetic peptide from ApoA1 called 22A to create peptide nanodiscs and
deliver antigens and adjuvants to lymphoid organs as a vaccine. Administration of these peptide
nanodiscs resulted in more efficient and prolonged antigen presentation on major histocompatibility
complex molecules, leading to stronger T-cell responses. These studies have since been extended
to use 22A nanodiscs in vaccination for a variety of different types of cancer.[129,130] These
applications of peptide nanodiscs demonstrate a range of potential uses in biotherapeutic
development.

SMALPs

Although the mimetics discussed above provide lipid environments for studying membrane proteins,
most of those mimetics still require the use of detergents for the initial solubilization of the proteins.
In contrast, SMALPs are a detergent-free membrane mimetic that allows the extraction of membrane
proteins directly from their natural lipid bilayers.[62,131] SMALPs are created from lipids and poly-
styrene-co-maleic acid (SMA), which is an amphipathic copolymer comprising hydrophobic styrene
and hydrophilic maleic acid moieties.[132,133] When added to membranes, SMA inserts into the
lipid bilayer,[132,134] allowing the SMA to extract the protein from lipid membranes.[135,136]
SMALPs are compatible with a wide range of targets, including integral and peripheral membrane
proteins.[84,136]
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Early SMALP technology had several limitations, most notably that they required a higher pH and
were sensitive to divalent cations, making them challenging to use in systems that require calcium
and magnesium.[136] There were also limited in size and could not accommodate very large
membrane protein complexes.[136-138] To address these challenges, researchers have developed
a variety of new polymers, including diisobutylene maleic acid (DIBMA), styrene maleic imide (SMl),
and styrene maleimide quaternary ammonium (SMA-QA).[137,139] These new polymers have
different optimal pH levels, sizes, and tolerances to divalent cations, enhancing their applicability in
diverse applications.[137,139]

The unique ability of SMALPs to disrupt membranes directly to extract membrane proteins facilitates
higheryields of membrane proteins from low-expressing cell lines, which enables drug development
with more challenging membrane protein targets.[140] For example, SMALPs can be used to study
binding of ligands and antibodies to GPCRs.[138,141] Moreover, SMALPs can be used in antibody
development, vaccines, and drug delivery in similar ways to the peptide and protein nanodiscs
described above.[112] Although each system has unique properties and distinct advantages,
nanoscale lipid bilayer particles enable diverse applications in biotherapeutics for membrane
proteins.

Liposomes and Bicelles

Finally, we will introduce membrane mimetics composed primarily of lipids, which can take different
structural forms. Among the different mimetic systems discussed above, liposomes can be the
simplest membrane mimetic in composition, requiring only a phospholipid bilayer vesicle.[83,90]
However, liposomes can also be customized for different target membrane systems by changing the
lipid composition, size, and protein-to-lipid ratio.[142,143] In conventional assembly of liposomes,
purified membrane proteins in detergents are reconstituted into preformed liposomes, with the
detergent being removed during the assembly process.[144-146] However, it is also possible to
create liposomes directly from cell membranes, such as with extracellular vesicles.[147,148]

Liposomes have numerous biotherapeutic applications.[149-151] In one example, Lenormand and
coworkers used liposomes to deliver two pro-apoptotic membrane proteins, voltage-dependent
anion channel (VDAC) and Bcl-2 homologous antagonist/killer (Bak), to cells.[149] This study
demonstrated that functional VDAC and Bak proteins were successfully delivered into cancer cells,
where they triggered apoptosis. Thus, liposomes can be used to deliver membrane proteins as
therapeutic agents.

Bicelles are similar to liposomes but have a mixture of two different lipid-like molecules.[152]
Typically, one lipid forms a bilayer while the other has more detergent-like properties and caps the
edges of the bilayer. Bicelles can form a variety of structures, including discoidal lipid nanoparticles
like nanodiscs. Bicelles have been broadly used for membrane protein analysis, especially by NMR,
and have been applied for drug delivery.[153]

In summary, mimetics do not always eliminate the need for detergents, but they provide novel
strategies to study membrane proteins within bilayer environments. They provide versatile platforms
for membrane protein biotherapeutic development and drug delivery. Continued development and
optimization of these approaches will enhance our understanding of membrane proteins and
advance biotherapeutic development.
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MS Analysis of Membrane Proteins

Mass spectrometry has increasingly become an indispensable tool in biotherapeutics. In this
section, we will explore how various structural MS techniques are used, both independently and in
combination, to address critical biological questions related to membrane proteins in biotherapeutic
applications. Drawing on the prior section, we will consider how different membrane mimetics are
used.

Proteoform Characterization

One of the main questions in MS of biotherapeutics is proteoform characterization. Proteins
synthesized from a single gene can have a high level of heterogeneity due to post-translational
modifications (PTMs), genetic variations, and splice variants.[154-156] Each unique variant of the
protein is called a proteoform. For membrane proteins, the proteoform landscape is particularly
complex due to frequent glycosylation of proteins on the cell surface.[157,158] Characterizing this
proteoform landscape is important to ensure consistent biotherapeutic manufacturing and
generation of antibodies that hit the correct target.[139]

Recent advancements in MS have enhanced the ability to quantitatively analyze PTMs at a variety of
different levels. Intact mass analysis directly profiles the mass distribution, revealing the ratios of
each proteoform that has a distinct mass. Often, intact mass analysis is performed on denatured
proteins to reveal the mass distribution of the protein alone.[159-161] However, it is also possible to
perform native MS by using hon-denaturing ionization conditions, which help maintain non-covalent
interactions.[56,162] Native MS typically requires careful consideration of the membrane mimetic
system to keep the protein soluble during analysis, as discussed below.

Complementing these intact MS measurements, more detailed sequence information can be gained
from bottom-up and top-down proteomics approaches. Bottom-up analysis uses enzymes to digest
proteins to peptides, which are then sequenced to identify sites of PTMs.[163] Top-down approaches
perform intact mass analysis first and then use fragmentation within the mass spectrometer to
sequence the protein. Top-down proteomics enables detailed characterization of the position of the
PTMs and disulfide bridge patterns [164-166] Increasingly, proteomic approaches are being
combined with native MS to characterize PTMs in protein complexes.[167-169] For bottom-up and
denatured intact analysis methods, there are fewer special considerations for membrane proteins
because the protein structure does not need to be preserved.

MS analysis of all different flavors has been applied to characterize proteoforms in a range of
applications. Native MS has been used to characterize membrane protein proteoforms in
detergents[170] and nanodiscs.[171] As discussed in prior reviews, detergents have dominated
native MS analysis, but new membrane mimetics have enable unique new types of
experiments.[56,83,172,173] However, there are not many applications characterizing PTMs of
membrane proteins for biotherapeutic applications.

To address this gap, advanced native MS methods have recently been developed for highly
heterogeneous biotherapeutics with multiple glycosylation sites.[174] Building on these studies,
future research will dive deeper into characterizing proteoforms for biotherapeutic development of
membrane proteins. For example, developing therapeutics that target particular glycosylation sites

13

https://doi.org/10.26434/chemrxiv-2024-dz7rf ORCID: https://orcid.org/0000-0001-8115-1772 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0


https://doi.org/10.26434/chemrxiv-2024-dz7rf
https://orcid.org/0000-0001-8115-1772
https://creativecommons.org/licenses/by-nc-nd/4.0/

could be a powerful application where MS methods would be essential in defining the composition
of the target.

Complex Architecture

Another key question in MS of biotherapeutics is how proteins assemble into complexes. Many
membrane proteins either oligomerize or form macromolecular assemblies to perform their
biological roles.[175,176] Understanding the architecture of membrane protein complexes is
important to develop effective biotherapeutics to target the correct form of the complex.

Native MS (introduced above) is commonly used to study complex architecture.[162] Although the
direct applications to membrane protein biotherapeutics are limited, a humber of studies have
explored the architecture of therapeutically important membrane protein targets.[177] Early
examples used native MS to study protein complex architecture of membrane proteins in detergents,
with a striking example being ATPase complexes.[178] These studies primarily relied on common
nonionic detergents, such as DDM. However, more challenging targets have required advances in
detergent selection.[70,71,84] For example, Robinson and coworkers have advanced native MS to
study GPCR targets, which have relied on careful detergent selection and design.[179-181]

Alternative membrane mimetics have also been used to study membrane protein complex
architecture.[56,83,172,173] In one example, Townsend et al. embedded the influenza A M2 protein
in lipid nanodiscs with different lipids.[182] They discovered different stoichiometries of complex
formation in different lipid environments and observed drug binding to the tetramer species. To
capture interactions in more natural environments, Robinson and coworkers used sonicated lipid
vesicles prepared directly from cell membranes.[183-185] Together these methods demonstrate the
potential for native MS to study membrane protein complex architecture in complex environments.

Another technique to characterize complex architecture is cross-linking (XL)-MS. XL-MS measures
the proximity of amino acid residues through covalent crosslinking with bifunctional
linkers.[186,187] These linkers typically target specific amino acids, such as the primary amine
groups on lysine side chains, with the spacer arm defining the distance constraints between the
cross-linked residues. After digesting the crosslinked protein, analyzing the resulting peptides using
bottom-up proteomics reveals the spatial relationships between residues.

Complementing native MS studies, XL-MS provides unique information on which subunits are close
together in the complex. For example, Schmidt and coworkers used XL-MS to further characterize
the ATPase complex, first in detergents [188] and recently in synaptic vesicles.[189] This example
highlights the ability of XL-MS to study protein complex architecture in situ, which we will also
discuss below. Overall, these MS methods help define how membrane protein complexes are
assembled.

Interface Mapping

Interface mapping is important for biotherapeutic applications to identify binding epitopes for
antigen-antibody complexes. Mapping membrane protein interfaces can be achieved using various
structural MS techniques. Each technique provides complementary information on binding surfaces
by measuring unique properties such as solvent accessibility, distant restraints, and structural
dynamics.
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Hydrogen-deuterium exchange (HDX)-MS is widely used in biotherapeutic applications to map
protein-protein binding interfaces.[190-193] In HDX-MS, labile hydrogens on the protein backbone
exchange with deuterium from the solvent. This exchange is possible when hydrogen atoms are
solvent-accessible and not involved in intra- or inter-molecular bonding.[191,194] After quenching
the exchange, the protein is digested, and the resulting peptides are analyzed using MS.

HDX-MS has been used for a range of biotherapeutic applications, especially epitope
mapping.[192,195] In one example with membrane proteins, Kim et al.[196] used HDX-MS to perform
epitope mapping on broadly neutralizing antibodies for HIV that targeted the membrane-proximal
external region (MPER) of the HIV GP41 envelope protein. Comparing the MPER peptide presented in
free solution and bound to liposomes, they discovered that significantly less exchange occurred
when the antibody bound the MPER in liposomes, revealing a different presentation when the antigen
is bound to a lipid bilayer. This study demonstrated the use of HDX to perform epitope mapping on
membrane proteins presented in different environments.

Due to the complexity of natural membranes, HDX-MS requires purified proteins solubilized in
membrane mimetics. With detergents, no additional sample preparation may be needed. For
example, Chung et al. investigated the formation of a complex between the 2 adrenergic receptor
(B2AR), a GPCR, and Gs, a stimulatory G protein, in a neopentyl glycol detergent without any special
cleanup steps.[197] However, when membrane mimetics with lipids are used, additional sample
preparation is often needed to protect the reverse phase column used to separate peptides. Because
the labeling is reversible, these sample clean-up steps must be performed quickly. For example, in
the liposome study of MPER described above, a second guard column was used to trap lipids.[196]
Recent approaches have used zirconium oxide beads to remove lipids.[198-201] Sequence coverage
can also be improved by using urea to denature membrane proteins prior to digestion.[202] Using
these techniques, HDX has been applied to a variety of different membrane mimetic systems.

Covalent labelling (CL)-MS is another bottom-up method used to characterize protein structures by
covalently modifying solvent-accessible amino acids.[203,204] These labeling reagents can either
target specific amino acids (such as using N-ethylmaleimide to target cystine) or can non-
specifically label multiple residue types on the protein surface (such as with hydroxyl radicals and
carbenes).[205-207] The type of labeling reagent used in CL-MS determines the locations on the
protein structure that can be probed. For example, nonspecific hydroxyl radicals provide broader
structural coverage compared to labels that target specific amino acid residue types.[204] A few
factors also influence how the protein structure gets labeled using covalent labeling, such as solvent
accessibility, the inherent reactivity of amino acids, and the changes in microenvironment
introduced by the binding of ligands.[208] After the protein is labeled, the labeled protein is digested
and analyzed by LC-MS/MS to identify the relative amount of labeling at specific amino acid
residues.[208]

CL-MS has also been used in biotherapeutics to characterize binding interfaces of membrane
proteins, mostly on monoclonal antibodies to determine antigen interactions.[209] With purified
samples, fast photochemical oxidation of proteins (FPOP) with hydroxyl radicals has been used for
epitope mapping on protein ectodomains from RTKs.[210,211] FPOP has also been applied in
detergents, nanodiscs,[212] liposomes,[213] and cells.[214] Unlike HDX, the irreversible labeling in
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Figure 4. Workflow for in-cell labeling of mTNFa. mTNFa expressed in HEK293T cells was
incubated with a binding or nonbinding mAb and then labeled by DEPC. After the DEPC reaction,
the cells were lysed, and the protein was purified from the cell lysate using a C-terminal EPEA
affinity tag. LC-MS/MS was then used to compare the labeling extents between the two
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conditions. Reprinted with permission from Kirsh et al., 2023.
https://pubs.acs.org/doi/10.1021/acs.analchem.2c05616. Copyright 2023 American Chemical
Society.

CL-MS enables a range of downstream sample preparation strategies, such as protein precipitation
[212], to remove lipids and clean up the sample prior to MS analysis.

In one example of using CL-MS to map membrane protein interfaces with biotherapeutics, Vachet
and coworkers used CL-MS to explore the binding interactions of three monoclonal antibodies with
membrane-bound tumor necrosis factor a (mTNFa), in living HEK293T cells (Figure 4).[207] They first
transfected HEK293T cells with a plasmid encoding mTNFa with a C-terminal purification tag. Next,
they mixed the cells with the monoclonal antibodies for binding and performed labeling using
diethylpyrocarbonate (DEPC) as the covalent labeling reagent to modify solvent-accessible amino
acid residues on proteins while still in situ. After labelling, they quenched the reaction and isolated
the membrane protein using MS-compatible buffers with DDM detergent. Finally, they digested the
proteins and conducted LC-MS/MS analysis. The authors observed decreased DEPC labeling in
residues buried in the epitope upon antibody binding. Additionally, they observed changes in labeling
away from the epitope, suggesting alterations in mTNFa homotrimer packing or conformational
changes. Importantly, because CL-MS methods can be performed in cells (unlike HDX), they do not
require any membrane mimetics during the actual experiment, allowing the membrane proteins to
be probed in their native environment. Thus, CL-MS provides a powerful method for detecting binding
interfaces of membrane proteins in living cells.

XL-MS can also be performed in cells or organelles, providing the most natural environment for
studying membrane protein interaction interfaces.[189,215,216] For example, Bruce and coworkers
developed an innovative XL-MS workflow to study a peptide interacting with mitochondrial proteins
(Figure 5).[217] Here, intact mitochondria were isolated and treated with a peptide therapeutic, SS-
31. After crosslinking SS-31 with mitochondrial proteins, the crosslinks were enriched through a
biotin tag on the SS-31. Twelve inner mitochondrial membrane proteins were identified as interacting
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with the protein, helping to reveal the targets of the therapeutic and interfaces on these proteins
where SS-31 bound. The ability to expand these measurements to proteome scales enables
membrane protein interaction networks and interfaces to be uncovered.[189]
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Figure 5: Mitochondria isolated from mouse heart tissue were treated with the SS-31 peptide
labelled with a biotin tag (indicated by a triangle). Addition of a protein interaction reporter (PIR)
crosslinker crosslinked the SS-31 peptide to interacting proteins. The peptide was then extracted
with crosslinked proteins. After digestion and enrichment of crosslinked peptides, LC-MS/MS
analysis revealed the interacting proteins and interaction interfaces. Reprinted from Chavez et
al., 2020. https://www.pnas.org/doi/full/10.1073/pnas.2002250117.

Finally, these structural MS methods can be used in combination for more complex characterization
of interaction interfaces. For example, Li et al. used an integrative MS-based approach for epitope
mapping and structural characterization.[218] Here, the authors used a combination of HDX, FPOP,
and site-specific carboxyl group footprinting to investigate the binding of the soluble ectodomain of
human interleukin-6 receptor (IL-6R) to adnectin protein therapeutics. They found that the conserved
epitope for both adnectins is a flexible loop connecting two -strands in the cytokine-binding domain
of IL-6R. These findings revealed the value of combining information from multiple techniques to
characterize interfaces of protein-protein complexes. Overall, MS methods can provide unique
insights that address key biological questions surrounding membrane protein biotherapeutics.
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Conclusion

In this chapter, we have discussed various families of membrane proteins that are of biotherapeutic
interest, including receptor tyrosine kinases, G-protein coupled receptors, and ion channels. Next,
we explored the challenges associated with the solubilization of membrane proteins from their native
lipid bilayers into aqueous solutions. Finally, we discussed various structural MS techniques used to
address challenging biological questions in the field of biopharmaceuticals for membrane protein
targets.

In conclusion, although significant progress has been made in the characterization and therapeutic
targeting of membrane proteins, ongoing research and innovative approaches are important to
overcome existing challenges. The integration of advanced solubilization techniques and structural
MS approaches holds promise for the future of membrane protein biotherapeutics, potentially
leading to the development of new treatments for a variety of diseases.
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