
 

 

1 

 

 

Chemoenzymatic synthesis planning by evaluating the synthetic potential in biocatalysis and 
chemocatalysis 

Xuan Liu1,2,3, Hongxiang Li1,2,3,4, Huimin Zhao1,2,3,4,5,* 

1NSF Molecular Maker Lab Institute, 2Department of Chemical and Biomolecular Engineering, 3Carl R. 
Woese Institute for Genomic Biology, 4Department of Chemistry, 5DOE Center for Advanced Bioenergy 
and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 

*Corresponding to: zhao5@illinois.edu 

Abstract 

Chemoenzymatic synthesis integrates the advantages of chemocatalysis and biocatalysis to design efficient 
synthesis routes. However, current computer-assisted chemoenzymatic synthesis planning tools lack a 
heuristic method to unify step-by-step chemoenzymatic synthesis planning and molecule-by-molecule 
identification of chemo-/biocatalysis opportunities in synthesis routes. Here we develop an asynchronous 
chemoenzymatic retrosynthesis planning algorithm (ACERetro) which employs a search strategy that 
prioritizes the exploration of a molecule's promising catalytic methods. The suitability of a molecule to be 
synthesized via chemo- or biocatalysis is quantitatively evaluated by a data-driven Synthetic Potential Score 
(SPScore) using a neural network model. Additionally, the SPScore can be used to heuristically identify 
chemo-/biocatalysis opportunities in synthesis routes. For a given synthesis route, this algorithm uses 
SPScore to identify the molecules that offer optimization potential when synthesized by an alternative 
catalytic method, and then ACERetro is used to search synthesis routes. Case studies on synthesis planning 
for ethambutol and epidiolex demonstrate that our strategy can design concise chemoenzymatic synthesis 
routes by applying enzymatic steps to introduce stereochemistry and find shortcuts. Moreover, case studies 
on synthesis route optimization for rivastigmine and (R,R)-formoterol demonstrate how our strategy finds 
bypasses to form alternative, shorter chemoenzymatic synthesis routes. Our findings demonstrate that 
ACERetro with evaluating the synthetic potential of molecules represents a versatile and effective search 
framework for chemoenzymatic synthesis planning.  

Introduction 

Biocatalysis and chemocatalysis span distinct reaction spaces in terms of designing synthesis routes for 
molecules of interest due to their different characteristics. For biocatalysis, enzymes are green catalysts for 
reactions with excellent regioselectivity, stereoselectivity, and activity. For chemocatalysis, organic 
reactions are advantageous due to the broad substrate scope, vast types of reactions, and numerous well-
studied cases. Combining these two catalytic methods can capitalize on their unique advantages to build 
more efficient chemoenzymatic synthesis routes to many compounds1–5. A prominent example is the use of 
an engineered ribosyl-1-kinase for the synthesis of molnupiravir, an antiviral drug, which shortened the 
original synthesis route by 70% and achieved a sevenfold higher yield6. 

To accelerate the process of discovering novel synthesis routes, computer-aided synthesis planning (CASP) 
tools assist scientists in swiftly designing synthetic routes by retracing precursors step by step, replacing 
the previously cumbersome manual design process7–9. Based on the method of retracing precursors, CASP 
tools can be categorized into two types: template-based and template-free. Template-based methods utilize 
a set of reaction templates, either expert-curated or extracted from reaction databases, to generate precursors 
for target molecules10–15. Using reaction templates makes precursor predictions adhere to the transformation 
rules between reactants and products. Training a prioritizer to rank reaction templates still requires enough 
examples in a reaction database16, while a single occurrence of a reaction in a database is sufficient to 
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extract a reliable template, ensuring the reliability of precursor inference process. For chemocatalysis, 
Synthia10 utilizes expert-curated templates. In contrast, AiZynthFinder13 and ASKCOS12 employ templates 
extracted from organic synthesis databases. For biocatalysis, RetroBioCat15 uses expertly encoded reaction 
rules, while novoStoic17 and RetroPath14,18 extract templates from metabolic pathway databases. Template-
free methods fully capitalize on the advanced developments of language models, transforming 
retrosynthesis into the problem of translating product SMILES strings into precursor SMILES strings19–25. 
Learning chemical transformations directly from reaction data enables template-free methods to predict 
novel reactions. However, this also implies that training template-free models demands a large amount of 
data, and models without pre-defined rules may output unfeasible SMILES and reactions26. Examples of 
this strategy include RXN4Chemistry27,28 and RetroTRAE29 in chemocatalysis, and RXN4Chemistry 
(biocatalysis model)30 and BioNavi-NP31 in biocatalysis. 

Chemoenzymatic synthesis encompasses two distinct catalytic methods: chemocatalysis and biocatalysis. 
A chemoenzymatic synthesis route searching method is developed by Zhang et al. using historical published 
chemical and enzymatic reactions to build a combined reaction dataset for pathway searching32. This 
method avoids uncertainty in reaction predictions but cannot be used to design novel chemoenzymatic 
synthesis routes. To achieve computer-aided chemoenzymatic synthesis planning with predicted reactions, 
an intuitive approach is employing two retrosynthetic models for chemocatalysis and biocatalysis 
respectively. These models' results are then integrated at each step when searching precursors for a target 
molecule, facilitating a hybrid search process. Levin et al.’s hybrid planner33 adopts this strategy by 
integrating chemical (‘organic’) reaction templates with enzymatic reaction templates, and then combines 
the results of two prioritizers trained in each reaction database to rank the templates. While Levin et al.’s 
tool effectively predicts chemoenzymatic syntheses, it is not advisable to search for precursors in both 
catalytic methods simultaneously because the two prioritizers are trained on different datasets and lack 
proper alignment, leading to potential bias. Especially when the search space grows exponentially with 
search depth, the cumulative bias significantly affects the search performance. Additionally, Zeng et al. 
adopted a multitask learning strategy for template-free models, enabling automatic indication of the 
catalytic method34. However, this approach is limited to template-free methods, and there is currently no 
unified hybrid search algorithm applicable to both template-based and template-free tools. Another strategy 
in computer-aided chemoenzymatic synthesis planning involves the identification of alternative bypass 
syntheses: seeking enzymatic reactions as bypasses to existing or predicted chemical syntheses, or similarly, 
seeking chemical reactions as bypasses to enzymatic syntheses. For example, Sankaranarayanan et al. 
designed chemoenzymatic routes by exhaustively applying the biocatalytic templates to each intermediate 
in predicted synthesis routes35. However, because chemical reaction templates outnumber enzymatic 
reaction templates, adopting an exhaustive search strategy to identify bypasses in enzymatic synthesis 
routes by applying chemical reaction templates will inevitably result in an exponential growth of the search 
space. Employing heuristic methods is therefore demanded to determine which steps in the synthesis route 
need optimization, which is crucial to enhance the search efficiency. 

Herein, we report a synthetic potential guided asynchronous chemoenzymatic retrosynthesis planning 
algorithm (ACERetro). ACERetro utilizes the synthetic potential score (SPScore) to infer the promising 
catalytic method for the synthesis of a given molecule (Fig. 1a,b). Additionally, we introduce a synthetic 
potential guided synthesis route optimization algorithm to generate chemoenzymatic synthesis routes via 
identifying chemocatalysis/biocatalysis opportunities for enzymatic/organic reactions. This algorithm uses 
SPScore to find steps with opportunities for improvement that can be catalyzed by alternative catalytic 
methods (Fig. 1c). Evaluating the synthetic potential provides a heuristic and universal approach to the 
chemoenzymatic synthesis planning, which facilitates the utilization of either template-based or template-
free CASP tools. Based on the characteristics of synthetic reaction and enzymatic reaction databases, we 
employed a template-free retrosynthesis tool for chemocatalysis where data is abundant, and a template-
based tool for biocatalysis where database size is limited. We evaluated the performance of the SPScore on 
both single-step and multi-step retrosynthetic routes. Subsequently, we conducted a benchmark of 
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ACERetro with the state-of-the-art tool on hybrid searches for 1,001 molecules. Lastly, we applied 
ACERetro to case studies of two FDA-approved drugs, ethambutol and epidiolex, to demonstrate how 
ACERetro finds promising chemoenzymatic synthesis routes. In addition, the optimization algorithm with 
ACERetro was applied to analyze the synthesis routes of another two FDA-approved drugs, rivastigmine 
and (R,R)-formoterol. The results demonstrate the algorithm’s capability to optimize chemoenzymatic 
synthesis routes by identifying promising bypasses. 

Results 

Developing a synthetic potential scoring function 

The synthetic potential of a molecule in the chemo- or biocatalytic synthesis highly depends on the 
molecule’s structure and the development of chemo- and biocatalysis. To make a quantitative evaluation 
on the synthetic potential of molecules, we employed a data-driven method to train a synthetic potential 
scoring function on reaction databases. The method based on the premise that if a molecule has documented 
reactions for its synthesis, the catalytic method of these reported reactions is the molecule's promising 
catalytic method. A dataset comprising reaction products was extracted from two primary sources: USPTO 
480K36, which contains 484,706 reactions in chemocatalysis, and ECREACT30, which contains 62,222 
reactions in biocatalysis. After removing duplicates and molecules that could not be converted into valid 
molecular fingerprints for each respective catalytic method, the resulting dataset comprised of 437,781 
molecules in chemocatalysis and of 37,939 molecules in biocatalysis, while 515 molecules were present in 
both catalytic methods. 

Molecules were represented by ECFP437 (extended connectivity fingerprint, up to four bonds) and MAP438 
(MinHashed Atom Pair fingerprint, diameter d = 4) with three different lengths (length = 1024, 2048, and 
4096) to train several multi-layer perceptron (MLP) models. Due to the limitation of a reaction corpus that 
does not cover all the possible reactions of a molecule, it is not advisable to make a binary classification 
model to predict the promising catalytic method for molecules. Therefore, a Margin Ranking Loss was used 
as the training objective, which infers the promising catalytic method based on the relative value between 
predicted synthetic potential score in chemocatalysis (𝑆!"#$) and synthetic potential score in biocatalysis 
(𝑆%&'). The SPScores range from 0 to 1, so they can act as the probability of a molecule being promisingly 
synthesized by the catalysis of each catalytic method. The concrete idea of margin is when the difference 
between two SPScores of a molecule is within the margin, both catalytic methods are considered promising 
for the molecules' synthesis. If a molecule’s SPScore of one catalytic method is greater than the other, and 
the difference is greater than the margin, the field with the larger SPScore is more suitable for the synthesis 
of the molecule. In the training process, a margin of 0.15 was used, which helps ensure that the three regions 
have similar areas. A margin that is neither too severe nor too trivial benefits subsequent adjustments to 
user preferences without the need of model retraining on a different margin. An excessively large number 
of epochs will cause the model to overfit the distribution of the training data39. Since reactions sourced from 
the USPTO are confined to patents and differ in distribution from those documented in the literature40, the 
number of epochs is also considered in the evaluation criteria. Therefore, the best model was obtained by a 
comprehensive evaluation of precision, recall, and F1 on the validation dataset, as well as the number of 
epochs (Supplementary Fig. 2). As a result, the model that used ECFP4 with a length of 4096 as molecular 
embedding will be used for the subsequent tasks. 

Benchmarking SPScore on single-step retrosynthesis 

To evaluate the performance of SPScore, we assessed the benchmark of our scoring model on a dataset 
comprising 11,003 molecules randomly selected from the “in-vitro” subset of ZINC1541 that were not in 
the training dataset. Subsequently, their corresponding SPScores were calculated. The distribution of two 
SPScores and the difference of SPScores are shown in Fig. 2a. Although the margin used to train the model 
is fixed, a flexible user-defined margin can be adopted for different tolerance of catalytic methods during 
application. The use of margin also provides an intuitive perspective to understand applications of SPScore. 
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With the margin increasing from 0.05 to 0.25, more molecules are located in the region where molecules 
can be promisingly synthesized by both catalytic methods (Fig. 2b).  

To further explore whether SPScore is representative on predicting a molecule’s promising catalytic method, 
we conducted one-step retrosynthesis in each catalytic method by employing RXN4Chemistry28 for 
chemocatalysis, and employing Levin et al.’s enzymatic templates in ref. 33 for biocatalysis. For a given 
target molecule, RXN4Chemistry predicts possible synthetic reactions ranked by a confidence score, 
namely backward confidence, while Levin et al.’s enzymatic templates predict possible enzymatic reactions 
ranked by template score. The average backward confidence of the top-5 predictions increases with the 
mean synthetic potential score in chemocatalysis predicted by our scoring model (Fig. 2c). A similar trend 
between the average template score and the mean synthetic potential score in biocatalysis is observed (Fig. 
2d). This suggests that as the predicted probability of molecules being synthesized by a specific catalytic 
method increases, the corresponding retrosynthesis tool's confidence in its predictions also tends to increase.  

To determine whether the relative value of 𝑆!"#$  and 𝑆%&'  can serve as a representative metric, we 
analyzed both the average backward confidence and the average template score for top-5 predictions versus 
the mean SPScore difference (𝑆!"#$ − 𝑆%&'), as plotted in Fig. 2e,f. The result reveals that when 𝑆%&'  is 
larger than 𝑆!"#$, molecules tend to have relatively high template score to be synthesized by biocatalysis 
and low backward confidence to be synthesized by chemocatalysis. Collectively, these trends in Fig. 2c-f 
suggest that our scoring function exhibits a good ability to deduce the promising catalytic method for 
molecules.  

Benchmarking SPScore on multi-step retrosynthesis 

A multi-step synthesis route dataset is used to evaluate the performance of SPScore on multi-step 
retrosynthesis. Because there is lack of databases including multi-step synthesis routes, especially a multi-
step hybrid synthesis database, the synthesis routes of 493 target molecules searched by Levin et al.’s tool 
(the hybrid planner in ref. 33) in three minutes were used in this benchmark. The SPScore prediction of 
molecules is compared with the reaction type (chemical reaction or enzymatic reaction) used in the 
synthesis routes. Out of 397,040 synthesis routes linked to the 493 target molecules, 26,741 distinct product 
molecules with their catalytic methods were identified. Specifically, 9,162 (34.3%) molecules synthesized 
exclusively by chemocatalysis, 10,211 (38.2%) synthesized exclusively by biocatalysis, and 7,368 (27.5%) 
having both organic reactions and enzymatic reactions to synthesize them are in the overlap part. 
Furthermore, from the 1,531 shortest synthesis routes related to the 493 target molecules, 1,544 unique 
product molecules with their respective catalytic methods were identified: 788 (51.0%) in chemocatalysis, 
481 (31.2%) in biocatalysis, and 275 (17.8%) spanning both fields. 

When using SPScore to guide the search where the margin is set as 0.15, 85.8% of molecules’ synthesis 
field in shortest synthesis routes and 75.0% of molecules’ synthesis field in all synthesis routes can be 
covered. By this way, it can save 40.2% searches in shortest synthesis routes and 33.8% searches in all 
synthesis routes because SPScore can give the correct prediction that matches the catalytic method in the 
original synthesis routes (Fig. 3a,b). The observed trend indicates that as the margin expands, the catalytic 
method of a greater number of molecules is encompassed. However, this comes at the expense of a reduced 
number of saved searches. 

The reaction retention rate is determined by counting the instances where the actual catalytic method of a 
reaction is included in the predicted catalytic method of the reactions’ product molecule. When the margin 
is set as 0.15, 89.9% of reactions in the shortest synthesis routes can be covered, and 86.0% of reaction in 
the near shortest synthesis routes (route length £ shortest route length + 2) can be covered (Fig. 3c). Next, 
we investigate whether SPScore can provide guidance for finding the shortest synthesis route and 
discovering diversity of shortest routes. Of 493 target molecules, the route retention rate is determined by 
counting the number of molecules that at least one shortest synthesis routes whose actual catalytic methods 
can be covered by SPScores’ prediction. In scenarios with the same margin of 0.15, 393 (79.7%) of the 
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molecules have at least one shortest synthesis route that can be fully retained, while 109 (73.6%) molecules 
out of 148 have at least three shortest synthesis routes that can be retained (Fig. 3d). The results indicate 
that, in the context of multi-step retrosynthesis, utilizing SPScore as a guide enables the retention of the 
majority of favorable synthesis routes. 

Hybrid synthesis route search 

Hybrid search for chemoenzymatic synthesis route requires predicting precursors in chemocatalysis and 
biocatalysis. Synchronous methods, like Levin et al.’s tool, search chemocatalytic precursors and 
biocatalytic precursors simultaneously and then combine the search results. While in this study, we reported 
an asynchronous method, ACERetro, which prioritizes the search of the most promising catalytic method 
for a given molecule. To evaluate the performance, a fully hybrid synchronous algorithm (FHSync, Fig. 4a) 
and a SPScore guided synchronous algorithm (SPSync, Fig. 4b) are proposed for self-benchmarking to 
ACERetro, a SPScore guided asynchronous search algorithm (Fig. 4c). The single-step precursor prediction 
tools previously used in the “in-vitro” subset of ZINC15, namely RXN4Chemistry and Levin et al.’s 
enzymatic templates, were respectively used for chemocatalysis and biocatalysis. The fully hybrid search 
algorithm without SPScore directly searches both chemocatalysis and biocatalysis, and the results are 
combined in each step, while the SPScore guided synchronous hybrid search algorithm only searches 
promising catalytic methods predicted by the SPScore. In the SPScore guided asynchronous hybrid search 
algorithm, each molecule is weighted by the SPScore associated with the corresponding catalytic method. 
This allows the algorithm to revert to searching the less promising catalytic method when the data-driven 
SPScore yields an inappropriate inference. Employing asynchronous search techniques bolsters fault 
tolerance during the synthesis planning process. 

To explore search spaces of these three algorithms, we conducted a comparative evaluation on a set of 1,001 
molecules from ZINC, which Levin et al.’s tool had explored in ref. 33 under identical boundary conditions 
including search time and buyable dataset (see Methods). FHSync found synthesis routes to 597 molecules, 
SPSync found synthesis routes to 683 molecules, and ACERetro found synthesis routes to 720 moecules 
(Fig. 5a). Compared to the Levin et al.’s tool, which found synthesis routes to only 493 molecules, the 
FHSync can find synthesis routes to additional 104 (21.1%) molecules. This improvement is mainly 
attributed to the incorporation of the template-free model, RXN4Chemistry, in chemocatalysis. Moreover, 
the SPSync and ACERetro found synthesis routes to 190 (38.5%) and 227 (46.0%) more molecules 
compared with Levin et al.’s tool, respectively. These results underscore that the efficiency of ACERetro 
surpasses the state-of-the-art method.  

In a self-benchmarking analysis, the hybrid search algorithms with SPScore guidance (SPSync and 
ACERetro) outperform the algorithm without SPScore guidance (FHSync), which could find synthesis 
routes to 86 and 123 more molecules, emphasizing the pivotal role of SPScore plays in optimizing search 
efficiency. In the comparsion bewteen SPSync and ACERetro, ACERetro could find synthesis routes to 37 
more molecules, which indicates the asynchronous search is more efficient than the synchronous search. 
Unlike the synchronous search relinquishs the search for molecules’ suboptimal catalytic method, the 
asynchronous search keeps all suboptimal catalytic method of molecules to the queue for later exploration. 
The algorithm will start to search suboptimal catalytic method of molecules based on a comprehensive 
consideration inlcuding SPScores, search depth, and molecular complexity (see Methods). 

Variations in search spaces and strategies across synthesis planners lead to the prediction of different 
synthesis routes for molecules. A proficient planner can discover synthesis routes to a greater number of 
molecules than other planners are able to find. Thus, we conducted a comparative analysis to evaluate the 
number of molecules whose synthesis routes were exclusively identified by the three algorithms in 
comparison to Levin et al.’s tool (Fig. 5b). It was observed that each algorithm has the capability to discover 
synthesis routes for molecules that Levin et al.’s tool did not identify. Specifically, out of 1,001 molecules, 
synthesis routes to 466 could be found by both ACERetro and Levin et al.’s tool. While ACERetro 
exclusively identified synthesis routes to 254 molecules, Levin et al.’s tool could exclusively find to only 
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28, indicating that ACERetro discovered approximately 26 times more exclusive molecules than Levin et 
al.’s tool. These findings imply that ACERetro achieves an expanded search space and better heuristic 
search strategy than the state-of-the-art tool. 

The search quality of the synthesis planning tools can be evaluated by the number of reactions in the 
predicted synthesis routes through limited context that synthesis planning tools can provide, albeit it is not 
an exhaustive metric42. A smaller number of steps usually implies the use of fewer reagents and fewer 
purification steps43. We compared the length of the shortest synthesis route to 466 molecules found by both 
ACERetro and Levin et al.’s tool, ACERetro found optimized shortest synthesis route to 167 (35.8%) 
molecules and the shortest synthesis route of equivalent length for 260 (55.8%) molecules (Fig. 5c). This 
indicates that ACERetro can predict more optimized synthetic routes than Levin et al.’s tool. 

To further study the difference in search space between ACERetro and Levin et al.’s tool, we compared the 
synthesis routes to (S)-verofylline (1), (3S)-3-hydroxy-β-ionone (2), and dimenoxadol (3) (Fig. 5d-f). In 
the synthesis of 1, ACERetro predicted a three-step hybrid synthesis route including one enzymatic reaction, 
while the shortest synthesis route predicted by Levin et al.’s tool included four reactions in chemocatalysis 
(Fig. 5d). The route predicted by ACERetro first uses an enzymatic reaction to synthesize 5 from 4. The 
recommended enzyme is 2,5-diamino-6-(5-phospho-D-ribitylamino)-pyrimidin-4(3H)-one deaminase 
(Rib2; EC number 5.4.99.28). 5 is subsequently alkylated with 6 containing a chiral center to form 7. The 
final step constructs an imidazole ring using acetic acid with 7 to produce 1. Note that the Levin et al.’s tool 
route uses the same strategy to introduce the chiral center and construct the imidazole ring to 1, but the 
difference in starting materials makes the route longer. In the synthesis routes of 2, ACERetro predicted a 
two-step enzymatic synthesis route, while Levin et al.’s tool predicted a four-step hybrid synthesis route 
(Fig. 5e). The former first uses a reductase to get the double bond starting with dihydro-beta-ionone (8) to 
form beta-ionone (9). Next, a hydroxylase is used to introduce the chiral hydroxyl group for 9 to form 2. 
Recommended enzymes are 13,14-dehydro-15-oxoprostaglandin 13-reductase (PGR; EC number 1.3.1.48) 
and ent-isokaurene C2-hydroxylase (CYP71Z6; EC number 1.14.14.76) respectively. The latter uses a 
different starting material, beta-cyclocitral (10) to form 9, and three steps to form 2 from 9. In the synthesis 
routes of 3, ACERetro predicted a two-step synthesis route including only chemical reactions, while Levin 
et al.’s tool predicted a four-step hybrid synthesis route (Fig. 5f). The former first constructs ether from 
benzilic acid (11) to form 12, and then constructs ester to form 3. The latter uses similar reaction to form 
the final product from 12. However, it uses 1,1-diphenylethanol (13) as the starting material to synthesize 
12 via a three-step hybrid synthesis route. 

The routes of 1, 2, and 3 predicted by ACERetro cover three senarios: hybrid approach, purely synthetic 
approach, and purely enzymatic approach. The results show that ACERetro can often find shortcuts to 
synthesize compounds compared to Levin et al.’s tool, such as the synthesis of intermediate 7 in the 
synthesis route of 1, the synthetic route from 9 to 2, and the synthesis of 12 in the synthesis route of 3. For 
the predicted enzyme reactions, although those enzymes have not been reported to use molecules in the 
predicted routes as substrates, the predicted reactions still provide effective guidance for future enzyme 
discovery and engineering. Among all routes predicted by ACERetro, the SPScore of each product except 
5 is consistent with the corresponding catalytic method in the synthesis route. However, note that 𝑆()*+ of 
5 is higher than all other products in the route, and its 𝑆!"#$ − 𝑆()*+ has the smallest value, which indicates 
5 has higher potential to be synthesized by biocatalysis compared to other product molecules in the synthesis 
routes.  

Case study for synthesis planning 

Ethambutol is a drug used in the treatment of tuberculosis (TB). The (S,S)-enantiomer, ((S,S)-ethambutol; 
(S,S)-14), is the most active antimycobacterial agent compared with other three isomers44–46. Wilkinson et 
al. first reported the synthesis route for (S,S)-14, utilizing (2S)-2-aminobutan-1-ol (15) as the starting 
material44. Likewise, the synthesis routes of (S,S)-14 developed by Butula et al.47 and Stauffer et al.48 also 

https://doi.org/10.26434/chemrxiv-2024-hnl71 ORCID: https://orcid.org/0000-0002-9069-6739 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hnl71
https://orcid.org/0000-0002-9069-6739
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

used starting materials containing chiral centers (15 and 18) directly. Trost et al. used palladium catalyzed 
stereoselective epoxide (16) opening on phthalimide (17) to construct the chiral center49, while Kotkar et 
al. reported a synthesis route using proline-catalyzed α-aminooxylation on butyraldehyde (19)50.  

We conducted retrosynthesis planning on (S,S)-ethambutol by using ACERetro. The search parameters are 
the same as those used in the above-mentioned benchmarking study, except that the maximum search depth 
is set to 5 based on existing routes. The most promising predicted synthesis route connecting to buyable 
compounds is shown in Fig. 6f. The synthesis route first builds the chiral center through an enzymatic 
reaction of aminotransferase from cheap starting material 2-butanone (20) to form (2R)-butan-2-amine (21). 
22 is synthesized by the acylation reaction of 23 and 21, followed by reduction to form 24. Two steps of 
symmetrical hydroxylation catalyzed by the same enzyme are used to complete the synthesis of 12. 

The predicted route effectively employs a single enzymatic reaction to construct the chiral portion of the 
molecule. Compared to chemical methods reported in the literature, the enzymatic reaction conditions are 
milder. The enzyme recommended for this step based on molecular similarity is L-glutamine: 2-deoxy-
scyllo-inosose aminotransferase (G2DOIAT; EC number 2.6.1.100). The subsequent two symmetric 
hydroxylation reactions form a cascade, and a one-pot method can be employed to minimize the number of 
purifications. The CYP124 family of cytochrome P450 enzymes (CYP124; EC number 1.14.15.14) is 
recommended for this cascade. Moreover, introducing the hydroxyl group in the final step avoids side 
reactions during the acylation process and reduces the use of protecting groups. Although the predicted 
enzymatic reactions have not been experimentally verified for these substrates, the prediction still provides 
valuable guidance for future enzyme discovery and engineering. 

Epidiolex is the brand name for the (−)-cannabidiol ((-)-26), which is used for the treatment of epilepsy 
disorders. Kobayashi et al. developed the synthesis route using olivetol dimethyl ether (27) and 30 as the 
starting materials51. The chirality is constructed through the nucleophilic addition of 28 and 31 to form 29. 
Another synthesis route designed by Shultz et al. uses Ireland-Claisen rearrangements to build chirality 
starting from olivetol 3252. Gong et al. used Friedel-Crafts reaction to build chirality starting with 
phloroglucinol (35) and cis-isolimonenol (36)53. The biosynthetic route of (−)-cannabidiol using hexanoyl-
CoA as the starting material has also been reported54. The cannabidiolic acid synthase (CBDAS; EC number 
1.21.3.8) uses cannabigerolic acid as substrate to close the ring and introduce stereochemistry. 

The predicted route by ACERetro with a maximum search depth set to 4 and ignoring geometric isomerism 
in buyable molecule database is shown in Fig. 7e. The prediction provides a concise synthetic route, starting 
with the alkylation of olivetol 32 with geraniol 39 to form cannabigerol 40. Then an enzymatic step is used 
to form the final product (-)-26 with stereoisomerism. The first alkylation reaction has literature to support 
it55, whereas the recommended enzyme for the second step, CBDAS, has not been proven to work using 40 
as substrate. However, the high similarity between 40 and 38 points to the possibility of finding enzyme 
mutants that allow the reaction to occur. 

Case study for optimizing synthesis routes 

SPScore can also be used to optimize given synthesis routes by finding steps with opportunities for 
improvement that can be catalyzed by alternative catalytic methods in given routes. The steps with 
opportunities for improvement are selected based on the deviation between the SPScore predicted catalytic 
method and their catalytic method in the original route. ACERetro is then used to search alternative 
synthesis routes for the selected steps. The promising alternative synthesis route is appended to its original 
synthesis route to form a new optimized synthesis route for a given route. Herein, we conducted case studies 
on the synthesis route of rivastigmine (41) reported in the literature56 and a synthesis route for (R,R)-
formoterol (42) reported by a synthesis planning tool33. In the four-step organic synthesis route of the 
dementia drug rivastigmine 41, the 𝑆!"#$  of each molecule is greater than its 𝑆%&' . Therefore, the 
intermediate 44 with the largest SPScore difference (“optimization score”) was selected to search possible 
synthetic routes by the biocatalytic method. ACERetro with the same parameters was used for the search, 
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and the maximum search depth was set to 1 because the intermediate 44 in the original synthesis route only 
takes one step to reach the commercially available molecule. The search results show that an enzymatic 
reaction can be found using the same starting material 43 (Fig. 8a). This enzymatic reaction has been 
validated in the literature57, proving the effectiveness of SPScore in finding steps with opportunities for 
improvement and then optimizing the route. 

The chemoenzymatic synthesis route for (R,R)-formoterol 42 was predicted by Levin et al.’s tool. Top 3 
steps with opportunities for improvement (46, 48, and 49) were identified where their predicted SPScores 
are far away from their catalytic method in the original route. Specifically, the 𝑆!"#$ of intermediates 46, 
48, and 49 are larger than their corresponding 𝑆%&', yet enzymatic reactions were employed in the original 
route which causes a high optimization score. The new organic synthesis route for intermediate 46, utilizing 
45 as the starting compound, was predicted by ACERetro with a search depth capped at 1. Given that 
intermediates 49 and 48 are in the same branch, only the synthesis analysis for 48 was undertaken by 
ACERetro, with a maximum search depth of 2. The proposed route employs one-step chemical reaction to 
synthesize 48, taking 50 and (+)-phenylethylamine as the precursor, which reduces the original three-step 
synthesis strategy to a single step (Fig. 8b). These predicted reactions for intermediates 46 and 48 have 
been corroborated by the literature58,59. 

Discussion 

In this work, we have developed a synthetic potential guided asynchronous chemoenzymatic synthesis 
planning algorithm for designing chemoenzymatic synthesis routes for target molecules. When considering 
the evaluation of synthetic potential of molecules in each catalytic method for computer-assisted 
chemoenzymatic synthesis planning, our heuristic search algorithm can prioritize the exploration of the 
most promising catalytic method for a molecule. By leveraging the SPScore, we can also diagnose and then 
optimize existing synthesis routes through the identification of alternative bypasses. Consequently, the 
SPScore serves as a crucial link, constructing a bridge between step-by-step synthesis planning and 
synthesis route optimization in the design of chemoenzymatic synthesis routes. Performing asynchronous 
retrosynthetic searches in between the chemocatalysis and biocatalysis can significantly improve search 
efficiency and bolster the algorithm's robustness. This allows ACERetro to effectively address the challenge 
faced by the existing hybrid synthesis planners, which tend to be worse than single model planners in terms 
of efficiency and performance. 

In addition, we capitalize on the characteristics of current chemical reaction and enzymatic reaction 
databases. A sufficiently large chemical reaction database can support the training of retrosynthesis tools 
based on language models, whereas a smaller-scale enzymatic reaction database is more suitable for rule-
based reaction templates. Accordingly, we employ a template-free retrosynthesis tool, RXN4Chemistry, 
for chemocatalysis, and a template-based retrosynthesis tool, ASKCOS, for biocatalysis. Free from the 
limitations imposed by a template prioritization system, ACERetro guided by the synthetic potential 
possesses the capability to integrate seamlessly with any existing retrosynthesis tool. 

By comparing the confidence of single-step retrosynthesis and single-step retrobiosynthesis of 11,003 
molecules with the trend of SPScore distribution, it is shown that SPScore can effectively predict promising 
catalytic method for molecules. The performance of SPScore in multi-step retrosynthesis was further 
verified by catalytic method coverage, reaction retention rate, and route retention rate among predicted 
synthesis routes of 493 molecules. In the benchmarking study on 1,001 molecules, ACERetro outperformed 
the state-of-the-art method Levin et al.’s tool. Through a comparative analysis of the results obtained from 
FHSync, SPSync, and ACERetro, self-benchmarking reveals that the incorporation of the template-free 
model, the implementation of SPScore, and the adoption of asynchronous search methodologies each 
contribute to enhancing the performance of synthesis planning.  

Examples of synthetic routes for (S)-verofylline, (3S)-3-hydroxy-β-ionone, and dimenoxadol reveal that 
our method can identify shortest synthesis routes with higher quality, and the predictions include not only 
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hybrid synthesis routes, but also chemical reaction only synthesis routes and enzymatic reaction only 
synthesis routes. The case studies on synthesis planning of ethambutol and epidiolex demonstrate that our 
approach can effectively design hybrid synthesis routes for complex molecules and find potential enzyme 
candidates to perform the predicted enzymatic reactions. The complementarity of the two catalytic methods 
will further broaden the scope for designing efficient synthesis routes for molecules of interest. The case 
studies on synthesis route optimization for rivastigmine and (R,R)-formoterol illustrate that SPScore can be 
effectively applied to optimize existing synthesis routes. Existing synthesis tools are often inadequate for 
lengthy synthesis steps. Finding steps with opportunities for improvement that may be optimized in existing 
synthesis routes and then conducting retrosynthetic analysis can simplify the search process and make full 
use of existing parts of the synthesis routes that have been experimentally verified. 

The concept underlying SPScore involves inferring the most promising catalytic method for a molecule 
based on existing catalysis data in a reaction database, employing a data-driven approach. This approach 
aims to differentiate the distinct reaction spaces of chemocatalysis and biocatalysis. Utilizing SPScore in 
chemoenzymatic synthesis planning can expedite the search process by avoiding less promising catalytic 
methods. However, there remains a risk that the model might overlook viable reactions in the catalytic 
methods it avoids. Consequently, a comprehensive and high-quality dataset encompassing various types of 
reactions is crucial to ensure optimal model performance. It is noteworthy that the reaction spaces of 
chemocatalysis and biocatalysis are dynamic. The unique reaction space of each may expand or contract 
with the discovery of new catalysts or enzymes. In ACERetro, the SPScore is firstly used to identify the 
promising catalytic method before conducting a retrosynthetic analysis. An alternative improvement 
strategy could be first conducting retrosynthetic analysis to identify all potential deconstruction sites and 
intermediates, then selecting the appropriate catalytic method for each step. 

In summary, ACERetro demonstrates significant scalability and is not limited solely to template-based 
retrosynthesis tools. It represents a powerful strategy for designing efficient chemoenzymatic synthesis 
routes and identifying bypass opportunities to given routes. We believe that computer-aided 
chemoenzymatic synthesis planning will broaden the synthesis space by synergistically harnessing the 
unique properties of enzymes and chemocatalysis. Predicted synthesis routes are poised to accelerate the 
utilization of enzymes as eco-friendly catalysts in the synthesis of molecules, thereby facilitating the 
screening and engineering of enzymes for optimized performance.  

Methods 

Training the synthetic potential scoring model 

The USPTO 480K database comprises 484,706 organic chemistry reactions from patents, and the 
ECREACT database comprises 62,222 enzymatic reactions from Rhea60, BRENDA61, PathBank62, and 
MetaNetX63. After deduplication and excluding molecules with infeasible fingerprints (as detailed in 
Supplementary Information), we extracted 437,781 molecules from USPTO 480K (labeled with 𝑦 = 1) and 
37,939 molecules from ECREACT (labeled with 𝑦 = −1). 515 overlapping molecules, found in both 
catalytic methods, are labeled with 𝑦 = 0. An MLP model is trained to predict SPScores in chemocatalysis 
(𝑆!"#$) and biocatalysis (𝑆%&'). The model input is molecular fingerprints. A sigmoid activation function 
is applied to the final layer, ensuring that the range of both scores lies between 0 and 1. The margin uses 
the relative value of 𝑆!"#$  and 𝑆()*+  to divide the output space to three areas corresponding to three 
scenarios of catalytic method as shown in Fig. 1a. A weighted margin ranking loss is applied to compute a 
criterion only when the prediction is out of the area of molecules’ catalytic method. The weight is calculated 
based on reciprocal of the ratio among each label. 

 𝑙𝑜𝑠𝑠(𝑆!"#$, 𝑆()*+ , 𝑦) = -𝑤𝑒𝑖𝑔ℎ𝑡& ∙ max
(0, −𝑦(𝑆!"#$ − 𝑆%&') + 𝑚𝑎𝑟𝑔𝑖𝑛)

𝑤𝑒𝑖𝑔ℎ𝑡& ∙ max(0, |𝑆!"#$ − 𝑆%&'| − 𝑚𝑎𝑟𝑔𝑖𝑛)
	if	𝑦 = ±1
if	𝑦 = 0  (1) 
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The dataset was split into a training, validation, and test set (80%, 10% and 10%, respectively). We used a 
grid search to tune the hyperparameters including the type of the molecular fingerprints (ECFP4 and MAP4), 
the length of the molecular fingerprints (1024, 2048, or 4096), and the number of hidden layers (1, 3, or 5). 
The accuracy, F1, and recall are calculated on the validation set. To mitigate the risk of overfitting, the 
number of epochs is incorporated into the evaluation function to select the optimal models (see 
Supplementary Information). The optimal model, which utilizes ECFP4 embedding of 4096 length and 
comprises 3 hidden layers, trained for 10 epochs, was employed for all subsequent tasks.  

Benchmarking the synthetic potential score 

11,003 molecules were randomly selected from the “in-vitro” subset of ZINC15. SPScore was calculated 
for each molecule. RXN4Chemistry was employed for one-step retrosynthesis in chemocatalysis. Each 
predicted reaction is accompanied by a corresponding backward confidence score. Levin et al.’s enzymatic 
templates were employed for single-step precursor prediction in biocatalysis. Each predicted reaction is 
accompanied by a corresponding template score. The search parameters for RXN4Chemistry and Levin et 
al.’s enzymatic templates are listed in Supplementary Information. For molecules within different 𝑆!"#$ 
intervals, we calculated the average confidence scores for top-5 predictions, and an analogous procedure 
was undertaken for 𝑆%&' intervals and score difference (𝑆!"#$ − 𝑆%&') intervals. 

Multi-step hybrid synthesis routes were derived from the retrosynthetic predictions for 493 molecules 
conducted by Levin et al.’s tool within a three-minute timeframe. Out of 493 target molecules, we 
enumerated 26,741 distinct product molecules in 397,040 synthetic routes. All the synthetic routes with the 
shortest length for each target molecule were collected, which contained 1,544 distinct product molecules. 
The catalytic method of a molecule (denoted as “Chem”, “Bio”, or “Both”) is assigned based on whether 
the molecule has been synthesized by an organic chemical reaction or an enzymatic reaction. Catalytic 
method coverage out of all molecules counts the molecule whose SPScore predicted catalytic method 
includes the actual catalytic method out of all molecules. Saved searches out of “Chem” and “Bio” 
molecules count the molecule whose SPScore predicted catalytic method exactly matches the actual 
catalytic method for these molecules labeled with “Chem” or “Bio”, so the search algorithm does not need 
to search the alternative catalytic method. Reaction retention rate counts the product molecule in a reaction 
whose SPScore predicted catalytic method includes the actual catalytic method of that reaction. The near 
shortest synthesis routes include synthesis routes whose lengths are less than or equal to the shortest 
synthesis route length plus two. Synthesis route retention rate counts the synthesis route whose reactions 
can be all retained (see Supplementary Information for the formulae).  

Hybrid synthesis route search 

1,001 compounds from the “boutique” subset of ZINC15 database are used in the benchmarking study. 
Three search algorithms used the identical search parameters of RXN4Chemistry and Levin et al.’s 
enzymatic templates as described in the previous section. Tree search architecture including iterative 
process of selection, expansion, and update is used for all three search algorithms. In the selection mode, 
the molecule that has the lowest score in the priority queue and is not in the buyable database will be 
selected. In the expansion mode of the fully hybrid search algorithm, RXN4Chemistry and Levin et al.’s 
enzymatic templates are used to predict single-step precursor for the selected molecule. The results from 
chemocatalysis and biocatalysis are combined, and all precursors which are not in the buyable database are 
scored based on the molecular complexity function (denoted as 𝑓(𝑃) ) and the depth with a depth 
exploration factor (denoted as 𝑑). In the SPScore guided synchronous hybrid search algorithm, only the 
promising syntheic field predicted by SPScore will be searched, precursors are scored by the same way. In 
the SPScore guided asynchronous hybrid search algorithm, the syntheic field corresponding to the score of 
the selected molecule will be searched. A catalytic method exploration factor (denoted as 𝑐) is used for the 
SPScore. A molecule will have two scores associated with two catalytic methods. In the update mode, all 
precursors with their associated scores will be appended to the priority queue and then reranked.  
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 𝑆𝑐𝑜𝑟𝑒& = (1 − 𝑐 ∙ 𝑆𝑃𝑆𝑐𝑜𝑟𝑒&)𝐷𝑒𝑝𝑡ℎ, ∙ 𝑓(𝑃) 𝑖 ∈ [𝐶ℎ𝑒𝑚, 𝐸𝑛𝑧𝑦] (2) 

The maximum search depth and the expansion time were 10 and 180s respectively. For a fair comparison, 
the above parameters together with commercially available compound database from the vendors 
eMolecules and Sigma-Aldrich are consistent with those used in Levin et al.’s tool (additional parameters 
in Supplementary Information). When the search reaches the time limit, all synthesis routes from buyable 
molecules to the target molecule are returned. 

Case studies on synthesis planning  

In the synthesis planning of (S,S)-ethambutol and epidiolex, ACERetro is used to search synthesis routes 
with a maximum search depth set to 5 and 4, respectively. Because the buyable compound database does 
not contain complete geometric isomerism information of molecules, when searching in the buyable 
database, geometric isomerism of molecules is ignored, and optical isomerism is retained. All other 
parameters of ACERetro are the same as those used in the benchmarking tools. In enzymatic reactions, 
enzymes are selected based on the similarity of products under the same reaction template. 

Case studies on synthesis route optimization 

For a given synthetic route, the SPScore is calculated for all molecules except the starting molecule. Steps 
with opportunities for improvement are determined by comparing the relative value of two SPScores and 
the actual catalytic method of the molecule in the route. The indexes of top-n steps with opportunities for 
improvement can be retrieved by Equation (3), where 𝑦& = −1 if the molecule’s catalytic method in the 
given synthesis route is chemocatalysis (labeled as “Chem”), and 𝑦& = 1 if the molecule’s catalytic method 
in the given synthesis route is biocatalysis “Bio”. The equation aims to find top-n molecules with the largest 
SPScore difference away from the molecule’s catalytic method (“optimization score”). ACERetro is used 
to search the synthesis route of steps with opportunities for improvement. The search depth to molecules is 
set to current length to starting molecules in the original synthesis route.  For molecule 44 and 46, the search 
depth is set as 1. The search depth to molecule 48 is set as 2. All other parameters of ACERetro are the 
same as those used in the case studies for synthesis planning.  

 𝐼),#-. = argsortO𝑦&(𝑆𝑃𝑆𝑐𝑜𝑟𝑒!"#$& − 𝑆𝑃𝑆𝑐𝑜𝑟𝑒%&'& )P[−𝑛: ][: : −1] (3) 
 

Data availability 

The RXN4Chemistry models are the intellectual property of IBM, they are accessible through the IBM 
RXN for Chemistry website or at ref. 28. The ASKCOS model is available at ref. 33. 

Code availability 

The scripts for training SPScore, benchmarking, and  synthesis planning in this manuscript are available at 
https://github.com/Zhao-Group/ACERetro64.  
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Fig. 1. Chemoenzymatic synthesis planning guided by synthetic potential score (SPScore). a. 
Development of the SPScore model. Reaction product molecules were extracted from USPTO 
(chemocatalysis) and ECREACT (biocatalysis) respectively. A neural network model is trained to infer the 
promising catalytic method for a given molecule through the predicted SPScore. b. Workflow of the 
synthetic potential guided chemoenzymatic synthesis planning process. The target molecule is labeled by a 
red circle, and reactions in chemocatalysis and biocatalysis are labeled by red squares and blue squares, 
respectively. (i) Selection: the molecule with the lowest score in the priority queue is selected. (ii) 
Expansion: the retrosynthesis tool using the catalytic method inferred by SPScore is used to predict 
reactions and precursors for the selected molecule. (iii) Update: the expansion results are added to the search 
tree. Precursors are scored and appended to the priority queue. (iv) Output: Step i, ii, and iii are executed 
recursively until a termination condition is met. When the search process is terminated, synthesis routes to 
the target molecule started with buyable molecules (gray circles) are returned. c. Workflow of the synthetic 
potential guided synthesis route optimization. (i) Identify steps with opportunities for improvement using 
SPScore. For a given synthetic route, the SPScore of each molecule is computed. The selected steps (bold) 
are determined based on their predicted SPScores that deviate significantly from the actual catalytic method 
used in the existing route. (ii) Search alternative catalytic methods for the selected steps. The synthesis 
planning algorithm in b is used to search synthesis routes with alternative catalytic methods for the selected 
steps. (iii) Output. The promising search results are appended to the original route, and the optimized route 
is returned. 
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Fig. 2. Analysis of SPScore on molecules from ZINC “in-vitro” subset. a. The distribution of 𝑆!"#$ , 
𝑆%&' and the score difference (𝑆!"#$ − 𝑆%&'). b. The percentage of predicted catalytic method of molecules 
versus different margin settings. c. The mean backward confidence with SEM (the standard error of the 
mean) versus the range of 𝑆!"#$ . In chemocatalysis, RXN4Chemistry is used to predict retrosynthetic 
reactions for the molecules. The average backward confidence of the top-5 predictions is sorted by the range 
of molecules’ synthetic potential score in chemocatalysis. d. The mean template score with SEM versus the 
range of 𝑆()*+. In biocatalysis, Levin et al.’s enzymatic templates are used to predict enzymatic reactions 
for the molecules. The average template score of the top-5 predictions is sorted by the range of molecules’ 
synthetic potential score in biocatalysis. e. The mean backward confidence with SEM versus the range of 
𝑆!"#$ − 𝑆%&'. f. The mean template score with SEM versus the range of 𝑆!"#$ − 𝑆%&'. 

  

https://doi.org/10.26434/chemrxiv-2024-hnl71 ORCID: https://orcid.org/0000-0002-9069-6739 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hnl71
https://orcid.org/0000-0002-9069-6739
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

15 

    
Fig. 3. Analysis of SPScore on synthesis routes. Reaction products are extracted from reactions in all 
synthesis routes and molecules’ shortest synthesis routes predicted by Levin et al.’s tool on 493 molecules. 
Molecules are assigned with the ground truth label of catalytic method based on the extracted reaction set. 
The amount of “catalytic method coverage” is counted when the SPScore gives the correct prediction or 
predicts it as “both”. The amount of “saved searches” is only counted when the SPScore gives the correct 
catalytic method prediction. The percentage of catalytic method coverage out of all molecules (red) and 
saved searches out of non-“both” molecules (blue) are calculated among different margin for product 
molecules a in all synthesis routes and b in shortest synthesis routes. c. The reaction retention rate for the 
shortest synthesis routes (red) and near shortest synthesis routes (blue) against different margin settings. 
The reactions from shortest synthesis routes and the near shortest synthesis routes (where the route length 
£ shortest route length + 2) are extracted. The amount of retained reactions is counted when the SPScore 
gives the correct catalytic method prediction for the product molecule or predicts it as “both”. d. The 
shortest synthesis routes retention rate against different margin settings. The amount of retained synthesis 
routes is counted when all the reactions in the synthesis route can be retrained by the SPScore’s prediction. 

  

https://doi.org/10.26434/chemrxiv-2024-hnl71 ORCID: https://orcid.org/0000-0002-9069-6739 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-hnl71
https://orcid.org/0000-0002-9069-6739
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

  
Fig. 4. Hybrid search algorithms for designing chemoenzymatic synthesis routes. a. Fully hybrid 
synchronous search algorithm (FHSync). b. SPScore guided synchronous search algorithm (SPSync). c. 
ACERetro: SPScore guided asynchronous search algorithm. 
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Fig. 5. Comparison of synthesis routes found by hybrid search algorithms. a. Number of molecules for 
which synthesis routes were found out of 1,001 molecules. b. Number of molecules that their synthesis 
routes can be found by Levin et al.’s tool (red) only, both (grey), and ours (blue). c. Comparison of the 
number of steps in the shortest synthesis route found by ACERetro compared to the shortest synthesis route 
found by Levin et al.’s tool for molecules for which synthesis routes were found by both (466 total) from 
the ZINC15 “boutique” subset. The example synthesis routes of (S)-verofylline (1), (3S)-3-Hydroxy-β-
ionone (2), and dimenoxadol (3) are shown in d-f. All product molecules, except for 9, do not appear in the 
training set of the SPScore. Cofactors and some non-primary reactants are ignored. Enzymes are selected 
based on the similarity of products under the same reaction template. Rib2: 2,5-diamino-6-(5-phospho-D-
ribitylamino)-pyrimidin-4(3H)-one deaminase, PGR: 13,14-dehydro-15-oxoprostaglandin 13-reductase, 
CYP71Z6: ent-isokaurene C2-hydroxylase. 
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Fig. 6. Case study of ethambutol. a-e. Published synthesis routes of ethambutol. f. Predicted synthesis 
route of ethambutol. Ethambutol does not appear in the training set of the enzymatic model. Enzymes are 
selected based on the similarity of products under the same reaction template. G2DOIAT: L-glutamine:2-
deoxy-scyllo-inosose aminotransferase, CYP124: CYP124 family of cytochrome P450 enzymes. 
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Fig. 7. Case study of epidiolex. a-d. Published synthesis routes of epidiolex. e. Predicted synthesis route 
of ethambutol. Epidiolex does not appear in the training set of the enzymatic model. Enzymes are selected 
based on the similarity of products under the same reaction template. CBDAS: Cannabidiolic acid synthase. 
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Fig. 8. SPScore guided synthesis route optimization. a. Synthesis route optimization of rivastigmine. b. 
Synthesis route optimization of (R,R)-formoterol. Steps with opportunities for improvement do not appear 
in the training set of the SPScore. (+)-Phenylethylamine, which is available in the buyable database, and 
other reagents are not shown in the diagram. The predicted bypasses have literature support. KRED: 
ketoreductase. 
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