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ABSTRACT: Reductive radical generation has become a cornerstone of modern photoredox chemistry. However, the synthesis of 
functionalized radical precursors remains a tedious multi-step process. In this study, we focus on the potential of the nitro group as a 
redox-active functional group and present denitrative alkenylation of nitroalkanes, facilitated by photoreductive generation of alkyl 
radicals from nitroalkanes. By taking advantage of the facile α-functionalization of nitroalkanes, we successfully generate various 
functionalized alkyl radicals, which are subsequently used in the alkenylation reactions.

Radical chemistry has undergone significant advancements 
facilitated by the emergence of photoredox chemistry, which 
has expanded the toolkit for chemists by enabling a diverse ar-
ray of compounds to serve as radical precursors.1–4 Among them, 
carboxylic acids are the most widely employed via a single elec-
tron oxidation of the carboxylate ions, owing to their relatively 
low redox potential and thermodynamic advantage via facile 
decarboxylation (Scheme 1A). In addition, their abundance in 
both natural and industrial feedstocks, and amenability to func-
tionalize their carbon frameworks by classical carbonyl chemis-
try emphasizes the synthetic utility to access a wide range of or-
ganic compounds through decarboxylative C–C bond for-
mations.5–7 In contrast, redox-active esters such as N-hydroxy-
phthalimide ester serve as radical precursors capable of gener-
ating alkyl radicals via a single electron reduction, followed by 
eliminating CO2 and redox-active groups (RAG), thereby offer-
ing a complementary approach for radical generation in syn-
thetic chemistry (Scheme 1B).8–10 However, redox-active esters 
are in common labile under the reaction conditions requisite for 
the pre-functionalization of their carbon frameworks. Conse-
quently, alternative carboxylic acid derivatives, such as alkyl es-
ters, are usually employed.11 Additionally, a multi-step sequence 
including condensation of a carboxylic acid with a redox-active 
group is required to obtain the desired redox-active esters. Sim-
ilarly, other radical precursors including alcohol and amine de-
rivatives necessitate extra activation processes, which are not 
necessary for the strategic construction of carbon frameworks. 

To improve the overall efficiency in synthetic schemes utiliz-
ing reductive radical generation, we focused on nitroalkanes, 
which have isoelectronic structures with carboxylic acids, re-
garding them as redox-active building blocks (Scheme 1C). Ni-
troalkanes can generate nitronate ions under mild reaction con-
ditions due to the 1013-times higher acidity of the α-protons in 
comparison to that of carboxylic acid derivatives.12,13 Their 
amenability to facile C–C bond formation at the α-position 
through straightforward reactions with various electrophiles 
renders them valuable building blocks in organic synthesis. In 
addition to the classical reactions with carbonyl compounds,14 
imines,15 and electron-deficient alkenes,16 recent advancements 
have enabled arylations17–20 and alkylations21–24 facilitated by  

Scheme 1. Photoredox radical generation for C–C 
bond formations.  

transition metal catalysis. The iterative application of these re-
actions has been routinely harnessed in multistep synthesis, no-
tably in natural product synthesis, facilitating the construction 
of a myriad of diverse carbon frameworks.25–27 In addition to the 
synthetic utility, the potent electron-withdrawing character of 
the nitro group enables it to accept one electron from electron 
donors to generate the radical anions, followed by the alkyl rad-
icals through the C–N bond cleavage. However, in most cases, 
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the alkyl radicals capture a hydrogen atom, resulting in denitra-
tion products.28 

Denitrative C–C bond formation via radical intermediates 
was first described over half a century ago. The pioneering 
works by Kornblum elucidated the denitrative substitution of 
tertiary nitroalkanes with carbon nucleophiles through the SRN1 
mechanism.29,30 Additionally, Ono and co-workers have 
achieved the Giese addition reaction of alkyl radicals generated 
through the abstraction of the nitro groups by tin radicals.31,32 
In these instances, the utilization of a stoichiometric strong base 
or a toxic reducing agent was required. In our recent study, we 
reported the denitrative C–C bond-forming reactions employ-
ing 9-fluorenol as a single-electron reducing catalyst.33 However, 
the application of basic conditions at high temperature hindered 
the utilization of nitroalkanes bearing base-sensitive functional 
groups, thereby limiting their synthetic potential. 

In the precedent literature, photocatalytic reduction of ni-
troalkanes employing terminal reductants mainly yields oximes 
via the N–O bond cleavage although denitration occurs in the 
case of a highly reactive α-acylnitroalkane through the C–N 
bond cleavage.34 These phenomena imply the over-reduction of 
radical anions generated through single-electron reduction 
competes with the mesolytic cleavage of the nitro groups 
(Scheme 1D). Therefore, we hypothesized that a redox-neutral 
system would lead to suppressing the side reactions. In this study, 
we present the first photocatalytic denitrative C–C bond-form-
ing reaction of nitroalkanes. 

 
Table 1. Optimization and Control Experimentsa 

 
entry deviation from the initial conditions yield 

(%)b 
1 none 49 
2 PC2 instead of PC1 13 
3 PC3 instead of PC1 <5 
4 PC4 instead of PC1 <5 
5 PC5 instead of PC1 47 

6 PC6 instead of PC1 <5 
7 MeCN instead of DMSO 13 
8 NMP instead of DMSO 11 
9 No PC1 <5 
10 No light <5 
11 32 °C, two blue LEDs 62c 

aReaction was carried out with 1a (0.10 mmol), 2 (0.30 mmol), and 
PC1 (5.0 mol%) in DMSO (0.75 mL) under blue LED irradiation 
at 60 °C for 40 h. bNMR yield using 1,4-pyrazine as the internal 
standard. cReaction at 32 °C for 88 h on a 0.50 mmol scale using 
two Kessil blue LEDs. 

To examine the denitrative alkenylation with 1,1-diphe-
nylethylene (2), we selected nitroalkane 1a, which was found to 
decompose under basic conditions used in our previous study,35 
possibly through the retro-Michael reaction. Our initial screen-
ing of the reaction conditions revealed that 5.0 mol% of Ir(ppy)3, 
PC1 as a photoredox catalyst in DMSO at 60 °C under blue-
LED irradiation facilitated the conversion of 1a to the expected 
product 3a in 49% yield (entry 1, Table 1). Other iridium- and 
ruthenium-based photocatalysts with lower reducing ability in 
the excited state significantly decreased the reaction efficiency 
(entries 2–4).36 Further investigation of organo-photocatalysts 
showed a similar trend, with stronger reductants in the excited 
state resulting in better efficiency (entries 5 and 6).37 The choice 
of solvent was crucial in this reaction; other polar solvents ex-
hibited lower conversion of 1a (entries 7 and 8). Both the pho-
tocatalyst and light irradiation were necessary for the reaction 
(entries 9 and 10). After screening at 60 °C using one Kessil 
LED, we found that increasing the light intensity by using two 
Kessil LEDs improved the reaction efficiency and allowed us to 
lower the reaction temperature, affording 3a in 62% yield, with 
12% of 1a remaining unreacted (entry 11). 

Having established the optimal conditions, we investigated the 
scope of the denitrative alkenylation of various nitroalkanes (Ta-
ble 2). Τhe nitroalkanes possessing an electron-withdrawing 
group at the γ-position were readily synthesized by Michael re-
action and were applicable to the denitrative alkenylation, af-
fording the expected products 3a, 3b, and 3c in moderate yields. 
The reaction of a Henry-type nitroalkane containing a b-oxy-
gen-functional group, yielded b-aryloxy alkene 3d in 53% yield. 
The doubly acyloxy- and siloxy-methylated nitroalkanes, which 
are accessed through the iterative Henry reaction with formal-
dehyde, also participated in the denitrative C–C bond for-
mation, resulting in acyclic diester 3e and cyclic silyl ether 3f. 
Furthermore, the reaction of a nitroalkane with three different 
functional groups at the a-position proceeded, yielding alkene 
3g well-functionalized at the allylic position. A nitroalkane 
bearing a simple alkyl chain with the terminal methoxy group 
was also converted into alkene 3h. A phenyl group at the b-
position was tolerated to afford 3i in 66% yield. Substituents at 
the para-position including chlorine (3j), an electron-withdraw-
ing trifluoromethyl group (3k), or electron-donating alkoxy and 
acyloxy groups (3l–3o) led to the formation of the correspond-
ing products. Although various tertiary nitroalkanes were suc-
cessfully employed, the reactions of secondary and primary ni-
troalkanes did not proceed under the standard conditions (3p 
and 3q).38 Most of these substrates decomposed, and other by-
products were not identified except for ketone 7 possibly de-
rived from the Nef-type reaction. In the case of Henry-type 1,2-
nitroalcohol 1t, tandem cyclization occurred to form 
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substituted tetrahydrofuran 5t (Scheme 2A). The reaction of 
MOM-protected nitroalcohol 1r resulted in a similar product. 
These findings suggest that the reactions proceed via carbo-
cation intermediates, which cyclized, with releasing proton or 
the MOM group. In contrast, TIPS ether did not participate in 
the cyclization, but afforded the alkenylation product after the 
removal of the silyl group upon treatment with TBAF (3s). The 
alkylation of silyl enol ether 6 with a-nitroester 1u, the nitro 
group serving as a leaving group, provided b-quaternary ketone 
7u with a yield of 31% (Scheme 2B). Thus, a wide range of ni-
troalkanes accessible via various a-functionalization are appli-
cable to the denitrative C–C bond formation. 

 
Table 2. Scope for the Denitrative Alkenylationa  

aReaction was carried out with nitroalkane 1 (0.50 mmol), 2 (1.5 
mmol), and PC1 (5.0 mol%) in DMSO (3.8 mL) in a range of 29–
35 °C for 80 h using two Kessil LEDs with a fan cooling. Isolated 
yields are reported, with yields based on recovered starting material 
shown in parentheses when >5% of 1 was recovered. b120 h. c1.0 
mmol scale at 60 °C for 40 h. d1H NMR yield using 1,4-pyrazine as 
the internal standard. e80 °C. 

Scheme 2. Related transformations  

To gain insights into the reaction mechanism, we conducted 
several control experiments (Scheme 3). First, we performed the 
reaction of 1a with 2 in the presence of commonly used single-
electron transfer (SET) inhibitors, 2,2,6,6-tetramethylpiperidine 
1-oxyl (TEMPO, Ered = −0.36 V)39 and 1,4-dinitrobenzene (Ered 
= −0.66 V),40 which have less negative redox potential com-
pared to nitroalkanes (Ered = ca. −1.7 V, Scheme 3A)41,42. As a 
result, no conversion of 1a was observed in either case. Stern–
Volmer quenching studies were also conducted to probe SET 
from the excited state of PC1 (Scheme 3B).43,44 The linear plot 
clearly showed the quenching of excited PC1 with 1a predom-
inantly occurred over that with 2. In addition, we performed a 
light on/off experiment to determine if the reaction proceeded 
through a radical chain mechanism (Scheme 3C). The conver-
sion of 1a into 3a was detected only under light irradiation, not 
under dark conditions, suggesting that a radical chain process 
was not involved in this reaction. To demonstrate the genera-
tion of alkyl radicals through the C–N bond cleavage, a radical-
clock experiment using cyclopropane-containing substrate 1v 
was examined.45,46 The denitrative alkenylation product via 
ring-opening was obtained in 11% yield with a 58% recovery of 
1v (Scheme 3D). Furthermore, as shown in Scheme 2A, the re-
actions of 1r and 1t support the involvement of cationic inter-
mediates, indicating a radical-polar crossover mechanism that 
involves the oxidation of alkyl radical intermediates. 

 
Scheme 3. Mechanistic investigations 

 
Based on these results, the proposed reaction mechanism is 

depicted in Scheme 3. The photoexcited PC1 reduces the 
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nitroalkane via a SET, generating radical anion I. A nitrite ion 
is then eliminated, producing alkyl radical II, which subse-
quently adds across the alkene to form alkyl radical III. The 
alkyl radical is then oxidized by PC1 to form a carbocation in-
termediate IV, which undergoes deprotonation to yield the de-
nitrative alkenylation product. In contrast to the alkyl radical 
generation through C–N bond cleavage in the redox-neutral 
system described above, N–O bond cleavage preferentially oc-
curred under photo-reductive conditions using terminal reduct-
ants, yielding the deoxygenative N-alkylation product with an 
electron-deficient alkene (Scheme 5). These results support the 
concept presented in Scheme 1D. 
Scheme 4. Proposed mechanism 

 
Scheme 5. Deoxygenative N-alkylation of nitroalkanea 

 
aReaction was carried out with 1w (1.0 mmol), 8 (2.0 mmol), PC4 
(15 μmol), iPr2EtN (1.0 mmol), Hantzsch ester (1.5 mmol) in THF 
(5 mL) and CH2Cl2 (5 mL) under blue-LED irradiation at rt for 40 
h. 

In summary, we have developed the catalytic denitrative C–
C bond-forming reactions of nitroalkanes utilizing the photore-
dox system. This reaction can be applied to a wide range of ni-
troalkanes, which are conveniently synthesized by Michael and 
Henry reactions, as well as a-alkylation. The mechanistic stud-
ies indicate that nitroalkanes are reduced by the excited photo-
catalyst in a single electron manner to form alkyl radicals upon 
releasing a nitrite ion. This method is expected not only to en-
hance the synthetic utility of nitroalkanes but also to provide a 
new radical precursor in photoredox reactions. 
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