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 2 

ABSTRACT 28 

 29 

In May 2021, the M/V X-Press Pearl ship fire disaster led to the largest maritime spill of resin 30 

pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka 31 

nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of 32 

the spilled material remains unresolved. To begin understanding its potential toxicity, solvent 33 

extracts of the nurdles and pyroplastic were screened for their bioactivity by several Attagene 34 

FACTORIAL bioassays (TF, NR, and AquaTox), which measured the activity of a combined 70 35 

human transcription factor response elements and nuclear receptors and 6-7 nuclear receptors for 36 

each of three phylogenetically distinct fish species. Extracts of the pyroplastics robustly activated 37 

end points for the human aryl hydrocarbon receptor (AhR), estrogen receptor (ER), pregnane X 38 

receptor (PXR), peroxisome proliferator-activated receptor (PPAR), retinoid X receptor (RXR), 39 

and oxidative stress (NRF2), and the potential for several others. This bioactivity profile of the 40 

pyroplastics was most similar (similarity score = 0.96) to that of probable human carcinogens 41 

benzo[b]fluoranthene and benzo[k]fluoranthene despite the extracts being a complex mixture of 42 

thousands of compounds. The activity diminished only slightly for extracts of pyroplastic collected 43 

eight months after the spill. The AquaTox FACTORIAL bioassay measured the activation of ER, 44 

ER, androgen receptor (AR), PPAR, PPAR, and RXR for human, zebrafish (Danio rerio), 45 

Japanese medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss), revealing species-46 

specific sensitivities to the chemicals associated with the pyroplastics. These findings provide 47 

needed information to guide long-term monitoring efforts, make hazard assessments of the spilled 48 

material, and direct further research on pyroplastic, an emerging global contaminant. 49 

 50 

Keywords: nurdle, pollution, microplastic, open burning, maritime accident, bioactivity 51 

  52 

https://doi.org/10.26434/chemrxiv-2024-s07kh ORCID: https://orcid.org/0000-0002-6104-8310 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-s07kh
https://orcid.org/0000-0002-6104-8310
https://creativecommons.org/licenses/by/4.0/


 3 

INTRODUCTION 53 

 54 

In late May 2021, off the coast of Colombo, Sri Lanka, the ship fire and subsequent plastic spill of 55 

the M/V X-Press Pearl released ~1680 tons of plastic nurdles and other plastic debris, making it 56 

the largest maritime plastic spill in history.1–3 Along with polyethylene pellets, the cargo on the 57 

ship included an assortment of raw materials, hazardous chemicals, and finished products,4 capable 58 

of creating a complex mixture of uncertain toxicity. An observable fraction of the spilled material 59 

included burnt plastic (pyroplastic),4–7 formed during the events of the ship fire. The pyroplastic 60 

was heterogeneous in size and shape and somewhat friable, giving it a greater propensity to form 61 

secondary microplastics than the other spilled material.4,8 The attributes of the pyroplastic 62 

collectively challenged the response efforts and elevated the plastic’s potential for injury to a host 63 

of marine organisms.3,4 64 

 65 

At least five forms of plastic were released, including three types of nurdles distinguished by their 66 

color (white, orange, and gray) and two types of pyroplastic characterized by their shape and size 67 

(burnt plastic and combustion remnants) (Figure 1).7,9,10 Pieces of pyroplastic were not only at 68 

least 3-fold more chemically complex because of the fire,4 they were shown to have the greatest 69 

content of polycyclic aromatic hydrocarbons (PAHs) of any plastic marine debris recorded to date, 70 

199,000 ng/g.9 Comparatively, the more abundant white nurdles had PAH contents less than 71 

~2,500 ng/g, within the range of other marine debris.9 PAHs are chemical pollutants, many of 72 

which are carcinogenic, raising concern over the release of pyroplastic into the environment. While 73 

substantial, PAHs constituted only a fraction of the chromatographic features resolved within 74 

solvent extracts of the material.4 No phthalates have been detected.4 However, several other 75 

tentatively identified compounds have included chemical additives (e.g., Irgafos 168, 1,3,5-76 

tris(2,4-di-t-butylphenyl)phosphite4; and Bumetrizole (Tinuvin-326), 2-(2-Hydroxy-3-t-butyl-5-77 

methylphenyl)-5-chlorobenzotriazole11), their thermal breakdown products (e.g., 2,4-di-t-78 

butylphenol),4 and metals (e.g., Ti, Zn, Mn, Co)7,11,12 as well as unknown compounds, 79 

demonstrating that the pyroplastic included a complex mixture of compounds, many with unknown 80 

bioactivity. 81 

 82 

 83 
Figure 1. The spilled plastic included white nurdles (A), orange nurdles (B), gray nurdles (C), 84 

pieces of burnt plastic (D), and larger combustion remnant chunks (E). Reprinted from James et 85 

al.9 (CC BY-NC-ND 4.0). 86 
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 87 

While the M/V X-Press Pearl disaster was a localized, acute release of pyroplastics, these forms 88 

of plastic have been documented globally. Along with other forms of charred plastic, pyroplastics 89 

have been found on coastlines and in waterbodies in Africa,13 Antarctica,14 Asia,15–21 Europe,22–26 90 

North America,26–28 and South America29,30 (Figure S1). To date, the limited chemical analyses 91 

performed for beached pyroplastics unrelated to the M/V X-Press Pearl disaster have shown that 92 

these materials can be enriched in metals, PAHs, and phthalates.19,26 Pyroplastics are an emerging 93 

global contaminant thought to primarily enter the marine environment following fires at the 94 

wildland-urban interface and leaking of openly burned waste.17,31–34 95 

 96 

The toxicological concerns for burning plastic are not new, as emphasized by studies of the toxicity 97 

and chemistry of smoke and ash from residential and commercial fires,35 military burn pits,36–38 98 

openly burned municipal waste,33,39–41 landfill fires,42 and fires at the wildland-urban interface34,43 99 

as well as firewater runoff44,45 (the contaminated water produced during firefighting). However, 100 

these studies have not investigated the bioactivity of burnt plastic that remained after the fires were 101 

extinguished; their focus has largely been on aerosols and their impacts on air quality and human 102 

health. Similarly, despite their documented presence globally and unlike other plastic debris,46 the 103 

bioactivity of any pyroplastic is yet to be assessed. Not only is an assessment of potential toxicity 104 

necessary for making a hazardous waste determination of the spilled plastic,9 but there is also a 105 

need to measure its bioactivity owing to the friability of the pyroplastic, the elevated amounts of 106 

PAHs and other chemicals that can be associated with the pyroplastic, and the recognized “Trojan 107 

horse” effect for microplastic and nanoplastics to leach chemical pollutants to biota upon exposure 108 

(e.g., ingestion).47–51 109 

 110 

Reporter bioassays have been a valuable method for determining the bioactivity of a chemical or 111 

complex mixture. Targeted bioassays have been used to screen extracts and leachates from 112 

consumer plastics,52–55 plastic photoproducts,56 weathered plastics,46 and combustion-derived 113 

particulate matter and ash,43 Measurements have primarily focused on the activation of the aryl 114 

hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), pregnane X 115 

receptor (PXR), peroxisome proliferator-activated receptors (PPAR), and markers for oxidative 116 

stress (NRF2). Though targeted bioassays have been valuable, high-throughput, non-targeted 117 

screens of over 50 end points using the Attagene FACTORIAL platform can provide a more 118 

comprehensive assessment of bioactivity, capable of assigning chemicals and complex mixtures 119 

to specific modes of action.57–64 Additionally, as part of the United States Environmental 120 

Protection Agency (EPA) ToxCast program, the FACTORIAL platform has been used to evaluate 121 

more than 3000 chemicals, making it possible to compare bioactivities against an extensive 122 

database of diverse compounds.60,65 Moreover, variations of the platform (i.e., EcoTox and 123 

AquaTox) enable a harmonized cross-species assessment of endocrine and metabolic disruption 124 

upon chemical exposure for humans and wildlife (mouse, zebrafish, medaka, rainbow trout, 125 

chicken, frog, and turtle).66,67 Having such capabilities is valuable to addressing the potential 126 

ecotoxicity of pyroplastics. Recent work uncovering the acute toxicity of N-(1,3-dimethylbutyl)-127 

N'-phenyl-p-phenylenediamine (6PPD) and its oxidized form (6PPD-quinone) to select salmonids 128 

and not others emphasizes the need to assay across phylogenetically separated species when 129 

assessing the potential ecotoxicity of plastic-associated chemicals.68 This is particularly needed for 130 

the M/V X-Press Pearl disaster as Sri Lankan fisheries rely on numerous, diverse fish species for 131 

sustenance.69 132 
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 133 

Herein, three FACTORIAL bioassays were used to assess the bioactivity of solvent extracts of 134 

white nurdles and pyroplastic collected within days of, and 242 days after, the M/V X-Press Pearl 135 

disaster. In total, the activities of 70 end points were measured, assessing the induction of human 136 

transcription factors and nuclear receptors related to biotransformation, lipid metabolism, the 137 

endocrine system, immunity, and cell stress, differentiation, and growth. Additionally, the 138 

AquaTox bioassay assessed 6-7 end points for endocrine and lipid metabolic function for each of 139 

three phylogenetically distinct fish species. Our findings provide needed information to guide 140 

long-term monitoring efforts, make hazard assessments of the spilled material, and direct further 141 

research on pyroplastics, an emerging global contaminant. 142 

 143 

MATERIALS AND METHODS 144 

 145 

Sample collection. 146 

 147 

Spilled plastics from the M/V X-Press Pearl disaster were collected from Pamunugama Beach, Sri 148 

Lanka, on May 25, 2021 (5 days after the fire began), and stray plastic related to the spill was 149 

collected from Sarakkuwa Beach, Sri Lanka, on January 17, 2022 (eight months after the spill). 150 

The two beaches are ~2 km apart. The recovered plastic was shipped to the Woods Hole 151 

Oceanographic Institution (Woods Hole, MA, USA) and stored at 4 ºC as collected. All plastic 152 

was manipulated using solvent-rinsed stainless-steel tweezers. The material was visually sorted 153 

according to the categories operationally defined by de Vos et al.4 and James et al.10, i) white 154 

nurdles, ii) burnt plastic, and iii) excised pieces of combustion remnant (Figure 1). Samples from 155 

each category were previously analyzed for their PAH content.9 Orange and gray nurdles were not 156 

assayed because of limited sample quantity, and previous assessments demonstrated that their PAH 157 

composition reflected that of burnt plastic pieces.9 158 

 159 

To provide a contrast to the complexity of the white nurdle and pyroplastic released during M/V 160 

X-Press Pearl spill, polyethylene nurdles from the M/V CMA CGA Bianca spill were also 161 

analyzed. These nurdles were released without exposure to additional chemicals from the ship or 162 

transformed by heat and combustion. Nurdles from the M/V CMA CGA Bianca pellet spill were 163 

graciously provided by Professor Mark Benfield (Louisiana State University). The nurdles were 164 

collected on August 13, 2020 (11 days after the spill) from the riverbank area of Chalmette 165 

Battlefield in New Orleans, Louisiana, USA. 166 

 167 

Solvent extracts. 168 

 169 

Solvent extracts were prepared in triplicate by incubating ten nurdles or their equivalent mass of 170 

plastic in 5 mL (~45 mg/mL) analytical grade dichloromethane (DCM) for 24 h at room 171 

temperature in combusted borosilicate glass vials with PTFE/F217 lined caps. DCM was used as 172 

a solvent because it would provide parity with previous chemical analyses conducted on the spilled 173 

plastic,4,9 it is commonly used to prepare extracts from combustion-derived plastics and materials 174 

for bioassays,37,70–73 and many classes of organic compounds, including hydrocarbons, are readily 175 

soluble in it. After extraction, half of the DCM extract (2.5 mL) was blown to dryness under a 176 

gentle stream of nitrogen at room temperature and reconstituted in 100 µL of molecular biology 177 
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grade dimethyl sulfoxide (DMSO). An extraction blank without plastic was also prepared. 178 

Specifics of each extract are provided in Table S1. 179 

 180 

TF-, NR-, and AquaTox- FACTORIAL bioassays. 181 

 182 

DMSO-reconstituted DCM extracts were shipped to Attagene, Inc. (Morrisville, NC, USA) for 183 

testing by their TF-FACTORIAL (45 TF specific reporters), NR-FACTORIAL (24 human NRs) 184 

assays (previously named cis- and trans- FACTORIAL assays, respectively), and AquaTox-185 

FACTORIAL (6 human NRs and 19 fish NRs).59,60 The assays use HepG2 cells to assess the 186 

activity of endogenous transcription factors (TF assay) or transfected hybrid proteins consisting of 187 

a yeast GAL4 DNA binding domain and ligand-binding domain of the human nuclear receptors 188 

(NR assay) or fish nuclear receptors (AquaTox assay). These multiplexed assays comprised 89 189 

different measured end points related to cell stress, endocrine activity, growth and differentiation, 190 

immunity, and lipid, xenobiotic, and general metabolism.64 Extracts were tested at a maximum 191 

concentration of 3 µL DMSO extract/mL cell culture medium for 24 h. This concentration equates 192 

to the extractable content from ~4 mg of spilled plastic (~20% of the mass of a nurdle). Final 193 

DMSO concentrations were 0.3% (v/v). Five to six technical replicates of DMSO solvent controls 194 

matched to the DMSO concentration of the extracts were run with each sample set. Each extract 195 

was run as three technical replicates in Dulbecco's Modified Eagle Medium (DMEM) containing 196 

1% charcoal-stripped fetal bovine serum (FBS). The pyroplastics were evaluated by each 197 

FACTORIAL assay twice: the first at the maximum tested concentration for each of three extracts 198 

prepared from three independent sets of plastic, and the second as a 6-point serial dilution from 199 

the maximum tested concentration for a single representative extract. Each assay format was run 200 

once. 201 

 202 

TF-FACTORIAL assay. HepG2 cells were transfected with TF-FACTORIAL reporter library (46 203 

TF-specific reporter plasmids and seven control reporters) using TransIT-LT1 transfection reagent 204 

according to the manufacturer’s protocol (Mirus). Transfected cells were plated into 12-well plates 205 

(3105/well), incubated for 24 h in their growth medium, washed, and treated with samples for 24 206 

h in assay media (DMEM with 1% charcoal-stripped FBS). Cells were collected and processed. 207 

 208 

NR-FACTORIAL assay. HepG2 cells were transfected with NR-FACTORIAL library (25 GAL4-209 

NR expression vector and corresponding reporter plasmid pairs) using TransIT-LT1 transfection 210 

reagent according to the manufacturer’s protocol (Mirus). Each pair of GAL4-NR/reporter was 211 

transfected separately to avoid cross-reactivity. Transfected cells were pooled together and plated 212 

into 12-well plates (3105/well), incubated for 24 h in growth media, washed and treated with 213 

tested samples for 24 h in assay medium (DMEM with 1% charcoal-stripped FBS). Cells were 214 

collected and processed. 215 

 216 

AquaTox-FACTORIAL assay. HepG2 cells were transfected with AquaTox-FACTORIAL 217 

library (25 GAL4-NR expression vector and corresponding reporter plasmid pairs) using TransIT-218 

LT1 transfection reagent according to manufacturer’s protocol (Mirus). Each pair of GAL4-219 

NR/reporter was transfected separately to avoid cross-reactivity. Transfected cells were pooled 220 

together and plated into 12-well plates (3105/well), incubated for 24 h in growth media, washed 221 

and treated with tested samples for 24 h in assay medium (DMEM with 1% charcoal-stripped 222 

FBS). Cells were collected and processed. 223 
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 224 

Sample processing. Total RNA was isolated using PureLink Pro 96 total RNA Purification Kit 225 

(ThermoFisher). Reporter RNA was amplified by reverse-transcription polymerase chain reaction 226 

(RT-PCR) using a single pair of common primers. PCR fragments were labeled with fluorescent 227 

markers, and cut with HpaI restriction enzyme, generating reporter-specific sizes of labeled DNA 228 

fragments that were quantitatively assayed by capillary electrophoresis using a Genetic Analyzer 229 

3500xl. Bioassay responses were expressed as fold-induction relative to the DMSO control by 230 

dividing the treated cells' average technical replicate expression by the average technical replicate 231 

expression of the appropriate DMSO control. Activation of an end point was operationally-defined 232 

as requiring more than 1.5-fold induction across the two independently run assay formats and 233 

having a defined dose-response curve. All activities of an extraction blank were below the 234 

operationally-defined induction cut-off (Tables S2-S3), and all positive control compounds 235 

activated receptors as expected (Table S4). 236 

 237 

Statistical analysis. 238 

 239 

Statistical analyses were conducted using GraphPad Prism 10.2.3 (347). Data are presented as 240 

mean ± standard deviation (n = sample size). When appropriate, either parametric or non-241 

parametric tests were used to compare groups. Groups were considered significantly different for 242 

a p value less than 0.05. EC50 concentrations and their asymmetrical 95% confidence intervals 243 

were calculated by fitting a three-parameter dose-response curve, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑏𝑜𝑡𝑡𝑜𝑚 +244 
[𝑒𝑥𝑡𝑟𝑎𝑐𝑡](𝑡𝑜𝑝−𝑏𝑜𝑡𝑡𝑜𝑚)

[𝐸𝐶50]+[𝑒𝑥𝑡𝑟𝑎𝑐𝑡]
. For the dose-response curves, the concentration was defined as the mass of 245 

extractable content per volume of cell culture medium used in the assay. Sample sizes and 246 

statistical tests are included in the text and figure captions where appropriate.  247 
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RESULTS 248 

 249 

Chemicals associated with the spilled plastic may leach from the material over time once in the 250 

environment and following ingestion. To assess the amount of chemicals associated with the 251 

spilled plastic, the plastic was extracted with DCM. This slightly polar solvent readily dissolves 252 

petroleum-like hydrocarbons and other hydrophobic compounds typically associated with plastic 253 

found in the environment. DCM extractable contents for the white nurdles, burnt plastic, and 254 

combustion remnant pieces that first washed ashore on May 25, 2021, were 3  4 mg/g plastic 255 

(n=3), 24  2 mg/g plastic (n=3), and 88  2 mg/g plastic (n=3), respectively (Table S1). 256 

Comparatively, the DCM extractable content for the white nurdles and burnt plastic collected on 257 

January 17, 2022, 8 months after the spill, appeared relatively unchanged (unpaired t test with 258 

Welch's correction; p value > 0.05) with values of 5  3 mg/g plastic (n=3) and 19  2 mg/g plastic 259 

(n=3), respectively (Table S1). 260 

 261 

To understand many of the biological pathways that could be affected by the complex mixture of 262 

plastic-associated chemicals, the solvent extracts from the spilled plastic were screened for their 263 

bioactivity using several FACTORIAL bioassays (TF, NR, and AquaTox). In total, across the three 264 

different bioassays, the activity of 70 human transcription factor response elements and nuclear 265 

receptors and 6-7 nuclear receptors for each of three phylogenetically distinct fish species were 266 

measured in response to the solvent extracts from white nurdles, burnt plastic, and combustion 267 

remnant pieces.  268 

 269 

Extracts of the pyroplastic that first washed ashore on May 25, 2021, activated human 270 

transcription factors and nuclear receptors for metabolic, endocrine, and cell stress, growth, 271 

and differentiation processes. 272 

 273 

Bioactivity varied according to the type of spilled plastic. First, a single extract concentration was 274 

tested to semi-quantitatively assess the variability in bioactivity within a sample type (e.g., white 275 

nurdle, burnt plastic, and combustion remnant). Subsequently, dose-response relationships were 276 

constructed for the bioactivity of the pyroplastics. Results were largely consistent across the three 277 

extracts prepared from three independent sets of plastic (Figure 2, Tables S5-S7). The coefficients 278 

of variation of the end points for the burnt plastic and combustion remnant ranged from 0.7 to 279 

16.9% with a mean of 5.2% and 0.2% to 15.6% with a mean of 5.3%, respectively. As a result, 280 

one extract of each plastic type was used as a representative sample (Tables S6-S7) for evaluating 281 

the dose-response activity of the pyroplastics. The variabilities for the activated end points between 282 

the two assay formats were within the reported biological variability of the assays.59,61,74 283 

 284 

White nurdles. Of the 45 human transcription factor response elements and 24 nuclear receptors 285 

tested for activity in the TF- and NR- FACTORIAL bioassays, the white nurdles activated only 286 

two end points above the operationally-defined 1.5 fold-induction cut-off. At the concentration 287 

tested, only the aryl hydrocarbon receptor response element (AhRE) and the retinoid X receptor  288 

(RXR) nuclear receptor exceeded the cut-off. The extracts induced average fold increases in 289 

activity of 1.76  0.48 (n=3) for AhRE and 1.84  0.76 (n=3) for RXR (Table S5). This amount 290 

of bioactivity was comparable (within the same order of magnitude) to that of polyethylene nurdles 291 

collected after the M/V CMA CGM Bianca containership plastic spill that happened along the 292 

banks of the Mississippi River in New Orleans, Louisiana, USA, in August 2020. Extracts of these 293 
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nurdles induced average fold increases in activity of 3.79  3.43 (n=3) for AhRE; all other end 294 

points were below the operationally defined cut-off (Table S8). This spill was without fire, and so 295 

the source of the AhRE activity was attributed to hydrophobic organic contaminants from the 296 

Mississippi River that can associate with the nurdles.75 Thus, the bioactivity of the white nurdles 297 

appeared comparable to that of other polyethylene nurdles found in aquatic environments resulting 298 

from a containership spill. This finding also agreed with chemical analyses of their PAH content, 299 

which did not differ from that of other nurdles collected in the aquatic environment globally.9  300 

 301 

Pyroplastics. The pyroplastic was more bioactive than the white nurdles, and activation trended 302 

with the amount of extractable material. The extracts from the burnt plastic and combustion 303 

remnant pieces activated several end points related to biotransformation, lipid, endocrine, and cell 304 

stress, growth, and differentiation processes (Figure 2, Tables S6-S7, S9-S10). Specifically, the 305 

extracts activated the pregnane X receptor response element (PXRE) and its nuclear receptor 306 

(PXR), the estrogen receptor response element (ERE) and its receptor  (ER), the peroxisome 307 

proliferator-activated receptor response element (PPRE) and its receptor  (PPAR), RXR, the 308 

nuclear erythroid-2 related factor 2-antioxidant response element (NRF2/ARE), the activator 309 

protein 1 (AP-1), and AhRE (Figure 2). The elevated activity of PXR, ER, and PPAR in the TF 310 

and NR assays for pyroplastic extracts suggested that active components of these extracts acted as 311 

direct ligands of PXR, ER, and PPAR. 312 

 313 

Several other end points demonstrated defined dose-response relationships that did not exceed the 314 

1.5-fold induction cut-off operationally-defined for activation or inconsistently exceeded the cut-315 

off between the two independently run assay formats (Figure S2, Tables S6-S7, S9-S10). These 316 

end points included the liver X receptor  (LXR), the constitutive androstane receptor (CAR), 317 

the peroxisome proliferator-activated receptor  (PPAR), the nuclear receptor related 1 (NURR1; 318 

also known as the nuclear receptor 4A2), the metal regulatory transcription factor 1 response 319 

element (MRE), the hypoxia-inducible factor-1 (HIF1), the vitamin D receptor response 320 

element (VDRE), and the retinoic acid receptor-related orphan receptor response element (RORE). 321 

The activity of the liver X receptor family (direct repeat 4-binding proteins) response element 322 

(DR4/LXR) and the nuclear respiratory factor 1 (NRF1) activity were suppressed with increasing 323 

concentration of extractable material (Figure S2). The dose-response curves for AhRE, AP-1, 324 

CAR, ERE, ER, HIF1, LXR, MRE, NRF2/ARE, NURR1, PPRE, PPAR, PXRE, PXR, and 325 

VDRE showed tremendous concordance between the burnt plastic and combustion remnant with 326 

only minor deviations (i.e., the curves lined up on top of one another) (Figures 2 and S2). The 327 

dose-response curves for DR4/LXR, PPAR, RORE, and RXR deviated substantially between 328 

the two plastic types (Figures 2 and S2). The deviation was assessed qualitatively as the relative 329 

difference between the dose-response curves of the individual datasets and those of a dose-330 

response curve for their combined dataset. 331 

  332 
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 333 
Figure 2. Human nuclear receptors and transcription factors activated by the pyroplastics. The dose-response activity of the NR- and 334 

TF- FACTORIAL end points for the solvent extracts of the burnt plastic (BP) and combustion remnant (CR) pieces collected on May 335 

25, 2021. Data points are shown for the two FACTORIAL assay measurements: the first at the maximum tested concentration for each 336 

of three extracts prepared from three independent sets of plastic (squares), and the second as a serial dilution from the maximum tested 337 

concentration for a single representative extract from those previously evaluated (circles). Solid gray and black lines indicate the dose-338 

response curves for the burnt plastic and combustion remnant, respectively. Dashed lines in red indicate the dose-response curve when 339 

values for the burnt plastic and combustion remnant were combined. Dotted lines indicate the operationally-defined 1.5-fold induction 340 

criteria for activation. Concentration is presented as the mass of DCM extractable material per volume cell culture medium. 341 

 342 
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The bioactivity of extracts from the pyroplastic collected eight months after the spill was 343 

slightly diminished. 344 

 345 

The bioactivity of white nurdles and burnt plastic collected eight months after the spill trended to 346 

lower values, and no additional end points were activated. On average, all end points in the TF- 347 

and NR- FACTORIAL bioassays were below the 1.5-fold induction criteria for extracts from white 348 

nurdles collected eight months after the spill on January 17, 2022 (Table S11). As for the burnt 349 

plastic, the induced average fold increase in activity trended lower; however, the activity of RXR 350 

was the only end point with a statistically significant reduction in activity (Figure 3, Table S12). 351 

Overall, the end points were more variable at the later time point, while the variability of the 352 

extractable mass was unchanged between time points. This difference suggested that while the 353 

amount of extractable material did not appear to change, there was a change in its composition 354 

during this period, which is supported by reported changes in the PAH content of the burnt plastic 355 

within this timeframe.9 356 

 357 

 358 
Figure 3. Activity of extracts from burnt plastic collected on May 25, 2021 (5/25/21) and January 359 

17, 2022 (1/17/22). Statistical significance was evaluated by multiple unpaired Welch’s t-tests 360 

corrected by the Holm-Šídák method for multiple comparisons. * denotes p value < 0.05.  361 

  362 
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The bioactivities of the extracts from the pyroplastic were species-specific. 363 

 364 

The AquaTox FACTORIAL bioassay revealed differences in nuclear receptor activation among 365 

fish species and between fish and human receptors. End points included the induction of species-366 

specific estrogen receptors (ER and ER), androgen receptors (AR), peroxisome proliferator-367 

activated receptors (PPAR and PPAR), and retinoid X receptors (RXR) for humans (HU), 368 

Danio rerio (zebrafish; ZF), Oryzias latipes (Japanese medaka; JM), and Oncorhynchus mykiss 369 

(rainbow trout; RT) that were expressed as GAL4-NR hybrid proteins in human HepG2 cells. Only 370 

end points for human receptors (ER and RXR) were activated by extracts from the white 371 

nurdles. Fish ER were largely unresponsive to the extracts from the spilled plastic (Figure 4A); 372 

only medaka ER displayed activity above the 1.5-fold induction criteria in response to the 373 

combustion remnant extract (3.09  0.06, n=3). ER was the most sensitive to the pyroplastic 374 

extracts, and fish ER were more responsive to the pyroplastic extracts than human ER (Figure 375 

4B). Medaka and rainbow trout ER were activated in response to the burnt plastic and combustion 376 

remnant extracts. Human ER and zebrafish ERb expressed activity in response to the 377 

combustion remnant extract. None of the extracts elicited AR activity (Figure 4C). Fish PPAR 378 

and PPAR were not activated by the plastic extracts, while the human PPARs were activated 379 

(Figure 4D-E). Human and medaka RXR showed activity in response to the pyroplastic extracts 380 

(Figure 4F). As with the TF- and NR- FACTORIAL bioassay results, the activity of the nurdles 381 

and pyroplastics collected eight months after the spill trended toward lower values (Figure S3, 382 

Tables S16-S17). In conjunction with these semi-quantitative results made at a single 383 

concentration, dose-activity measurements (Figure S4, Table S18) suggest the potential for the 384 

plastic-associated chemicals to disrupt fish estrogen signaling via different pathways depending 385 

on the fish species. In contrast, their ability to disrupt fish androgen and lipid metabolism via direct 386 

ligand-activated pathways is unlikely.  387 
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 388 
Figure 4. Bioactivity of AquaTox FACTORIAL end points for the solvent extracts of white 389 

nurdles (NW), burnt plastic (BP), and combustion remnant (CR) pieces collected on May 25, 2021. 390 

Dashed lines indicate the operationally-defined 1.5-fold induction criteria for activation. Values 391 

for each extract are available in Tables S13-S15.   392 
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DISCUSSION 393 

 394 

Sources of bioactivity. 395 

 396 

The FACTORIAL profiles suggest that the complex mixture of PAHs (and other compounds) 397 

within the pyroplastic extracts reflected that of a single PAH. Several PAHs – especially those that 398 

are possible or known human carcinogens – have been screened by the FACTORIAL bioassays as 399 

part of the ToxCast program and within Attagene’s FACTORIAL database. Profiles of the burnt 400 

plastic and combustion remnant were very similar to those of benzo[b]fluoranthene (BbF) and 401 

benzo[k]fluoranthene (BkF) (similarity score >0.96; 0.74 µM; TF-FACTORIAL profile). 402 

Additionally, the TF-FACTORIAL profiles of the pyroplastic differed from those of other possible 403 

or known human carcinogenic PAHs, including benz[a]anthracene (BaA), chrysene (C0), 404 

benzo[a]pyrene (BaP), and indeno[1,2,3-cd]pyrene (IND). The AquaTox profiles also reflected 405 

this result, showing comparable similarity to BbF and not to BaP and BaA (Figures S5-S8) except 406 

for their ER activation, which was more akin to BaP and BaA than BbF. Notably, none of the 407 

single PAH compounds mentioned above activated PXRE/PXR and RXR and few activated 408 

PPRE/PPAR while the pyroplastics robustly activated these end points (Figures 2, S5-S8). These 409 

results suggest that other compounds in the complex chemical mixture were the cause of their 410 

activity. 411 

 412 

From previous chemical analyses of the pyroplastics, the relative abundances of BaA, C0, BbF, 413 

BaP, and IND were comparable, and BkF was much less abundant than the others.9 Thus, the 414 

FACTORIAL profiles of the pyroplastics are unlikely to reflect the additive sum of the profiles 415 

for the individual compounds within the extracts. At first glance, this outcome aligns with evidence 416 

showing that complex mixtures of PAHs behave differently than single PAHs from a toxicological 417 

standpoint.76,77 Yet, in contradiction to this, the pyroplastic extracts primarily reflected profiles of 418 

a single PAH, but for a profile of a single PAH at a ~10-fold greater concentration than is estimated 419 

to have been in the extract. Future work should investigate the FACTORIAL profiles of PAH 420 

mixtures to better interpret the contributions of each chemical component to the overall toxic 421 

potential of PAH complex mixtures that more represent real-world samples.  422 

 423 

The findings reflect and expand on those made for other types of combustion-derived material 424 

(e.g., PAHs). Extracts of ash collected from forest fires at the wildland-urban interface were 425 

assessed for their AhR, ER, AR, interleukin-8, and cyclooxygenase-2 (COX-2) activity,43 which 426 

largely reflected the bioactivity of common combustion-derived chemicals of concern. There were 427 

some indications that other compounds contributed to the total bioactivity. However, their extent 428 

of activation was no more than that of the more common chemicals from an AhR activation 429 

standpoint. The FACTORIAL profiling of the pyroplastics for a much larger number of end points 430 

suggests a similar conclusion – the bioactivity reflected that of common combustion-derived 431 

chemicals of concern (i.e., PAHs). Nonetheless, while the FACTORIAL platform provides a 432 

valuable screen for bioactivity, an ensemble of measures (e.g., transcriptomics and other methods) 433 

is necessary to fully understand the potential modes of toxicity for a contaminant. 434 

 435 

Moreover, the pyroplastics from the X-Press Pearl disaster were formed following the combustion 436 

of polyethylene. Other compounds of concern (e.g., dioxins, PFAS) can be formed during the 437 

combustion of halogenated and heteroatom-containing polymers. Thus, investigating pyroplastics 438 
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from diverse plastics is necessary to more broadly confirm this similarity to other types of 439 

combustion-derived material. 440 

 441 

Bioactivity of the uncollected plastic. 442 

 443 

The findings suggest that nearly a year after the spill, the pyroplastics largely retained quantities 444 

and compositions of associated chemicals capable of eliciting bioactivity comparable to when the 445 

material first spilled. This outcome was not entirely unexpected given that polyethylene is used 446 

for the passive sampling of hydrophobic organic contaminants in the environment,78 i.e., 447 

partitioning between seawater and polyethylene skews toward greater amounts in polyethylene.79 448 

With that in mind, the spilled plastic can accumulate and become enriched in additional 449 

contaminants from the environment.80,81 Continued monitoring of any uncollected plastic will be 450 

necessary to ascertain the extent to which its bioactivity profile and chemical complexity deviate 451 

from those when it first spilled over more extended periods in the environment. 452 

 453 

Potential ecotoxicity of the pyroplastics. 454 

 455 

Within the first few weeks of the M/V X-Press Pearl disaster, the spilled pyroplastics were 456 

expected to differentially impact wildlife because of their wide range of morphologies and physical 457 

properties.4 The AquaTox results expand upon this point. The data indicate that the potential 458 

toxicological harm from the plastic-associated chemicals will also be heterogeneous because of 459 

species-specific effects. In other words, fish species of comparable size (i.e., capable of ingesting 460 

similarly sized pyroplastics) can be expected to respond differently to the complex mixture of 461 

chemicals that leach from the material. This finding also likely translates to other taxonomic 462 

classes (e.g., birds). While, in hindsight, this conclusion may appear evident to those versed in 463 

comparative toxicology,82,83 during the environmental crisis of the spill, it was likely not at the 464 

forefront of concern. Instead, responders simply needed to know whether any chemicals associated 465 

with the plastic had toxicological potential. This point, however, is significant for monitoring 466 

programs and suggests the need to follow multiple phylogenetically distinct species within the 467 

same taxonomic class and use multiple end point measurements to best capture and assess potential 468 

harm. 469 

 470 

Adverse outcome pathways related to the activated end points. 471 

 472 

Identifying pathway-based bioactivity in the samples can inform the potential hazards of exposure 473 

to chemicals associated with the pyroplastics. The adverse outcome pathway framework aims to 474 

connect in vitro pathway-based bioactivity (e.g., AhR activation) with organismal-level responses 475 

and adverse outcomes (e.g., cardiotoxicity).84,85 Adverse outcome pathways have been defined on 476 

AOP-Wiki86 for several of the activated end points, including PXR, AhR, ER, PPAR, and NRF2, 477 

while others (AP-1 and RXR) have yet to be established. The most developed adverse outcome 478 

pathways are for AhR and ER, whereby their activation has been connected to early mortality, 479 

several cancers, preeclampsia, cognitive decline, liver fibrosis and steatosis, and reproductive 480 

dysfunction. Activation of PPAR and PPAR have adverse outcome pathways resulting in 481 

vascular disruption, obesity, liver steatosis, cancers, and reproductive dysfunction. The adverse 482 

outcome pathways associated with PXR and NRF2 are more nascent than the others; their 483 

activation includes liver steatosis and vascular disruption. Having identified potential upstream 484 

https://doi.org/10.26434/chemrxiv-2024-s07kh ORCID: https://orcid.org/0000-0002-6104-8310 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-s07kh
https://orcid.org/0000-0002-6104-8310
https://creativecommons.org/licenses/by/4.0/


 16 

molecular initiating events with the FACTORIAL bioassays, future work should focus on 485 

hypothesis-driven, in vivo measures of tangential and downstream key events within these 486 

pathways to further guide risk assessment of pyroplastics.  487 

 488 

CONCLUSIONS 489 

 490 

At the time of the spill, ~1680 tons of plastic debris was released, of which a sizable portion was 491 

burned. By June 2021, ~1610 tons of plastic, debris, and contaminated sand had been recovered 492 

and has since remained siloed in warehouses.3 Part of the prolonged containment of the waste has 493 

resulted from the uncertainty of its hazardousness and the methods for its appropriate disposal.3 494 

From the FACTORIAL bioassays, it appears that the bioactivity of the chemicals associated with 495 

the pyroplastics largely reflects that of presumed and recognized carcinogenic PAHs, specifically 496 

BbF and BkF, despite being a complex mixture of thousands of compounds. This finding suggests 497 

that the material should be handled similarly to other combustion-derived residues (e.g., from 498 

biomass). Conversely, any chemicals associated with the white nurdles appear to pose a 499 

comparatively marginal threat, eliciting relatively minimal bioactivity at their expected 500 

concentrations. Nonetheless, the bioavailability of the associated chemicals, which controls their 501 

effective dosage, remains to be determined. For the stray pyroplastic still in the environment, 502 

continued monitoring is necessary. Pieces of pyroplastic collected nearly a year after the spill 503 

largely retained quantities and compositions of associated chemicals capable of eliciting 504 

bioactivity comparable to when they first spilled. As the material fragments into smaller pieces, 505 

other organisms will become susceptible to it, and other modes of toxicological action will likely 506 

arise (e.g., submicron-sized plastic particles loaded with relatively high levels of 507 

contaminants).87,88 With the detection of pyroplastics across much of the globe and recently in 508 

fish,13 further understanding of their toxicity is needed. 509 

 510 
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