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Abstract

The design of small molecules is crucial for technological applications ranging from

drug discovery to energy storage. Due to the vast design space available to modern

synthetic chemistry, the community has increasingly sought to use data-driven and ma-

chine learning approaches to navigate this space. Although generative machine learning

methods have recently shown potential for computational molecular design, their use

is hindered by complex training procedures, and they often fail to generate valid and

unique molecules. In this context, pre-trained Large Language Models (LLMs) have

emerged as potential tools for molecular design, as they appear to be capable of cre-

ating and modifying molecules based on simple instructions provided through natural

language prompts. In this work, we show that the Claude 3 Opus LLM can read, write,
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and modify molecules according to prompts, with an impressive 97% valid and unique

molecules. By quantifying these modifications in a low-dimensional latent space, we

systematically evaluate the model’s behavior under different prompting conditions.

Notably, the model is able to perform guided molecular generation when asked to ma-

nipulate the electronic structure of molecules using simple, natural-language prompts.

Our findings highlight the potential of LLMs as powerful and versatile molecular design

engines.

Introduction

The design of novel molecules and materials remains an important frontier for the scien-

tific community, with new synthetic approaches being developed all the time. Such efforts

are crucial across a wide array of applications, including energy storage technologies,1 alloy

design,2 2D materials design,3 and drug discovery.4 The strategic navigation of this vast

chemical space is critical for successful discovery of new material solutions to these chal-

lenging problems.5 Generative machine learning models6 have been at the forefront of this

exploration, offering a glimpse into the future of computational design.

Despite their promise, these models often stumble7 by producing invalid or irrelevant

molecular structures. Furthermore, fine-tuning and retraining these models demand sub-

stantial labeled data at times, complicated training procedures, intensive computational

resources, and a significant amount of time, making the process costly and sometimes im-

practical for many tasks. Adding to these hurdles, acquiring training data for these models

is challenging, as data must be sourced from disparate materials databases8 with poten-

tially different formats. These procedural issues further contribute to the challenges of using

chemistry-specific generative models to transform raw data into actionable insights for ma-

terials discovery.

Nevertheless, the advent of generative AI models9 marks the beginning of a paradigm

shift in the discovery and design of new materials. Among the most promising developments
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are transformer-based models that have been successfully applied to various molecular design

tasks. For example, C5T5-type models have been used in the design of antiviral drugs.10

More recently, Matsukiyo et al. generated candidate molecules by exploring the latent space

of a Transformer-based VAE, identifying inhibitors for the design of target proteins in ther-

apeutic applications.11 Additionally, MolGPT, a lightweight generative pre-trained trans-

former model based on a masked-attention transformer-decoder architecture, demonstrated

molecular generation according to desired scaffolds while controlling multiple properties.12

Furthermore, Tysinger et al. showed that transformers can be trained to make meaningful

molecular modifications for hit expansion in bioactive molecular drug design.13 These exam-

ples highlight the powerful utility of transformers across multiple molecular design problems.

Large Language Models (LLMs),9 which are also based on transformer architectures ini-

tially trained on vast amounts of natural language data, have been recognized for their

disruptive effect in nearly every field. Although they are not explicitly trained to be knowl-

edgeable in chemistry, they have the advantage of being adaptable and generalizable.14 Given

their shared foundation with the aforementioned molecular design models, LLMs hold sig-

nificant promise for advancing the field through their flexibility and broad applicability.

Recent studies have shown that LLMs can indeed capture and apply principles of chem-

istry (as represented in their training corpus) to solve complex problems, going beyond mere

pattern recognition.15,16 While we acknowledge that LLMs may not possess an understanding

of chemistry similar to human experts, existing works suggest that they can potentially use

chemical data to generate valid Simplified Molecular Input Line Entry System (SMILES)17

strings (which encodes molecular structures in text form), propose meaningful molecular

modifications, and guide the discovery of compounds with desired properties.

Thus, SMILES strings can be leveraged to explore LLMs’ understanding of cheminfor-

matics and chemistry design principles. LLMs have the additional benefit of being very

flexible with the formatting of input data, meaning that some of the challenges associated

with chemistry-specific generative models may be circumvented with LLMs.
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In this work, we explore the Claude 3 Opus LLM’s ability to understand and leverage

chemical design rules to perform molecular generation and modification tasks. Through

systematic study with quantitative metrics, we offer insights into how well LLMs can design

new molecules and navigate the chemical design space in different design scenarios. By

leveraging a latent space embedding of the molecules, we perform a nuanced investigation

of the molecular modifications applied by the LLM. Additionally, we explore the biases that

emerge with different prompts to understand how these prompts will affect the navigation of

the chemical space. Through these tasks, we aim to demonstrate systematically that simple,

natural language instructions can enable LLMs to generate new molecules with specific

characteristics.

Methods

Figure 1: (a) represents the process of parent SMILES generation for the molecular modifi-
cation process using Claude API. (b) represents the Claude API workflow and how unique
validated (by RDKit) SMILES are obtained.
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Dataset and representation learning

The dataset for this study includes approximately 1.3 million small molecules from the

ZINC database.18 In total, ZINC contains over 230 million commercially available molecules

frequently used in virtual screening for drug discovery. Here we used a subset of small

molecules (molecular weight below 200 Daltons) that contain nitrogen and at least one

hydrogen bond donor or acceptor, targeting molecules that facilitate proton transport for

applications in energy storage technologies.

We employed the counts-based Morgan Fingerprint strategy19 to featurize the small

molecules. This approach involves generating molecular fragments of each molecule, us-

ing these fragments as keys, and assigning numbers based on the frequency of occurrence

of different substructures to derive a vector of integers representing each molecule. A fin-

gerprint size of 1024 vector and a radius of 2 atoms were used. A list of common keys was

created for all the molecules, and counts-based fingerprints were generated based on the

occurrence of a fragment in a molecule and its presence in the common keys. Subsequently,

Principal Component Analysis (PCA) was performed to generate a three-dimensional latent

embedding for these molecules. Once computed, this permits mapping all possible molecules

into continuous coordinates. However, the coordinates are most meaningful for molecules

similar to those that produced the PCA (i.e., small organic molecules found in ZINC).

Note that the PCA embedding is used solely for selecting representative parent SMILES

and for visualization purposes, not for downstream predictive tasks. Thus, a linear tech-

nique like PCA suffices. Although non-linear methods like t-distributed stochastic neighbor

embedding (t-SNE)20 and Uniform Manifold Approximation and Projection for Dimension

Reduction (UMAP)21 could have been explored, PCA is straightforward, interpretable, and

computationally efficient, making it well-suited for visualizing high-dimensional data in a

lower-dimensional space.

We chose 64 parent molecules via K-means clustering (implemented in scikit-learn22)

on the PCA embeddings to evaluate LLM performance on a diverse group of molecules.
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These so-called “parent molecules” were then represented by their canonical SMILES for

molecular modification via the LLM; the embeddings were only used to quantify relationships

between molecules before and after modification. The dataset, embedding scheme, and

parent selection process are illustrated schematically in Figure 1a.

LLM interactions

This work utilized Anthropic’s Claude 3 Opus model,23 a state-of-the-art LLM. Interaction

with the LLM is facilitated by the Anthropic Python SDK,24 where requests containing

task instructions (prompts) are processed by the pre-trained model on Anthropic’s server.

We set temperature=0 so the model always favors the most probable token outputs. This

results in generations that are more deterministic and focused, exhibiting less randomness

or diversity. However, even with temperature=0, the outputs are not entirely deterministic

due to the inherent stochasticity of the model’s sampling process. The maximum tokens

parameter was set to max tokens=1024, which restricts the length of the generated output

since we only asked for candidate molecules (represented by relatively compact SMILES)

and not any explanations.

The pre-trained model generates SMILES responses for each of the 64 parent molecules

based on different prompts. Responses generated by the model are then transmitted back

through the Application Programming Interface (API) and post-processed at the requester’s

end. A simple workflow of the API is shown in Figure 1b.

Base prompts

The following system prompt was provided to the model for every query:

You are a chemoinformatics expert that can generate new molecules. Please provide

only the Python formatted list of SMILES strings, like [SMILES1, SMILES2, SMILES3]

without any additional explanations or text.

Additional information was provided in the following format:
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Given the molecule with SMILES representation ‘smiles’, generate n molecules that are

prompt detail. Respond with just the SMILES strings as elements of a Python list.

In the above, smiles was replaced with the parent SMILES, n with the target number

of candidates (10), and prompt detail with a specific task as described below.

The task for the LLM was to generate 10 molecules that adhere to the criteria specified in

the accompanying prompt descriptions, as given in Table 1. The model was then instructed

to return the SMILES strings of these molecules in a Python list format. To develop these

prompts, we utilized a “prompting for prompts” approach, engaging Claude-3 Opus to sug-

gest eight distinct prompts for inducing either minor (fine) or major (coarse) modifications to

a given molecule’s SMILES representation. Fine prompts were characterized by the phrase

“similar molecules”, whereas coarse prompts were distinguished by the phrase “completely

different molecules.”

One potential benefit of incorporating LLM feedback in this meta-task is their capacity to

complement human expertise by offering a different perspective. Unlike human experts, who

may be constrained by a finite set of known molecular generation rules, LLMs can leverage

their extensive training on diverse datasets to propose innovative approaches and solutions.

This capability enables them to identify potential design and modification opportunities that

might not be immediately evident to human experts. Furthermore, LLMs might facilitate the

exploration of the full spectrum of chemistry design rules (based on the very large corpus of

documents seen in their training), a task that could require the combined efforts of multiple

experts.

Prompts for guided generation

Beyond the base prompts described above, we consider more detailed prompts that specify

modifications to the electronic structure of the molecules. Specifically, we ask for Electron

Donating Groups (EDGs) or Electron Withdrawing Groups (EWGs) to be incorporated into

the generated molecules. This represents a crucial advantage of the LLM-based approach
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Table 1: Detailed sub-prompts used to describe how the molecular modification task should
be carried out.

Identifier Prompt detail text
A similar molecules by changing one or two atoms or bonds to produce

closely related structures
B similar molecules by tweaking only the side chains
C similar molecules with minimal structural changes to find similar

but new candidates
D similar molecules with slight variations on functional groups while

maintaining the backbone structure
E completely different molecules by changing multiple atoms or bonds
F completely different molecules by significantly altering the core

structure and introducing completely new functional groups
G completely different molecules that significantly vary in size and

functional groups
H completely different molecules with significant structural changes

to find new candidates

since natural language can be used to express these details, while conventional methods would

require crafting substitution rules by hand, and other generative methods would require

either consideration of this requirement at training time to perform conditional sampling

or use a very inefficient sampling at inference time to identify candidates that match the

requirements. The prompts are based on the fine base prompts above (A-D) and are displayed

in Table 2.

Prompts for controlled molecular generation

Apart from the base prompts and prompts for guided generation, we consider three additional

prompts, described in Table 3, that allow us to control the extent of molecular modification

and similarity with the given parent molecules. These prompts use verbal descriptors such

as “barely similar (very low Tanimoto similarity)”, “marginally similar (low Tanimoto simi-

larity)”, and “moderately similar (moderate Tanimoto similarity)” to describe the extent of

similarity compared to the parent SMILES.
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Table 2: Detailed sub-prompts used to describe how the molecular modification task
should be carried out, in the specific case of adding electron-donating groups and electron-
withdrawing groups.

Identifier Prompt detail text
I Similar molecules by changing one or two atoms or bonds to pro-

duce closely related structures focusing on incorporating electron
donating groups (EDGs) to find new candidates

J Similar molecules by tweaking only the side chains to produce
closely related structures focusing on incorporating electron donat-
ing groups (EDGs) to find new candidates

K Similar molecules with minimal structural changes to produce
closely related structures focusing on incorporating electron donat-
ing groups (EDGs) to find new candidates

L Similar molecules with slight variations on functional groups while
maintaining the backbone structure to produce closely related
structures focusing on incorporating electron donating groups
(EDGs) to find new candidates

M Similar molecules by changing one or two atoms or bonds to pro-
duce closely related structures focusing on incorporating electron
withdrawing groups (EWGs) to find new candidates

N Similar molecules by tweaking only the side chains to produce
closely related structures focusing on incorporating electron with-
drawing groups (EWGs) to find new candidates

O Similar molecules with minimal structural changes to produce
closely related structures focusing on incorporating electron with-
drawing groups (EWGs) to find new candidates

P Similar molecules with slight variations on functional groups while
maintaining the backbone structure to produce closely related
structures focusing on incorporating electron withdrawing groups
(EWGs) to find new candidates

Validation and metrics

After receiving candidate SMILES strings from the LLM, they are validated by RDKit,25

an open-source cheminformatics toolkit. We first ensure the strings represent valid molecules

through RDKit’s Chem.MolFromSmiles function followed by Chem.SanitizeMol. This method

checks the molecular structure’s validity and adherence to standard conventions, includ-

ing incorrect valency. Thereafter, the valid molecules are converted to canonical form, as

SMILES are not bijective mappings. The canonical SMILES undergo further filtering, elim-
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Table 3: Detailed sub-prompts used to describe how the molecular modification task should
be carried out, effectively controlling the similarity of generated compounds.

Identifier Prompt detail text
Q Barely similar (very low Tanimoto similarity) molecules compared

to the given parent molecule by altering atoms, bonds, functional
groups, or making other changes to find new candidates.

R Marginally similar (low Tanimoto similarity) molecules compared
to the given parent molecule by altering atoms, bonds, functional
groups, or making other changes to find new candidates.

S Moderately similar (moderate Tanimoto similarity) molecules com-
pared to the given parent molecule by altering atoms, bonds, func-
tional groups, or making other changes to find new candidates.

inating duplicates and removing instances where the unmodified parent appears within the

generated set. This ensures that unique and valid SMILES appear in the list of generated

molecules (and only these are considered in the evaluation metrics). We evaluated the re-

sulting molecules primarily using three metrics, similar to previous works:26,27 Tanimoto

similarity, validity ratio, and chemical diversity.

We calculated the Tanimoto similarity between parents and children for each prompt.

This process involves converting each SMILES string to a molecule object, generating hashed

Morgan fingerprints of a 1024 vector and a radius of 2 atoms, and then computing the Tan-

imoto similarity between the fingerprints. The Tanimoto similarity metric quantifies the

molecular transformation induced by the prompt. Thus, the Tanimoto similarity T (cp, cg)

for a given prompt is calculated using the hashed Morgan fingerprints of the parent (p) and

child (c) molecules. Specifically, we generate the fingerprints for both molecules and compute

their Tanimoto similarity, which quantifies the similarity based on their structural features.

This similarity measure quantifies the impact of the specific prompts on the magnitude of

structural change between generated molecules and their parents. Low values of Tanimoto

similarity T (cp, cg) indicate small changes to the molecule, while high values indicate signif-

icant changes from the given parent molecule.

Defined as the proportion of chemically valid and unique structures among the gener-

ated molecules (excluding any parent SMILES), the validity ratio v is calculated simply as
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v = Nvalid/Ngen, where Nvalid is the number of valid, unique molecules obtained from the

LLM call (excluding parent SMILES) and Ngen is the total number of raw SMILES gen-

erated by the LLM before any filtering or validation. As described above, RDKit verifies

the validity of SMILES strings, and any duplicates or parent SMILES are removed from

the generated SMILES before calculating v. This ratio describes the model’s efficiency in

producing chemically valid and novel structures from specified inputs and should ideally be

close to 1.

Chemical diversity δchem quantifies the heterogeneity among unique and chemically valid

generated molecules (after filtering and validation) and is calculated as:

δchem = 1 − 1

N(N − 1)

N∑
i=1

N∑
j=i+1

T (ci, cj), (1)

where T (ci, cj) represents the Tanimoto similarity between the molecular fingerprints (in this

case, hashed Morgan fingerprints) of molecules i and j, and N is the number of molecules

considered in the calculation. This formula inverts the average Tanimoto similarity across

all unique pairwise combinations into a measure of diversity, with a higher score indicating

greater chemical diversity within the set.

There is no clear preference for a particular value of δchem since there is a trade-off

between exploration and exploitation here, as with T (cp, cg). Very low δchem indicates that

the generated molecules are nearly identical so that no significant modification was obtained,

while very high δchem indicates that the molecules are totally different, so the modifications

are not semantically meaningful.

Electronic structure calculations

The highest occupied molecular orbital (HOMO) energies were computed using the PM7

semi-empirical quantum chemical method, as implemented in the MOPAC28,29 program. The

MOPAC calculations were performed through the Python interface provided by the Atomic
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Simulation Environment (ASE) package.30 The RDKit library was employed to generate

the initial 3D molecular structures, and geometry optimizations were carried out using the

Universal Force Field (UFF) to obtain the most stable conformers.

The following set of keywords was employed in the MOPAC calculations, in addition

to the PM7 method, to achieve an optimal balance between computational efficiency and

accuracy: PRECISE, GNORM=0.001, SCFCRT=1.D-8, DISPERSION=D3H4, H-PRIORITY, AUX, and

ITRY=200. These keywords enforce stricter convergence criteria for the self-consistent field

(SCF) procedure, include long-range dispersion corrections, prioritize the treatment of hy-

drogen atoms, enable auxiliary basis functions, and increase the maximum number of SCF

iterations.

For each optimized molecular structure, the HOMO energies were extracted from the

MOPAC output files. While the semi-empirical level of theory may not provide the same ac-

curacy as higher-level quantum chemical methods, the HOMO energies obtained from these

calculations can serve as a surrogate for more sophisticated calculations and provide in-

sights into the electronic structure of the generated molecules with a minimal computational

footprint.

Results and Discussion

Representative examples

Overall, all prompts generated reasonable sets of children molecules compared to the par-

ent molecule depending on the prompt instructions. Prompts A through D yielded child

molecules with slight variations compared to the parent while retaining the overall shape

of the parent framework and installing slight variations in functional groups. Prompts E

through H, which were instructions for producing children molecules that were different

from the parent, yielded child molecules that were a departure from the parent regarding

functional groups and framework connectivity without unreasonable departures in terms of
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Figure 2: A representative selection of molecules generated by the prompt D (“similar
molecules by changing one or two atoms or bonds to produce closely related structures”) for
two different parent molecules. The LLM accepts the parents (a, c) and returns 10 children
(b, d) as SMILES; the molecules are only rendered here to improve human readability.

molecular size or spurious inclusion of exotic atoms or functional groups. Specifically, prompt

E yielded child molecules different from the parent but seemed to have some visual relation

to the parent in all 64 cases. Prompts F, G, and H gave children that departed further from

the parent molecule than prompt E.

Representative examples of molecules generated by sub-prompt D are shown in Figure 2.

In the case of both parents, all 10 generated children are valid molecules (i.e., as verified by

RDKit). Note that the LLM outputs text which is later converted to images via RDKit, so

the relationships between the children are more subtle than they appear when rendered as

images. In the case of prompt D, the “backbone” appears to be interpreted by the LLM as the

center of the molecule, which is never modified. Instead, functional groups are attached to

the methyl group on the right-hand side of parent (a) and to the left-hand side of parent (c).

For parent (c), this includes the addition of some bulky rings and sometimes the truncation

of the carbonyl group at the left, which the LLM does not always interpret to be part of the

“backbone.”

A Python-based viewer for displaying the input molecules and the generated output

molecules for each prompt was developed and included in our Zenodo repository.31
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Figure 3: The latent space obtained from featurizing small molecules in the ZINC database
with counts-based Morgan Fingerprints and embedding with PCA. Each panel shows a
different 2D slice of the embedding, up to three components. Darker colors indicate a higher
density of molecules occurring in that cell. Representative molecules are rendered near their
2D embedding.

To quantify the behavior of the LLM when making modifications to molecules, we gen-

erate a latent space embedding of molecules based on Morgan fingerprints. The embedding

thus yields a three-dimensional coordinate z that describes the molecules by a quantitative

feature vector. Representative molecules are rendered throughout this latent space in Fig-

ure 3. Generally, latent dimension 1 appears to be related to unconjugated rings at low

values and conjugated rings at high values. Latent dimension 2 appears to be related to

the prevalence of cycles, with linear or chain-like molecules appearing at low values and

ring-containing molecules at high values. Finally, latent dimension 3 appears dominated by

ketones, with molecules at high values carrying two or more groups.

Base prompt performance

To systematically evaluate the impact of different prompts on molecule generation, we em-

ployed the following metrics (defined above): Tanimoto similarity T (cp, cg), validity ratio

v, and chemical diversity δc. This evaluation yields several key observations regarding the

impact of prompt engineering on molecular structure generation.

Analyzing T (cp, cg) between the respective parent and generated molecules reveals that
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Figure 4: Metrics evaluated on each sub-prompt from Table 1 when the molecular modifica-
tion task is performed on the same 64 parent molecules. (a) Tanimoto similarity T (cp, cg),
(b) validity ratio v, and (c) chemical diversity δc, as described in the text.
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fine prompts generally result in higher T (cp, cg) than coarse prompts (see Figure 4a). This

observation aligns with the expectation that coarse prompts induce more significant alter-

ations in molecular structures (i.e., via the phrase “completely different molecules” instead of

“similar molecules”). However, the extent of these changes varies depending on the specific

modification mechanism described within each sub-prompt, emphasizing the importance of

prompt engineering in steering the LLM behavior. Among the fine prompts, all variants

exhibit similar T (cp, cg) values, with prompt B showing a slightly higher median T (cp, cg) at

0.69, compared to A, C, and D, which have median T (cp, cg) values of 0.67, 0.68, and 0.67,

respectively. Coarse prompts F-H exhibit comparable T (cp, cg) distributions, with prompts

F and G having the lowest median T (cp, cg) at 0.09 across all prompts, and prompt H having

a slightly higher median T (cp, cg) at 0.10. However, prompt E is significantly higher at a

median T (cp, cg) of 0.37, behaving more like the fine prompts, probably due to the more

specific language “atoms or bonds” which implies local changes only, as opposed to more

global language in the other sub-prompts.

We found it surprising that the Tanimoto similarities T (cp, cg) were so similar within the

groups A-D and F-H, despite very different language specifying how the changes should be

made. This indicates that the magnitude of the variation (e.g., “similar” or “completely

different”) can be somewhat decoupled from the mechanism by which the modification is

enforced (e.g., “. . . by tweaking only the side chains”). If it holds in general, this behavior

will make LLM-driven molecular modification an extremely versatile tool for materials design

in the future.

The median validity ratio for most prompts remains at more than 0.9, indicating a high

rate of chemically valid and unique molecules different from the parent molecules, as shown

in Figure 4b. This stands in contrast to generative models like Generative Adversarial Net-

works (GANs) and Variational Autoencoders (VAEs), which have reported validity ratios as

low as 0.2532 for the best-performing models. Furthermore, generative models are susceptible

to mode collapse, resulting in only 2̃% uniquemolecules.33 Thus, this LLM-based approach,
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which is itself a transformer-based architecture, consistently generated more valid and unique

molecular structures even without fine-tuning. It can serve as a potential alternative to other

existing transformer-based molecular generation frameworks, such as transformer architec-

tures in conjunction with graph neural networks (GNNs),34 conditional-based transformer

architectures,35 and others.10,36,37

While it may seem counterintuitive, the fine prompts exhibit a lower validity ratio because

they ask the model to produce similar molecules by making only small, localized changes. In

contrast, the coarse prompts instruct the model to propose completely different molecules

so the model can select molecules that are somewhat unrelated to the parent but are known

to be valid molecules. The LLM’s occasional failure to generate valid and unique molecules

may be attributed to the discrete SMILES representation, which allows many ways for the

model to construct invalid strings.

The LLM’s ability to consistently return valid and canonical SMILES with a simple

molecular representation like SMILES demonstrates its robustness and reliability in gener-

ating molecular structures. However, many factors may contribute to the occasional failure

to generate valid molecules. One issue is the phenomenon of hallucination by LLMs,38 which

arises from sometimes competing objectives to balance following detailed instructions in the

prompt and obeying grammatical rules for SMILES. Additionally, generating valid molecules

in a zero-shot setting,39 as done in our work, is inherently more challenging than in a few-

shot approach40,41 or an iterative improvement scheme.42 In a zero-shot setting, the LLM is

required to generate a response without any prior examples being given or feedback to the

response generated, meaning it only gets one attempt to complete the specified task. This

contrasts with a few-shot approach, where the model is provided with a few examples, or

an iterative improvement scheme, where the model can refine its predictions over multiple

iterations. The use of a zero-shot approach instead of a few-shot or iterative refinement

significantly increases the difficulty of the molecular design problem. Another factor con-

tributing to imperfect validity rates is the occasional copying of the parent SMILES when
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asked to generate new molecules or repeated generated of the same SMILES in one query,

leading to duplicate structures. These duplicates and copies of parent SMILES are eventually

removed during filtering, decreasing the overall validity ratio.

The chemical diversity metric in Figure 4c indicates that coarse prompts generally lead

to higher δc than fine prompts. In particular, prompts F-H exhibit the highest levels of

chemical diversity across all prompts, with G exhibiting the highest overall. This matches

the trend in dz from Figure 4a since more significant changes are made to the molecules,

which can induce higher diversity. Among the fine prompts, A yields a slightly higher δc than

the others. The diversity metrics for similar prompts show that the generated molecules have

a suitable range of structural variations and do not typically exhibit mode collapse. This

indicates that the navigation paths through the chemical space, guided by the prompts, yield

molecules with distinct structural features, even among prompts within the same category.

Additional performance metrics, such as the duration of the API call, were evaluated and

provided in the supplemental information to assess the LLM-based modification scheme’s

efficiency. The median response time was 10.4 s (to generate 10 molecules), with a mean of

11.5 s and standard deviation of 4.0 s, indicating a long tail. The use of these evaluation

metrics is consistent with previous research43 that has employed similar measures to assess

molecule generation tasks.

Evaluating bias

To further assess the behavior of each sub-prompt, we show the average displacement between

parent and child molecules within the latent space z in Figure 5. Herein, we use arrows to

indicate the average displacement in z between parent and child molecules. We consider this

a bias since the collective directional change from a parent molecule to several (≤ 10) children

should be close to zero if the molecules are equally likely to go in any direction. Thus, the

ideal result would be an arrow with nearly zero length, indicating that the modification

direction is entirely random. The comparison across prompts A, B, C, and D (referred
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Figure 5: The average displacement in z from all 10 child molecules for each sub-prompt
in Table 1. This illustrates prompt-specific bias in molecule generation tasks. Each circle
indicates the parent coordinate, while the arrows indicate the average displacement between
that parent and its children. Only the first two principal components of the PCA embeddings
are shown for simplicity, even though the distances were calculated in 3D.

to as fine prompts) and E, F, G, and H (coarse prompts) reveals a notable distinction in

movement magnitude within the latent space, with fine prompts generally leading to subtler

shifts compared to coarse prompts.

A closer examination of the individual prompts within the fine and coarse categories

reveals distinct patterns and tendencies attributable to specific prompts. Although prompts

E, F, G, and H were all classified as coarse prompts intended to generate more significant

modifications, prompt E exhibited less bias and directional tendencies compared to prompts

F, G, and H. This suggests that there is a divergence in how these prompts navigate the

chemical space or explore potential molecule modifications. Notably, prompts F and G

appeared to be steered towards generating molecules represented in the upper right region

of the latent space visualization. This indicates a potential preference or increased efficiency

in fulfilling the prompt instructions within that particular area of the chemical space.

The movement patterns observed in prompts H and E reveal intriguing insights into how
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the LLM interprets prompts. Prompt H, involving ’significant’ structural changes, results

in more directional movements and biases than E, though less biased than F and G, as it

explores multiple regions rather than concentrating on one area like the upper left. This

aggressive, multi-directional movement can be attributed to the emphasis on substantial

molecular modifications in the prompt. In contrast, prompt E, lacking specificity on the

extent of changes, exhibits a more balanced exploration with less directional bias.

Furthermore, an intriguing pattern emerges when examining the origin and trajectory

of molecules in these prompts. It is observed that certain molecules start from the bottom

region and gradually progress upwards, dispersing in various directions. This observation

aligns with the expected distribution of molecular structures in the chemical space. The

bottom region tends to be populated by chain-like molecules, characterized by their linear

and elongated structures. As we move upwards in the chemical space, there is a notable

shift towards a higher concentration of ring-like structures. This transition from chains to

rings can be attributed to the language model’s exploration or exploitation of the different

regions of the chemical space without any defined targets, and just based on prompts alone.

The fine prompts (A, B, C, D) and some coarse prompts (like E) exhibit an intriguing

observation: the arrows representing directional changes in parent molecules often negate

each other. This occurs because individual vectors, originating from parent molecules and

pointing towards generated molecules, frequently point in opposing directions. Consequently,

these counteracting vectors effectively cancel out, resulting in no significant collective move-

ment within the latent space.

These observations highlight the nuanced influence of prompt engineering in steering

molecular evolution in the latent space and showcase the model’s ability to adapt molecular

structures based on the diverse requirements of each prompt. However, to fully understand

the molecular modifications observed for certain parent molecules, a deeper exploration of

the latent space and the underlying modifications is necessary.

The later sections of the manuscript throw more light on these molecular modifications,
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such as how simple modifications like incorporating specific types of functional groups can be

accomplished by asking the model to incorporate electron-withdrawing or electron-donating

groups and generate new candidates, which can be crucial for tuning the electronic properties,

leading to applications in drug discovery or energy-storage devices among others.

The understanding of the structural changes made by functional group additions or other

transformations can provide insights into how the model interprets and responds to the

prompts, which could be beneficial for using LLMs in rational molecular design and molecular

optimization. While some may argue that inverse molecular design is the ultimate goal,

understanding how LLMs function, perform inverse design, and comprehend molecules and

chemistry is essential. To fully capitalize on the potential of LLMs in molecular design,

further research is needed to better understand the design space, role of prompt engineering,

and unravel the underlying mechanisms by which these models navigate the chemical space

and generate molecules with (conditional generation with targets) or without (generation

with no targets) desired properties.

To summarize, the directional shifts quantitatively captured in the latent space pro-

vide critical insights into the model’s strategic approach to various prompts. These quan-

titative movements within the latent space illustrate the extent of exploration or exploita-

tion achieved, highlighting the model’s ability to navigate the chemical space based on the

prompts provided. By quantifying these directional shifts, we demonstrate the importance

of prompt engineering in leveraging LLMs for molecular design and discovery.

Guided generation

Prompts I through L and M through P were more chemically specific than the previous

prompts and targeted variations of the parent molecule with electron withdrawing groups

or electron donating groups. These two sets of prompts might be useful for creating panels

of molecules for evaluating inductive effects on reactivity, similar to many physical organic

chemistry studies in testing the scope of a reaction. Both sets of prompts, I through L and
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Figure 6: A representative selection of molecules generated by prompts L and P (analogous
to prompt D from Figure 2).

M through P retained the parent molecular framework and installed the instructed electron

withdrawing or electron donating groups in the children, without gross departures from the

prompt instructions. Overall, these two sets of chemically-specific prompts behaved in a

predictable manner across all 64 parent molecules.

Representative examples of molecules generated by sub-prompt D are shown in Figure 6.

Similar to what was observed for Figure 6, the prompt interprets the center of the molecule

as being the “backbone,” and only makes changes to the methyl group on the right-hand side

of the molecule. This group was exchanged for amine, methoxy, alcohol, and other similar

electron-rich moieties in the case of the EDGs, as expected. For EWGs, a similar trend

occurs, but the functional groups are more complex, including carbonyls, carboxylic acids,

esters, nitriles, F-containing groups, and sulfonyl groups, all of which are reasonable EWG

substitutions.

We calculate the HOMO energies of the parent and child molecules to assess the degree

to which the HOMO energy was modified in the child, as shown in Figure 7. Herein, the base

prompts (A-D) have an overall median change of 0.0 eV and an interquartile range (IQR) of

0.29 eV. Additionally, the HOMO energy increases 48.9% of the time and decreases 42.4%

of the time, with the balance being no change. Furthermore, the different prompts all show

similar behavior, with median changes all individually close to 0 eV and IQRs ranging from

0.21 eV to 0.36 eV.
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Figure 7: The figure represents the HOMO-HOMO energy differences between the parent
and the generated molecules (child - parent) for the base fine prompts (A-D) as well as the
EDG (I-L) and EWG (M-P) versions of the same base prompts.

The EWG and EDG prompts exhibit markedly different behaviors than the base prompts.

The EWG prompts (I-L) show a negative median change of -0.27 eV with an IQR of 0.40

eV; the HOMO energy decreases in 82.5% of cases for the EWG prompts. In contrast, the

EDG prompts (M-P) have a positive median change of 0.14 eV with an IQR of 0.43 eV;

the HOMO energy increases 69.7% of the time for the EDG prompts. These results are

consistent with the expected impact of these functional groups on the HOMO energy of the

molecules. In conclusion, these results demonstrate that the LLM is capable of generating

molecules that modify electronic structures in the precise ways it was asked. This is further

confirmed by the visualization provided through our molecular viewer, which shows the

specific electronic variations achieved.31 Additionally, recent works have demonstrated the

potential of few-shot prompting,40,41 iterative refinement schemes,42 and chain-of-thought

(CoT) prompting44 in enhancing the performance of LLMs. Therefore, it may be worthwhile

to explore these approaches further, combining them with advanced prompt engineering

techniques, to understand how they can improve results beyond zero-shot prompting in the

context of molecular design.

Overall, the base prompts do not modify the HOMO energy level on average, while the

EWG prompts tend to decrease it, and the EDG prompts increase it. This demonstrates
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the desired behavior in the guided prompts and shows that they are qualitatively different

from the base prompts. In summary, the LLM successfully follows the natural-language

instructions and generates valid molecules that achieve the desired result.

Controlled molecular generation performance

Controlling the extent of molecular similarity between generated molecules and given parent

molecules may be necessary in some instances. Therefore, we explored prompts Q, R, and

S(Figure 8) to achieve varying levels of Tanimoto similarity. The LLM is able to effectively

distinguish these levels, from the descriptive prompt keywords “barely similar (very low

Tanimoto similarity)” giving the lowest median Tanimoto similarity of 0.09, “moderately

similar (moderate Tanimoto similarity)” yielding the highest median of 0.63, and “marginally

similar (low Tanimoto similarity)” producing an intermediate median of 0.37. The median

Tanimoto similarities for the base prompts A−D ranged from 0.67− 0.69. Hence, with the

controlling prompts Q, R, and S, the LLM is able to quantify different levels of similarity

to the given parent molecules based on the keywords used in the prompt.

In future work, it may be useful to explore optimization-based approaches like TextGrad,45

which is similar to a neural network in that it can help backpropagate textual feedback from

LLMs to optimize molecular structures, potentially enhancing the LLM framework’s perfor-

mance and hence aiding in guided generation.

Conclusion

Our work explores the molecular design capability of large language models by making molec-

ular modifications in the SMILES string representations of the parent molecules. We have

shown that large language models like Claude 3 Opus can read, write, and make molecular

modifications according to given instructions in the form of prompts, with 97% of outputs

being valid molecules different from their parent molecule. By quantifying the modifications
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Figure 8: The figure represents the Tanimoto similarities T (cp, cg) between the parent and
the generated molecules for the prompts Q,R and S.

in a low-dimensional latent space, we have systematically evaluated the behavior of the large

language model agent when using different prompts.

In addition, the large language model performs controlled molecular generation by con-

trolling the levels of similarity to the given parent molecules, based on simple descriptive

prompts. Moreover, the large language model successfully performs guided molecular gener-

ation, as shown by its ability to effectively manipulate the electronic structure of molecules

using simple, natural-language prompts. This was demonstrated in the cases of electron-

withdrawing group (EWG) and electron-donating group (EDG) prompts, where the model

successfully lowered and raised the HOMO energy of the generated molecules relative to the

parent molecules, compared to prompts that did not explicitly mention electronic structure

changes. These results showcase the model’s capacity to understand and respond to specific

electronic structure-related instructions, enabling targeted control over the properties of the

generated molecules.

These findings open up exciting avenues for future research on molecular design. Fu-

ture works should focus on developing “programming” based automatic prompt engineering

methods. Such methods could help discover optimal prompts automatically instead of re-
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quiring extensive prompt engineering tailored to different applications such as drug discovery

or 2D materials, enabling more efficient and targeted exploration of chemical design space.

Molecular design using Large Language Models can prove to be significantly useful for ac-

celerating the design of novel molecules with desired properties by the use of simple and

natural language.

Supporting Information Available

The following contents are available in the Supporting Information: (1) Distribution of API

call times for molecular generation with the Claude API across prompts A-H. (2) Median

Tanimoto similarity between parent and generated molecules calculated across A-H prompts

for the 64 parent SMILES structures. (3) Diversity of the generated molecules across prompts

A-H, compared to the baseline diversity of the parent SMILES set. (4) Distribution of

Synthetic Accessibility scores (SA Scores) for generated molecules across prompts A-H. (5)

Tanimoto similarity (parent-generated) for all prompts (A-P).
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