
INPUT CONSISTENCY REGULARIZATION FOR MODELING
NEGATIVE THERMAL EXPANSION CHARACTERISTICS OF

A2M3O12 FAMILY OF COMPOUNDS

A PREPRINT

Natalia V. Kireeva
Laboratory of novel physicochemical problems

Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Leninsky Prospect, 31, Moscow, 119071, Russia

kireeva@phyche.ac.ru

Aslan Yu. Tsivadze
Laboratory of novel physicochemical problems

Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Leninsky Prospect, 31, Moscow, 119071, Russia

tsiv@phyche.ac.ru

August 27, 2024

ABSTRACT

The prediction confidence is one of the goals of any machine learning-based study with no respect if
this is distinguished as the aim of the study or is the associated desired concomitant. The possibility
do not import the additional error into the pre-experimental estimation of the studied characteristics
should be the goal of machine learning-based approaches in any case limited in their accuracy by
the precision and confidence of the experimental data. In this study, we consider the approaches
related to the input consistency regularization which may provide with the required enhancement in
the prediction confidence and are able to recoup the part of the experimental error associated with
obtaining the data using the methods of different precision. The methodology of regularization of
input data consistency is considered in relation to the problem of the predictive modeling of the
functional characteristics of A2M3O12 family of ceramics with negative thermal expansion (NTE)
property. The methodological part of this study includes several problems. The Hessian-based
analysis of the loss function landscape was considered as the criterion of the generalizability and
model performance. The continuity of the property change as a function of the data description
coupled with the p-values for the experiment-prediction output were considered as the auxiliary
criteria concerned with the input consistency regularization.

Keywords input consistency regularization � diffusion probabilistic models � A2M3O12 � Hessian function

1 Introduction

The accuracy of the machine learning-based methods is directly concerned with the quality and quantity of the
experimental data in use. Therefore, do not introduce the error exceeding the experimental one is of importance for
any machine learning-based approach. In this study, we consider the approaches related to the input consistency
regularization which may provide with the enhancement in the prediction accuracy and confidence and are able to
recoup the part of the experimental data discrepancy associated with obtaining the data using the methods or measured
with different precision.
According to the theory, homogeneity of the chemical potential is a condition for thermodynamic equilibrium of the
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system being studied [58] and, therefore, the regularized values of the observed variables should be considered as
corresponding to the thermodynamic equilibrium while the input data before the regularization may contain the data,
which are characterized by the deviations from the system "equilibrium". Accepting this analogy allows us to consider
the experimental data for some process/objects obtained from different sources as the thermodynamic system that
should obey the thermodynamics laws. Henri Poincare noted "Physics cannot do without mathematics: it furnishes the
only language it can speak". Thus, importantly and par for the course, this problem can be performed by using the
diffusion equations that are based on the branches of mathematics appearing the major approaches for many physical
and chemical problems.
We would, first of all, refer to the works in which authors have provided with a broad mathematics ground to the
diffusion probabilistic models [28, 74, 66, 55, 19, 92, 54, 15]. One of the studies in machine learning most directly
relating the problem of input consistency regularization with the thermodynamics is the work by Sohl-Dickstein et
al. [76] introducing the concept of non-equilibrium thermodynamics into the deep unsupervised learning namely for
accepting the experimental data as the object determined by the thermodynamic laws. It should be emphasized that
using the thermodynamics principles in statistical learning in general is widely explored methodology. Among the
approaches most closely related to the considered family of diffusion probabilistic models [13] one should mention
using the concept of Helmholtz free energy of the system involved in a variety of machine learning approaches
including the pioneering works imparting to diffusion probabilistic models [37]. Another example is using the notion of
the quasi-equilibrium and low-temperature approximation characterizing the minima in the study involving a diffusion
theory for Deep Learning (DL) dynamics [89]. The loss landscape is discussed in a context of the minimum energy
paths that are located in the flat regions separated by the saddle points of high-loss areas of the landscape.
One of the possibilities to improve the performance of the machine learning methods which is discussed in the literature
is to partially and selectively transform the data in the input consistency regularization procedure to be robust against
the occasional and non-systematic deviations from the result pretending to be considered as the "true" value[60].
Several families of machine learning methods aimed at involving the special techniques to enhance the predictive
performance are known among them are the approaches related to diffusion probabilistic models [76, 81, 40, 57, 62]
and that operate with the so-called privileged information [3, 83, 84]. Recently, the generative diffusion model was
applied for the optimization of the surface structure [69] and for modelling the impedance spectra [20]. The DPMs are
widely explored in the nonequilibrium physics in biology [26] and one can expect the growth of the related researches
based on DPMs in this field. In the same comprehensive review authors overview the problem of symmetry constraints
that include the translational, rotational and permutation invariance or equivariance. They argue that the physical
prior knowledge integrated into the data by augmenting or synthesizing it expectedly improve the general model
performance. Related studies for drug design are also known [43, 33, 56, 73]. Using the same concept of input data
regularization was demonstrated its efficiency in combination [45, 17] with dropout [36] and other regularization
techniques [2, 44, 4, 60, 86, 39], latent variable models [7] and unsupervised feature transformation-based [24].
The adversarial attacks [90], direction can be considered as a particular case of using the privileged information
in modeling. In physics-informed machine learning, partial differential equations (PDEs) and ordinary differential
equations (ODEs) are involved in use as a regularization terms in the loss function or to construct the neural architecture
(Neural ODE) [34].The combined approach of using the variational inference in the ensemble with the generative
model firstly was reported in some earlier works including the Helmholtz Machine (HM) [22], Wake-Sleep algorithm
(WS) [37], Annealed Importance Sampling [61], Reverse Annealing Importance Sampling Estimator (RAISE) [12],
Deep Autoregressive Networks [32] and some others with very effective upgrowth in the direction of the family of
diffusion probabilistic models. Deep Gaussian Processes (DGP) are well-known methodology that, however, has not
been considered earlier as the input consistency regularization technique as this property is realized at the model level
and was not discussed in the considered context earlier. However, this study, in contrast to our earlier work [50], DGP
reveal rather the sensitivity to the input data discussed earlier in the context of the strict requirements to the number of
the introduced inducing points [75] than the propensity of this approach to compensate the complexity of the data
pattern. The problem of this complexity can be considered as the direct consequence of the chosen data description,
the general character of which is concerned with another problem of a reliable assessment of the success in model
development. Using the Hessian-based methodology is of interest as the way to elucidate the relationship between the
behaviour of the loss function as a function of several factors and the generalizability of the model. One can draw
upon the consideration in parallel from the two distinct points of view: the first one is the data-based one when the
data invariance to local perturbations can serve as an evidence on the robust decision, while, on the other hand, the
Hessian-based analysis of the loss function [65, 71, 70, 31] infers on the importance of the flatness of the landscape in
the weight space in general without the presence of the negative eigenvalues in the Hessian spectra. In the former case,
one of the first studies dates back to the work of Caruana et al. [14] where it was shown that using the extra features for
multitask learning is more useful as inputs if these features have low noise but which become more useful as the outputs
as their noise increases. Thus, the features most resistant to the adversarial attacks are beneficial for input data while the
features allowing the variance in their values are of importance as an additional target thus enhancing the robustness of
the model. This may serve as one of the first insights on the problem of input consistency regularization. The models
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demonstrating a little or no change in the loss function in the most of the directions except those of eigenvectors
that correspond to the large eigenvalues of the Hessian [71] can appear the objects of further enhancement due to
the identification of these directions. In [41] it was shown that the generalization of deep networks is related to the
curvature of the loss function. The complementary observations were made in [39], where authors discuss the role of
the weights distribution and that of their noisy replicas in model generalizability (it is worth to note that the notion of
the probabilistic neural networks was introduced in this study). Defining the curvature of the landscape as a function of
the spectrum is well-motivated due to its invariance to the rotations of the landscape [90]. Therefore, one may assess
the obtained results in input consistency regularization using the Hessian spectra focusing the attention on the values of
the eigenvalues and their quantity. If the landscape of the loss function is flat in all of the directions one may infer on
the high confidence in the results obtained.
It is worth to note that using the Hessian as a second order characteristic of the loss function has already shown the
efficiency in optimization problem. It is well-known that any, even the most advanced methods, may provide with
rather poor results in a case of the inaccurate configurational parameters setup. Thus, in [59] it was used to predict the
largest useful batch size by estimating the introduced parameter called the gradient noise scale. The batch size impact
on the Hessian-described loss function was the subject of attention in [47]. The presence of the negative eigenvalues
evidences that the algorithm does not find the local minimum yet and this latter observation can be of importance since
the minimal or no changes in the loss function itself does not confirm finding the minimum [71]. In [64] authors have
distinguished three aspects of the Hessian-based SGD training: (i) generalization performance, (ii) optimization and
(iii) a landscape of the loss function. The latter one can be related to the problem of data description complexity. In [93],
authors have shown that training landscape is easy to optimize even when there is no clear notion of generalization.
The over-parameterization as a result of the model architecture leads to the enhanced flatness of the landscape and,
therefore, the investigation of the problem of data description complexity is of primary importance.
In this study, we consider the methodology of input consistency regularization in relation to the important problem,
the predictive modeling of the functional characteristics of A2M3O12 class of solid oxides with negative thermal
expansion (NTE) property. The coefficient of linear thermal expansion and monoclinic to orthorombic phase transition
temperature are considered. NTE as a response to the thermal stress is a rare physical property of solids. In most of the
cases, this property is associated with a ferroelastic phase transition as a result of the appearance of the spontaneous
stress in the structure with increasing temperature combined with the lattice degrees of freedom allowing such a
transition. The structure of NTE solid oxides of the A2M3O12 family (Figure 1) is quite flexible, but with the expected
limitations in the composition. The cation A can be represented by trivalent rare-earth elements Ln3+, Sc3+, Y3+, Al3+,
Fe3+, Cr3+ and In3+, by a combination of two- and four- valence elements (Hf4+ and Mg2+, Zr4+ and Mg2+ allowing
the substitution by other elements like Zn2+, Ga3+, Mn2+)), or by a combination of three- and four- valence elements
by introducing V5+ or P5+ as M cation thus preserving the electroneutrality condition. The M cations in this structure
are represented by W6+, Mo6+, V5+ and P5+ that ensures the target structural features are preserved. The structure can
be represented as the 2D slabs of corner sharing polyhedra parallel to the ac plane, which are stacked together. Each
individual slab can be considered as being formed by the cross-linking via oxygen atoms of the AO6 and WO4 groups
[25]. In this arrangement a single oxygen ion links the individual slabs thus preserving the structure of the "layered"
type. In the case, when a cation A is represented by the cations of different oxidation states, the cations occupy each
atomic position not randomly, but in an ordered manner [63].
The Conditional Score-Based Diffusion Models for Imputation [82] was involved as the input consistence regularization
approach for the data analysis. The consistency regularized data were used in modelling the negative thermal expansion
property studied within one particular class of solid oxides by using different machine learning approaches including
DGP performing the data consistency regularization at the model level. The statistical parameters of modelling
demonstrate the enhanced performance of about 30 % in the predictive error decrease. Deep Autoencoding Gaussian
Mixture Model has been involved to analyze the impact of the input consistency regularization on the changes in
the data between the obtained "equilibrium" state and the nominal data [95]. The redistribution of the energy and
reconstruction error of the method responsible for the anomalies detection allows one to infer on the additional feature
of the input consistency regularization procedure to distinguish the input data containing the novelty.
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Figure 1: (a) Structure of Dy2(WO4)3 compound: orthorhombic (Pnma) (NTE) and monoclinic (P21/c) (PTE)
polymorphs; (b) diffusion path, lantern and list of cations could be accomodated by structure type (orthorhombic).

2 Materials and methods

2.1 Methods

2.1.1 Diffusion Probabilistic Models

In classical thermodynamics, Clausius defines a reversible process as a slowly varying process wherein successive
states of this process differ by infinitesimals from the equilibrium system states. Diffusion probabilistic models directly
implement this principle in this precise formulation in practice by using the large variety of approaches. Diffusion
Probabilistic Model (DPM) is a parameterized Markov chain trained using the variational inference. In all the works
authors consider the stationary distributions of time-homogeneous processes, where the data are measurably embedded
in a space (usually Euclidean). Important statement for this methodology is that if the Markov chain is ergodic, then
its stationary distribution will define the joint distribution between the random variables, even if the conditionals are
not consistent with it. This, in particular, allows to work with the complex multimodal distributions satisfying some
requirements/conditions [8]. In the special cases the group of the DPMs which use the Riemannian metric is used. The
consecutive steps of introducing slowly increasing noise according to a predetermined rule, followed by removing such
a noise using the backward steps in the case of sufficient training performance, determined, in particular, by a limited
amount of Gaussian noise [10], guarantee the obtaining of samples of increased reliability at the sampling stage after a
finite time. The linear drift part is considered as self-adjoint and uniformly positive while the diffusion term is assumed
to match a tractable Gaussian distribution.
Let pΘ(x0) denote the unknown distribution of a dataset consisting of D-dimensional i.i.d. samples. In diffusion
probabilistic models, the problem can be formulated as a learning a distribution pΘ(x0) that approximates target q(x0)
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distribution and allows to sample from by diffusing p(x) towards the noise distribution followed by the reverse process.
Diffusion probabilistic models (DPMs) are the latent variable models that can be represented in the form:

pΘ(x0) =

Z
pΘ(x0:T )dx1:T ; (1)

where

pΘ(x0:T ) := pΘ(xT )
T

∏
t=1

p(t)
Θ
(xt�1jx0) (2)

here x1, ..., xT are latent variables in the same sample space as x0. The parameters Θ are learned to fit the data
distribution q(x0) by maximizing the variational lower bound, where q(x1:T |x0) is some inference distribution over the
latent variables:

max
Θ

Eq(x0)[logpΘ(x0)]�max
Θ

Eq(x0;x1;:::;xT )[logpΘ(x0:T )� logq(x1:T jx0)] (3)

The problem can be formulated as follows:
dX(t)=(-AX(t)+f(X(t)))dt+σ (X(t))dW(t)
X(0) = x 2 E,
where E - is a state space of X measurably embedded in a Hilbert space H, -AX(t)+f(X(t)))dt corresponds to a drift term,
σ (X(t))dW(t) corresponds to a diffusion term, for which W(t)t�0 is a Wiener process. The solution of this stochastic
differential equation is a diffusion process (or Feller process) X(t)t2[0::T ], with the imposed time constraints that is
important condition for the problem formulation [28]. The resulting prior distribution at t = T supposed to be analytically
tractable and is considered as a starting point for the reverse process.
The known weakness of this family of methods follows from the thermodynamic sense that the changes in these systems
have to be of such a constrained character to guarantee the reversibility of the stochastic process and therefore the
large number of the steps is required. In [30] authors have stated the notion of the z-reversibility for the case of a finite
state space extending to the arbitrary state space introducing the balanced partitions concept and using the Markov
transition kernel to better control the transition from t to t+1 thus providing with the very convenient way to avoid the
extensive estimates of the conditional probabilities for the complete stochastic sequence. The similar methodology
was implemented in several diffusion probabilistic models without, however, the detailed discussion at the level of the
theory of the stochastic processes. The time-reversal process is used to generate the refined samples by denoising the
distribution. The following SDE equation corresponds to this denoising procedure: dx = [f(x,t) - g(t)2∇xlogpt(x)]dt
= g(t)dw̄. Here, we provide with the score based method aimed at the learning of the time-dependent score function
∇xlogpt (x). In a process of learning the loss function is minimized, the one of the commonly used is the following:

JSM(Θ;λ (�)) :=
1
2

Z T

0
E pt(x)[λ (t)jj∇logpt(x)� sΘ(x; t)jj22]dt (4)

where λ :[0,T] is a positive weighting function. In practice, this parameter is defined as ∝
1
E [||∇x(t)logp0t (x(t|x(0))))||22].

The transition kernel logp0t (x(t)|x(0)) is the object to elucidation.
The scheme in Figure 2 shows the main groups of methods related to the family of DPMs.
Afterwards the approach of Sohl-Dickstein et al. [76] the numerous methods were proposed [81, 40, 57, 90, 62, 11, 72].
In Denoising Diffusion Probabilistic Models [40] authors fix the forward process variances β t to constants: ΣΘ(xt , t) =
σ2

t I.
pΘ(xt�1|xt ) =N (xt�1; µΘ(xt , t), σ2

t I)
Thus, the approximate posterior q has no learnable parameters. Second, to represent the mean µΘ(xt , t) authors propose
a specific parameterization: a model that predicts µ̃ t , the forward process posterior mean.
In Denoising Diffusion Implicit Models [77] authors propose the algorithm based on the non-Markovian inference
process replacing the original one. Authors implement the forward process defined not on all the latent variables x1:T ,
but on a subset of the latent variables. This simplification was suggested as a result of observation that DPM objective
depends only on the marginals q(xt |x0) rather than on the joint q(x1:T |x0) distribution. The obtained results demonstrate
that such a reducing does not affect the performance of the obtained solution. In improved denoising diffusion
models[62] authors demonstrate that learning the variances of the reverse diffusion process allows sampling with an
order of magnitude fewer forward passes while a negligible difference in sample quality. In [57] Pseudo-Numerical
Diffusion Methods were used to solve ordinary differential equations (ODEs). The improvement of optimization
was demonstrated in both the convergence rate and the solution accuracy by means of the junction of Runge-Kotta
method with the linear multi-step method. This extension has the benefits over its counterparts in a way how the
decision is obtained. The optimization process consists of two steps of different intervals: first is based on Runge-Kutta
method (RK) for faster convergence of the algorithm while the second one is the pseudo-linear multi-step method
(pseudo-LMS) related to PNDM approaches, which is intended to find the optimization minimum by using more fine
steps based on the second derivative of the coordinate estimates.
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Figure 2: Scheme representing the main groups of methods related to Diffusion Probabilistic Models family.

The linear multi-step method satisfies the following condition:
xt+δ =xt+ δ

24 (55f t)-59f t�δ +37f t�2δ -9f t�3δ ), f t = f (xt , t)
In [94] proposed method is based on truncating the forward diffusion chain and learning the distribution at the
corresponding time coordinate to start the reverse diffusion process. Thus, the process of a noise introduction is
performed up to the certain threshold corresponding to the state, where the initial distribution is not completely blurred
by the noise introduction and, therefore, the information on the original data is largely preserved.
Score-based generative models is a type of the diffusion probabilistic models. For continuous state spaces, the DPM
training objective implicitly computes scores at each noise scale. Generative Stochastic Networks (GSNs) [9] is one
of the first works on DPMs. Given an original data point x of P(x), GSN obtain a corrupted x̃ by sampling from
some "corruption" distribution (some analogue of the noise-injected distribution) followed by training the network
to reconstruct the point. The basic idea behind is that such a reconstructed distribution P(x|x̃) is evidently easier to
estimate compared to the learning the whole data distribution while it should guarantees the same quality of solution.
Besides, the work is highly interesting by the theoretical analysis of the diffusion probabilistic models in general. One
of the important observations emphasized by authors is concerned with the artificial replacement of the methodology of
unsupervised density estimation by the problem more similar to the supervised learning due to the assigned role of the
loss function. It is well-known that this could principally enhance the performance of the models obtained. Another
important aspect considered in this study to pay attention is that the reconstructed distribution P(x|x̃) must be of the
same complexity with P(x): to model the complex P(x) we need to provide both P(x|x̃) and corrupted distribition C(x̃|x)
of similar complexity. Another important study using the same principle is Score-Based Generative Modeling through
stochastic differential equations [81]. SDE depends only on the time-dependent gradient field and, thus, one can use the
numerical SDE solvers to generate samples. In [81] authors propose to improve score-based generative modeling by
perturbing the data using various levels of noise and simultaneously estimating scores corresponding to all noise levels
by training a single conditional score network. In [80] authors have shown that using the intentionally introduced
weighting function λ (t), the combination of score matching losses JSM(Θ;λ (�)) can be considered as an upper bound on
Kullback-Leibler divergence DKL, and therefore, serve as an efficient proxy for maximum likelihood training.
Recently, Consistency Models (CMs) [79, 78] were proposed as a stand-alone type of DPMs. In these models authors
propose to learn the probability flows (PFs), ordinary diffusion equations, to be able to map any point at any time to the
trajectory-defined starting point.
dxt = [µ(xt , t)-1/2 σ (t)2∇log pt (xt )]dt
Authors adopt the setting from [46] with zero mean (µ(x, t) = 0) and variance σ (t) =

p
2t. By using a generative model

to sample the point from the data distribution the score of the model is obtained via score matching procedure sφ (x,t)�
∇log pt (x) followed by using this score model to obtain the estimate of the PFs as follows:
dxt /dt = -t sφ (x; t)

6

https://doi.org/10.26434/chemrxiv-2024-4c82v ORCID: https://orcid.org/0000-0002-3196-1686 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-4c82v
https://orcid.org/0000-0002-3196-1686
https://creativecommons.org/licenses/by-nc/4.0/


arXiv Template A PREPRINT

This equation is called the empirical PF ODE. As the SDE is designed to match a tractable Gaussian distribution π(x),
one can sample from the final point of the solution trajectory x̂t �π = N (0, T2I) to initialize the PF ODE and to
reverse toward the origin with any numerical solvers. Improved modification [78] uses metric learning (Pseudo-Huber
metric function). In Neural Diffusion Models (NDMs) [6], which are related by authors to the modifications of [77]),
authors propose to induce the non-linear transformations for the data that extends the refinement capability of DPMs.
Authors also noticed the parallels of DPMs with the variational autoencoders, where the latent variables are inferred
using scaling of data points and injecting of Gaussian noise. We would like also noticed the alternative parallels
with the Convolutional Neural Networks (CNNs) with, however, the opposite to CNNs principle directed rather to
deconvolute-convolute operations.
The separate direction of using DPMs for the data of a complex geometry was distinguished by the fast growth of the
approaches involving the Riemannian manifold concept [13, 29, 23]. Another interesting representative of the DPMs
are Autoregressive Diffusion Models [42].
The inherent property of the diffusion probabilistic models, namely, the operational time may be any measure allowing
to preserve the ergodicity in the function approximating the data distrubution. As such a measure one can consider
the temperature, volume, or such variables as a depth of penetration, force and any suggesting the clear physical
or chemical meaning while does not dispense with the ergodicity condition [27]. The rationale from the stochastic
resetting [68] (Figure 3) supports the hypothesis on achieving the enhancement in both the performance of learning
the DPMs as well as, more generally, the input consistency regularization. The regularized values of the observed
variables can be considered as corresponding to the thermodynamic equilibrium while the input data before the
regularization may contain the data characterizing by the deviations from the system equilibrium. This observation is
also in agreement with the observations made by Caruana et al. [14].

Figure 3: Stochastic resetting [68] as a decision aimed at the search of global minimum of energy. According to the
theory, homogeneity of the chemical potential is a condition for thermodynamic equilibrium of the system being studied
[58] and, therefore, the regularized values of the observed variables should be considered as corresponding to the
thermodynamic equilibrium while the input data before the regularization should be considered as included those with
the deviations from the system equilibrium. The figure is reproduced with permission from [68] APS 2022.

Conditional Score-Based Diffusion models [82].
This approach was developed for processing the time series data while can work with other types of the data, and
the conditional probability-based implementation of the diffusion model allows one to exploit the information on the
correlations between the observed values. This method directly learns the conditional distribution in contrast to other
diffusion models for imputing the missing data in time series.
Let us denote the input data as X = {X1:K;1:L} 2 RKxL. The observation mask M = {m1:K;1:L} 2 0,1KxL is used for
realizing the capability to use this approach as a data imputation technique. The time steps denoted as S = {s1:L}. Given
samples x0 one can distinguish the data with completely or partially missing data. The imputation targets or the data
afforded for the evaluation xta

0 are generated by using the conditional distribution based on the observed data samples
xco. The aim is to estimate the true conditional data distribution q(xta

0 |xco
0 ) by using the distribution approximated
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by the model pΘ(xta
0 |xco

0 ). This approach differs from other DPMs in the extending the parameterization of DPM
to the conditional case defining the conditional denoising function εΘ:(Xta�R|Xco) ! Xta, which takes conditional
observations xco as the input. The following parameterization is performed: µΘ(xta

t |xco
0 ) = µDPM(xta

t , t, ε(xta
t , t|xco

0 )),
σΘ(xta

t , t)|xco
0 ) = σDPM(xta

t , t). With the functionεΘ and data x0 the data generation is performed in a reverse diffusion
process by sampling the data using the following conditional denoising function and the loss function:
minΘL (Θ):=minΘEx0�q(x0;ε�N )(0;I);t ||(ε-εΘ(xta

t , t|xco
0 ))||22.

We have used two schemes of noise introduction: (i) the progressively introduced noise according to the following
pattern (α [t]0:5)*Xobserv + β [t]0:5 * noise (where the α = 1-β and β is constrained (β start = 0.0001, β start = 0.05
using the following defined constraints β start

0:9 and β end
0:9) and (ii) introducing the noise according to the following

equation
R 1

0

p
x� x2dx. In some allied fields the term band-pass filtering is applied for describing the cases of the

noise constrained in a specific way. The noise magnitude and the schedule is of primary importance since the correct
estimation of the lower and upper bounds of the distribution defines the diffusion process [30]. This allows one to
avoid the necessity to use the special techniques for generative models (preserving the local character of generator,
locally compact character of the topological space and guarantying the twice differentiability of the functions essentially
determined by the knowledge of P(t, x, Γ) and the initial probability distribution µ(Γ = Pr{X(0) 2 Γ})) as well as to
the diffusion model itself. Thus, the problem of the choice of the noise amplitude and schedule can be formulated as
achieving the coarsest topology that makes functions continuous. From the other hand, the noise term can be linked to
all the factors which were not accounted by the model directly and, therefore, the amplitude of the noise is responsible
for the DPM performance.

Figure 4: Scheme of machine learning methods used in this study: (a) Deep Gaussian Processes (DGP), (b) Conditional
Score-based Diffusion models for Imputation (CSDI), (b) Deep Autoencoder Gaussian Mixture Model (DAGGM)
(reprinted from [95]). Part of this Figure reproduces the works of Ma Yuang, a Chinese painter of the Song dynasty.

2.1.2 Regression methods

Deep Gaussian Processes [21]. DGP are a deep belief network based on Gaussian process method. The DGPs are
organized in the hierarchy in a way similar to the neural networks, where the inputs of one layer are the outputs of the
previous layer. A single layer model is equivalent to the individual GP or the GP latent variable model (GP-LVM). The
benefits of this methodology is two-fold: (i) deep models are known to have the advantages over the shallow methods
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as they are able to extract more complex relationships from the processed data and (ii) the proposed method allows
one to perform some sort of the feature weighting that significantly improves the stability of the models for the data of
different complexity. Principally, authors have realized the variational inference to marginalize the latent variables in
the hierarchy. The probabilistic nature of the algorithm additionally contributes to the model stability that otherwise can
be sensitive to the outlier objects.
The proposed architecture can be represented as a graphical model with the three kinds of nodes: (i) the leaf nodes
Y2RN�D, where D is the number of Gaussian process priors, (ii) the intermediate latent spaces in amount of the hidden
layers in the architecture Xh 2RN�Qh , where h = 1,..., H (H is the number of hidden layers) and (iii) the parent latent
node Z that can be unobserved in the architectures of the special purposes Z = XH2RN�Qh .
For the architectures containing only two hidden units, the generative process takes the form:
ynd = f y

d(xn) + ε
y
nd , where d = 1,..., D; xn 2 RQ

xnq = f x
q(zn) + εx

nq, where q = 1,..., Q; zn 2 RQz .
where f y and f x are the input and the output, respectively. Authors have proposed two features: at the first step, they
have introduced the automatic relevance determination (ARD) covariance functions for the GPs:

K(xi, x j) = σ2
arde�1=2∑

Q
q=1 wq(xi;q�x j;q)

2

To avoid the difficulties for Bayesian treatment of the introduced nonlinearities, which are, however, of principal
importance for the weighting, the special pseudo-inputs are introduced that are known as the inducing points. Their
number K is defined in the configuration of the model. The location of these points is optimized by the likelihood
function. The properly found locations correspond to the most confident data. The cases, when there are difficulties
with finding these locations if are observed require some additional operations with input data as this discrepancy is of
critical character for finding the robust solution [75]. This allows to realize some sort of the surrogate function defining
the performance of the models developed during the training procedure.
Probabilistic Backpropagation Bayesian Neural Networks (PBP) [35]. Given dataD = fxn,yngN

n = 1, where xn2RD
and corresponding scalar variables yn2R, yn = f (xn; W )+εn, where f (�; W ) is the output value with weights given by
W and noise variables εn.
The likelihood of dependent variable given weights W and the noise precision γ is defined as following:

p(yjW ;X ;γ) =
N

∏
n = 1

N (ynj f (xn;W );γ
�1) (5)

PBP does not use the point estimates of the weights during the training instead the set of the Gaussians is generated:

p(W jλ ) =
L

∏
l = 1

Vl

∏
i = 1

Vl�1+1

∏
j = 1

N (wi j;l j0;λ
�1) (6)

where wi j;l is the weights and λ is a precision parameter. The λ value is a tunable parameter.
The posterior distribution for the parameters W , γ and λ can then be obtained according to Bayes’ rule. The output
predictions are performed using predictive posterior distribution:

p(ytarget jxtarget ;D) =

Z
p(ytarget jxtarget ;W ;γ)p(W ;γ;δ jD)dγdλdW (7)

where p(ytarget |xtarget , W , γ) =N (ytarget |f (xtarget ), γ). At the end of the forward stage, PBP computes the logarithm of
the marginal probability of the dependent variable. At the stage of backward propagation, the network propagates the
gradient of this quantity with respect to the means and the variances of the approximate Gaussian posterior, which in
turn are used to update the corresponding values of the means and the variances of the posterior approximation of the
Gaussians. The weights are updated as follows:

s(w) = Z�1 f (w)N (wjm;v) (8)
where Z is the normalization constant. The updated values for the means and the variances are obtained using the
gradient of the logarithm of the normalization constant Z:

mnew = m+ v
∂ logZ

∂m
(9)

vnew = v� v2

"�
∂ logZ

∂m

�2

�2
�

∂ logZ
∂v

�#
(10)

Gradient Tree Boosting (XGBoost) from XGBoost package [18] was used in this study for the regression problem.
XGBoost regressor was used in this study with the following parameters: max depth=3, learning rate=0.1, number of
estimators = 100 and booster ’gbtree’.
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2.1.3 Novelty/anomalies detection methods

Deep Autoencoding Gaussian Mixture Model [95]. In its original form, the autoencoders that are nowadays at the
root of one of the most popular family of statistical learning methods rose to prominence in the late 80’s [5] and
gained traction during the last decades simultaneously with onrush of the methodology of deep learning [38]. The
method involved in this study, Deep Autoencoding Gaussian Mixture Model (DAGGM), is a hybrid of variational deep
autoencoder and Gaussian Mixture Model thus providing with additional powerful capabilities.
DAGGM consists of two components: the compression network and the estimation network. The compression network
functionalizes in an enforced manner by outputting the data of two types: (i) the reduced low-dimensional representation
learned by a deep autoencoder and (ii) the data derived using the reconstruction error evaluated by the decoder
component. The estimation networks uses both types of information to evaluate the likelihood/energy by using Gaussian
Mixture Model (GMM). Given the low-dimensional representation, the estimation network outputs the probability
density of the data by using GMM. During the training with some initialized mixture component distribution φ , the
mixture means µ , and the mixture covariance Σ, the network estimates the parameters without using procedures as
Expectation-Maximization (EM) by means of multilayer neural network to predict the mixture membership for each of
the samples.

p = MLN(z;Θm) (11)

γ = so f tmax(p) (12)
where γ is a K-dimensional vector for the soft mixture-component membership prediction, K is a number of Gaussians
and p is the output of a multilayer network parameterized by Θm.

2.1.4 Metric learning

Metric Learning for Kernel Regression (MLKR) was involved in our study [88]. Despite the impressive performance
demonstrated for the data description-property landscape, we were not successful in obtaining the stable 10 fold-cross-
validation results and thus in our study this method was used only for the first purpose. However, we assume that the
Mahalanobis distance used in the supervised version of the metric learning, Large Margin Nearest Neighbors method
[87] would be very efficient as was shown in one of our earlier work [52].

2.2 Descriptors

The parameters used in the study as the descriptors can be related to several categories: (i) a composition of the
compounds, (ii) atomic characteristics (Shannon ionic radii, electronegativity (Pauling), work function and effective
nuclear charge) [1], (iii) synthesis time and temperature.
The atomic characteristics are well-known and successfully applied in materials informatics as a simple materials
fingerprints [85, 16]. Among the atomic characteristics involved in this study the choice of Shannon ionic radii and
electronegativity (Pauling) was expected due to the numerous discussions in the literature.
In recent years the descriptors related to the process of synthesis were efficiently used in materials informatics
[48, 67, 91, 53, 49]. The same descriptors set has shown good results on the same data set[51].

2.3 Performance evaluation

Statistical coefficients for regression problem. Predictive performance of developed regression models was assessed
using the ten-fold external cross-validation (10-CV) procedure where the entire data set was split into ten non-
overlapping pairs of the training and test sets of compounds. The models were obtained using the training set followed
by their validation using the corresponding test set. The determination coefficient R2 and root mean square error (RMSE)
and p-value were used as the statistical parameters of the models:

R2 = 1� ∑
N
i=1(Y(pred;i)�Y(exp;i))

2

∑
N
i=1(Y(exp;i)� Ȳexp)2

(13)

RMSE =

s
N

∑
i=1

1
N
(Y(pred;i)�Y(exp;i))

2 (14)

Here, Y
(exp;i) and Y

(pred;i) are, respectively, experimental and predicted values of the modeling property, N is the
number of data points, Ȳexp is the average value of the experimental property.
The initial data set was reshuffled 100 times, followed by model development. The obtained results were averaged
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through the averageng the predicted values. The p-value was used for characterizing the statistical significance of the
results obtained.

3 Results and Analysis

3.1 Regression problem: enhancement of predictive accuracy, a landscape descriptors-property, sharpness
score

If we assume the descriptors reasonably describing the data this means the continuity in the data description–property
landscape. In this study, the analysis of the data description–property landscape has allowed to draw the important
conclusions on the impact of the chosen configuration of the input consistency regularization on the model performance.
Figure 5 shows the impact of consistency regularization procedure on the property landscape: in contract to metric
learning the metrics of space is preserved, two different diffusion models (conventional stepwise noise introduction
vs. introduction of the noise in a mid-course manner according to the equation

R 1
0

p
x� x2) provide with the weak

transformation of the landscape.

Figure 5: Impact of consistency regularization procedure on the property landscape: in contract to metric learning the
metrics of space is preserved, two different diffusion models (conventional stepwise noise introduction vs. introduction
of the noise in a mid-course manner according to the equation

R 1
0

p
x� x2) provide with the distinct transformation of

the landscape.

The decrease in the cliff’s magnitude is observed as a result of the input consistency regularization. The comparison with
the statistical coefficients characterizing the model performance before and after the input consistency regularization
shows the direct relationship between the magnitude of the discontinuities of the landscape and the model performance.
From the Figure 5 one can see that the positions of the peaks remain the same. The known conditions on the local
compactness of the noise magnitudes allows one to discuss the existence of the certain noise level providing with the
enhancement of the data characteristics. This is in an agreement with the thermodynamics theory which introduces
the clear notions of the reversibility of the processes occurred. Thus, increasing the noise magnitude above the certain
threshold have resulted in the opposite trend in the statistical characteristics of the obtained models. Another conclusion
can be made from the results obtained is that the magnitude of the noise has more severe impact compared with the
noise type used by DPMs. This observation, however, requires more detailed verification involving the data of different
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complexity and to the significantly extended set of DPMs.
The statistical parmeters of the models are the following: the R2 value varies in the range of 0.78 to 0.80 for XGBoost,
0.74 to 0.75 for PBP and 0.71 to 0.72 for DGP as a function of the noise magnitude introduced in the models. The
prediction error (RMSE) decreases from 1.266 to 0.88 for XGBoost, from 1.421 to 0.97 for PBP and from 1.606 to 0.993
for DGP. The error values varies in the reasonable range that confirms the overall stability of the models regardless
using the input consistency regularization or not.

Figure 6: Statistical performance of XGBoost, PBP and DGP models: determination coefficient R2 and RMSE as a
function of the noise introduced in the diffusion model.

Table 1: Statistical parameters for modeling the linear coefficient of thermal expansion αL: determination coefficient
R2 and root mean square error (RMSE) with averaged (the number of models are shown in the brackets) std. errors for
ten-fold cross-validation.

β or
ω

N DGP Avg. R2

with std. error
and p-value

DGP Avg. RMSE
and std. error

XGBoost Avg.
R2 with std. er-
ror and p-value

XGBoost Avg.
RMSE and std.
error

PBP Avg. R2

with std. error
and p-value

PBP Avg. RMSE
and std. error

w/o 84 0.71�0.01,
3.5e-23 (10)

1.606�0.044 (10) 0.80�0.02,
1.24e-27 (100)

1.266�0.045 (100) 0.75�0.04,
1.6e-26 (100)

1.421�0.105(100)

0.005 84 0.71�0.02,
6.7e-22 (10)

1.460�0.056 (10) 0.79�0.02,
9.42e-30 (100)

1.215�0.045 (100) 0.73�0.05,
4.3e-25 (100)

1.367�0.124(100)

0.01 84 0.70�0.01,
3.0e-23 (10)

1.452�0.038 (10) 0.79�0.02,
6.0e-30 (100)

1.175�0.064 (100) 0.75�0.07,
2.2e-26 (100)

1.289�0.087(100)

0.05 84 0.72�0.008,
8.0e-24 (10)

1.072�0.014 (10) 0.78�0.02,
2.9e-29 (100)

0.880�0.036 (100) 0.74�0.03,
1.8e-25 (100)

0.970�0.073(100)

ω =
0.005

84 0.71�0.02,
8.8e-24 (10)

0.993�0.031 (10) 0.79�0.02,
2.95e-29 (100)

0.867�0.037 (100) 0.74�0.05,
8.6e-26 (100)

0.970�0.086(100)

One may see the almost insignificant variations in the determination coefficients R2 of the models which do not exceed
the estimated standard error value (Table 1) while the RMSE values of the model predictions were decreased significantly.
Importantly, the RMSE decrease has a synchronous character between the involved methods. This can be considered as
the evidence of the impact of the input consistency regularization procedure and is mathematically satisfied.

3.2 Hessian-based analysis of the loss function landscape as a criterion of model generalizability

Hessian of the loss function show the similar flat character for both types of the diffusion models (Figure 7). The
landscape data description-property demonstrates decreased magnitude of the cliffs observed. This corresponds to the
slightly more smooth pattern of MSE values for the second diffusion model. One can also note the decreasing MSE
values with a time-step t. During the denoising procedure one can distinguish the local outliers in the MSE values for the
second DPM. This, however, does not affect the final accuracy of the models. One of the most important observations
were found is that the increase in the model performance appears the result of the increased difference in the denoised
and the noised values of the property value. This means that the certain, very limited level of the deviations from the
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nominal data are desired, one may hypothesize that the enhancement expectations can be related and screened by using
the Hessian of the difference in the denoised and the noised values of the property. The latter is the important conclusion
that allows to use the Hessian-based analysis for determining the optimal values of the time-step thus providing with the
early stop or, in more conventional terminology, the optimal time point of the truncation of the diffusion process with
no respect what data or what the noise injection scheme is involved. One may mention the more prominent character
of the discussed discrepancy for the second DPM which is presumably concerned with the feature of the denoising
procedure that corresponds to the denoising of the first DPM while the noise introduction differs.

Figure 7: Hessian-based analysis of the results: (left) Hessian-based analysis of the difference in the denoised and
the noised values of the linear thermal expansion coefficient αL averaged over the descriptor values (CSDI), MSE
function as a function of the time-step t, Hessian-based analysis of the experimental vs. predicted values (DGP) of
the linear thermal expansion coefficient as a function of the time-step t αL, (right) the corresponding plots of the data
description-property landscape (DGP model with beta=0.05, omega = 0.1).

3.3 DAGGM-based analysis of the energy and reconstruction error values

In order to evaluate the data rearrangement invoked by the input consistency regularization the novelty detection
method DAGGM was applied. Figure 8 shows the reconstruction error (RE) and the energy values (E) for the data
obtained from the both types of diffusion models. One may see that the overall character of the data distribution
according to these characteristics was preserved. However, it is worth noting that some observations (compounds) from
the bins of high ER and E values were recognized as belonging to the bins with the lesser or higher outlierness which
means that the input consistency regularization procedure can be considered as the additional pre-processing step for
novelty detection. This study does not perform such an analysis due to the data diversity, however, this finding can
effectively enhance the precision of the outlier/novelty detection approaches. The limited changes in the distribution is
in agreement with the observations obtained from the data description-property landscape highlighting the difference
between the input consistency regularization and metric learning. In the former case the metric remains preserved
whereas in the latter case the metric is learned that corresponds to the more significant and data-specific procedure.
Normally, some limited decrease in the outlierness of the data is expected as a result of the ICR procedure and,
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therefore, the opposite trend can be considered for more careful analysis for presence of the outliers/novelty in the data.

Figure 8: Distribution of energy and reconstruction error values before and after input consistency regularization.

4 Conclusions

This study demonstrates the performance of the input consistence regularization based on diffusion probabilistic
models aimed at the refining of the experimental data for the regularization of the experimental data on linear thermal
expansion coefficient obtained by high-temperature XPRD measurements. The results obtained in this study have
shown the decrease in the predictive error of about 30 % for all the machine learning methods used in these studies. The
Hessian-based analysis of the loss function has confirmed the stability of the obtained solution. One of the important
results obtained in this study allows one to recommend the Hessian-based analysis for determining the optimal values of
the number of time-step thus providing with the early stop or, in more conventional terminology, the optimal time point
of the truncation of the diffusion process with no respect what data or the noise introduction scheme are involved. The
similar character of the dependence of the RMSE error values as a function of the noise introduced in DPM observed
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for all machine learning methods used in this study allows to conclude on the reasonable approximation of the data
density distribution by the diffusion probabilistic models. New methodology with the controlled noise amplitude has
shown promise. The metric learning is recommended as the promising way to enhance the DPMs performance.
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