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Abstract 

The dynamic properties of enzymatic reaction networks (ERNs) are difficult to predict due to the 

emergence of allosteric interactions, product inhibitions and the competition for resources, that all only 

materialize once the networks have been assembled. Combining experimental kinetics studies with 

computational modelling allows us to extract information on these emergent dynamic properties and 

build predictive models. Here, we utilized the pentose phosphate pathway to demonstrate that 

previously reported approaches to construct maximally informative datasets can be significantly 

improved by pulsing both enzymes and substrates into microfluidic flow reactors (instead of substrates 

only). Our method augments information available from online databases, to map the emergent dynamic 

behaviours of a network. 
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Introduction 

The emerging field of cell-free synthetic biology aims to construct complex enzymatic reaction 

networks (ERNs) in vitro, as they offer a route to scaling up the production of valuable compounds1-10 

or build functional systems11-14. This cell-free approach offers advantages over traditional in vivo 

metabolic engineering since it avoids difficult product purification steps, improves yields, allows for 

the production of compounds that are toxic to cells, and negates the sequestration of input substrates by 

other metabolic pathways15-19. Although purified enzymes and added co-factors are costly, cell-free 

networks offer much greater flexibility and control over the construction of multi-enzymatic cascades20.  

Several groups have recently reported major breakthroughs in the development of complex ERNs, 

starting from simple and cheap materials like glucose or fixating CO2 to produce valuable compounds 

as monoterpenes, polyhydroxybutyrate, cannabinoids, malate or 6-deoxyerythronolide B21-26. It should 

be noted that complex networks can also be constructed using crude cell lysates for production of n-

butanol, mevalonate or limonene27-29. These networks highlight the potential of cell-free biocatalysis.  

However, optimizing ERNs in vitro can be laborious and time-intensive, and it is often not possible to 

identify input conditions that represent a global optimum30-36. Rondelez demonstrated that in dynamic 

environments, subtle activation and inhibition processes can emerge in ERNs, affecting enzyme 

efficiency37. Yet, mapping emergent dynamic processes, such as allosteric interactions, product 

inhibitions, and competition for resources, is challenging because these processes only become apparent 

once ERNs are assembled38. Unfortunately, public databases such as BRENDA cannot account for all 

possible cross reactions for an enzyme nor report the exact kinetics of an enzyme in a new environment.  

In this context, we recently reported an active learning workflow utilizing an optimal experimental 

design (OED) algorithm to train a kinetic model that can subsequently be queried for input combinations 

that lead to any desired output39-41. The OED algorithm designs a sequence of out-of-equilibrium 

perturbations for species that flow into the continuously stirred tank reactor (CSTR) which maximizes 

the information about the reaction kinetics42-47. Within the active learning workflow this OED procedure 

occurs iteratively. The time course data of an optimally designed pulse experiment is added to a 

database. The last experiment added to this database serves as test data, the remainder as training data. 

A kinetic model is subsequently trained. If the model can predict the test data of the last pulse 

experiment, the cycle stops, if not, a new experiment is designed (Figure 1).  

Previously, we used enzymes immobilized on beads48-54 and applied this workflow to a system where 

the catalytic pathway was enclosed within an open CSTR 35-37,55-57. However, the use of beads with 

immobilized enzymes in flow systems presents two distinct disadvantages. First, immobilization is 

variable and results in KM and kcat values that are different from those reported in online databases. 

Second, the potential input space is less informative (enzyme concentrations are fixed), which results 
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in less informative training data per experiment. Thus, multiple iterations of the OED cycle were needed 

to parameterize a model. 

Here, we extend the active learning workflow by incorporating pulses of both enzymes and substrates 

into the CSTR, using the otherwise well-characterized pentose phosphate pathway (PPP) as a model 

ERN (Figure 2). The topology of the PPP network allowed us to gauge the effect of emergent nonlinear 

behaviour on the dynamics of the network and highlights the utility of the active learning workflow in 

this context. We show that the optimal perturbation of enzymes and substrates led to more informative 

data. This enabled a ‘one and done’ approach where we trained a quantitatively accurate model in a 

single experiment.  

 

Figure 1. An overview of the active learning procedure applied pentose phosphate pathway. 1. The OED 

algorithm designs a sequence of pulsed inputs for each species that flow into a temperature controlled 

continuously stirred tank reactor (CSTR volume ~150 µL). 2. These species include five enzymes in free form; 

HK, G6PDH, 6PGDH, PRI and PRPPS and 3 substrates; ATP NADP and Glucose. Eight individual syringes 

control the unique inflow profile of each species. Droplets formed at the end of the CSTR reactor are collected, 

quenched, and measured offline by HPLC. We observe AMP, ADP, ATP and NADP. 3. The first experiment is 

added to a database and used to train a model, from thereon every new experiment added to the database serves 

as test data as the pipeline uses the other experiments as training data. 4. When the model has sufficient predictive 

power to control the catalytic processes inside the reactor, the active learning cycle stops.  
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Results and Discussion 

Model of pentose phosphate pathway.  

 

Figure 2. An overview of the reactions taking place inside the CSTR shown in Figure 1. The gears denote the 

species that flow into the reactor, the magnifying glass the species which are observed in the quenched solution. 

Among these observables, AMP and ADP are not part of the input and AMP is the final product in the pathway. 

ADP is known to inhibit PRPPS.  

Figure 2 shows the PPP ERN cascade used in this study. The system contains five enzymes – 

hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconic dehydrogenase 

(6PGDH), phosphoriboisomerase (PRI) and phosphoribosyl pyrophosphate synthetase (PRPPS), two 

cofactors – NADP and ATP, and one substrate – glucose. At the start, glucose is converted to glucose-

6-phospate (G6P) by HK using ATP as a cofactor. G6PDH using NADP as a cofactor converts G6P to 

6-phosphogluco-δ-lactone (6PGL), which undergoes spontaneous hydrolysis to 6-phosphogluconate 

(6PGA). Subsequently, 6PGA is converted to ribulose-5-phosphate (Ru5P) by 6PGDH using NADP as 

a cofactor, which is reversibly isomerised to ribose-5-phosphate (Ro5P) by PRI. In the last step, Ro5P 

is converted to PRPP by PRPPS using ATP as a cofactor (PRPPS and PRI were purified according to 

Arthur et al. 58, for more information see Supporting Information 1.5). The final product PRPP is the 

precursor for the nucleotide synthesis pathway ERN described earlier40 as well as a building block for 

DNA and RNA. The Figure shows the compounds and enzymes that are controlled by external inputs 

and the intermediates (observables) that were quantified using HPLC (Supporting information 1.4, 

Figure S5)59. 

The cofactors in these catalytic steps are reported to induce a conformational change that allows the 

substrate to bind (an ordered sequential bi-bi reaction)60-64. Reactions are also assumed to be irreversible 

under physiological conditions, however because we operate in a very broad regime of both substrate 

and enzyme concentrations within the CSTR, we assumed reactions were reversible. Finally, BRENDA 

reports that the inhibition of PRPPS by ADP is conserved for enzymes in most organisms65.  
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On this basis, we constructed an initial, kinetic model of ordinary differential equation that maps these 

processes, consisting of 10 reactions and 32 kinetic parameters (see Supporting Information 2.1). To 

test the activity of each of the enzymes in vitro, we performed separate batch experiments (Supporting 

Information 1.1, Figure S1-2). This data was subsequently used to constrain an initial model, required 

for informative OED (Supporting Information 2.1-2.2)66. However, before any flow experiments were 

performed, we probed the ERN in silico and compared the efficacy of the active learning procedure for 

different experimental scenarios, and subsequently learned what could be expected. From this study we 

were able to extract the experimental requirements and define a simple hypothesis regarding potential 

hidden dynamics present within the ERN. 

In silico kinetic study of PPP network.  

We explored different scenarios for the active learning workflow by training models on in silico data. 

Figure 3a outlines two scenarios: in scenario 1, the PPP pathway is coupled to beads, and three 

substrates can be pulsed into the CSTR. In scenario 2, enzymes are free and flow into the reactor. For 

each scenario, we created two optimally designed training datasets (Supporting information 3.1-3.2, 

Figure S6): one where transients are measured and another where only steady states are measured. The 

model was trained on each of the four datasets separately and subsequently tested with a new pulse 

experiment (Figure S7), consistent with the active learning workflow (Figure 1).  

Figure 3b subsequently shows the relative prediction error of each scenario. As expected, utilizing free 

enzymes within the active learning pipeline is more informative, resulting in a >4 fold lower prediction 

error40. We also probed the effect of ADP inhibiting PRPPS by training a model that did not include 

this interaction. If ADP does not inhibit PRPPS it becomes easier to train a model, since less informative 

data from other scenarios could be used to train an equally predictive model.  

In Figure 3c we opted to further explore the information gained within the transient free enzyme dataset 

since that mirrors our experimental in vitro set-up. We trained the model - including PRPPS inhibition 

- with different sizes of training data comprising short and long experiment runtimes. The time series 

plots show the prediction of AMP and ADP, ATP and NADP test data (shaded area). As experimental 

runtimes increase, the prediction error of the model declines, this decline levels off after 240 minutes.  

With this in silico exploration, we could a priori set an experimental requirement and define a simple 

hypothesis. First, this analysis indicates an experimental runtime of at least 240 minutes is preferred to 

train the model in a single iteration. Second, Figure 3c shows that this preferred runtime holds true 

when ADP inhibits PRPPS, however, less informative data can also be used if there is no emergent 

network behaviour. From this we can assume the opposite holds true as well, that any model 

inaccuracies after including 240 minutes of actual in vitro data in the training dataset are likely due to 
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additional nonlinear effects. Effects stemming from either emergent network behaviour or 

environmental factors which cannot be easily gleaned from public databases37,67-69.  

 

Figure 3. An in silico study exploring the difference between two strategies to control catalysis inside reactors. 

a) in scenario 1 the PPP pathway enzymes are coupled to beads; three substrates can be pulsed into the reactor. 

In scenario 2 enzymes are free and flow into the reactor. For each scenario we subsequently created two training 

datasets in silico, one where transients are measured for an optimally designed experiment and one where only 

its steady state is measured. For each of the four datasets the inputs were altered 35 times. b) Shows the difference 

in the prediction error for the scenarios after 420 minutes (transient) or 4200 minutes (steady state) of training, 

for a model that includes an inhibition reaction between ADP and PRPPS (nonlinear) and one that does not 

(linear), simulations of best fits to training data, n = 10. c) Focusses on the transient free enzyme OED dataset, 
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by plotting the relative prediction error for different lengths of training data. After the training dataset contains 

240 minutes of data this prediction error no longer becomes smaller. The time course test data (black diamonds) 

and the model predictions serve as a visual reference to the relative prediction error. The shaded areas represent 

the uncertainties (3 standard deviations). The lighter time course prediction in each time series plot is the trained 

on 30 minutes of in silico data, (more uncertainty), the darker time course prediction is trained on 240 minutes of 

in silico data, for both simulations based on best fit to training data, n = 10. 

Optimally designed in vitro study of the PPP network. 

To confirm free enzymes could be used within the active learning workflow and test the hypothesis, we 

conducted two in vitro experiments. Eight syringe pumps, each controlling an individual species—HK, 

G6PDH, 6PGDH, PRI, PRPPS, glucose, ATP, and NADP—were connected to a CSTR (volume 121 

µL) and a single outlet tubing (Supporting Information 1.2-1.3, Figure S3-4). Each drop was 

collected, quenched and analysed offline by  HPLC (Supporting Information 1.4, Figure S5). Figures 

4a and 4b summarize step two of the workflow, adding two in vitro experiments to the database. Each 

panel shows both the inflow profile (left) and the raw data (right). To explore a larger input space and 

generate sufficiently complex test data, the stock concentrations of enzymes and substrates in each 

syringe differed between iterations one and two (Supporting Information 3.3, concentrations for 

enzymes inside reactor shown in Figure S9).  
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Figure 4. Step two of the active learning workflow, this figure summarizes two iterations of the active learning 

cycle for the PPP network, syringe stock concentrations can be found in Table S3. a) Shows the first iteration, 

with the flow profile shown on the left and the HPLC data on the right, the diamonds represent the data as 

measured on the HPLC. The trace through the data points was added for clarity highlighting the dynamic nature 

of the data. The first 200 minutes of the first experiment are manually designed to ensure the experimental setup 

functions (Figure S8). b) Shows the second optimally designed iteration with the flow profile shown on left and 

HPLC data shown on the right. Figure S9 shows the changes in enzyme concentrations for both experiments. 

Figure 5 subsequently shows the results of step three in the workflow, training the model OED data 

from the first iteration. The results indicate that the model has sufficient degrees of freedom to 

approximate the data (Figure S10 & S11). Additionally, we were able to confirm ADP indeed inhibits 

PRPPS, noting that models that do not contain this interaction do not converge as well (Figure S12). 

Finally, Figure 6 shows the last step in the active learning workflow, testing the model. We plot the 

HPLC test data versus the model predictions for each species and compute the R² value (R² = 0.891). 

The subsequent time-course HPLC data of all measured species are represented by the black diamonds, 

the predictions and their uncertainty (three standard deviations) are represented by the coloured line 

(mean) and shaded are (uncertainty). 
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These results highlight two key factors. First, the active learning workflow is more efficient when free 

enzymes are used: in previous work where bead-coupled enzymes were used in the workflow, 4 

iterations were needed to achieve similar results40. Second, although the model is remarkably close for 

such a complex experiment, it does not capture some of the smaller dynamic changes observed in the 

data for the duration of the entire experiment, something we observed in previous work as well11,38-40. 

AMP and ADP are uncontrolled species within the experiment, thus the most difficult to predict 

accurately. For ADP, the model was less certain (shaded area) than ATP and NADP for most of the 

experimental runtime, but quantitatively accurate. For AMP, the model misses some smaller transients 

quantitatively (e.g., at 90 and 260 minutes). It appears as if the model response to the change in 

conditions inside the CSTR is not fast enough. This is also observed for the convergence of the model 

to the training data (Figure 4), where it appears the model could not ‘keep the same pace’. Although 

technical noise can reduce the quality of the test data, it is unlikely that measurement errors sampled 

from normal distribution results in a transient curve of consecutive data points. Thus, some additional 

nonlinear interactions or environmental factors must be present (as hypothesized in Figure 3).  

To explore if nonlinear interactions were missing, we added substrate and product inhibition terms to 

the model and used Hill type equations and subsequently extrapolated where each model performs best 

(Supporting Information 3.4). Figure S13 and Figure S14 summarize these efforts. We observe that 

adding product inhibition terms to the model causes better convergence for the initial part of experiment 

for AMP, whereas adding activation terms does so for the latter part of the experiments, but none led to 

a significant mean improvement. Nonetheless, with an R² = 0.891 we can state that the trained model 

has mapped the dynamics of the ERN accurately.  

 

Figure 5. Shows the result of the third step in the active learning cycle, training the model. The black diamonds represent the 

HPLC data of the first iteration, the line represent the mean prediction value and the shaded area the 1st, 2nd and 3rd standard 

deviation of that mean, 10 bet fits shown. More fit metric information shown in Figure S10 and Figure S11. 
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Figure 6. Shows the result of the fourth step in the active learning cycle, testing the model. Utilizing the model 

trained on the first iteration of the database to predict the experiment performed in the second iteration. Top left 

figure shows a scatter plot with the model prediction values for each time point on the y-axis and the 

corresponding HPLC data points on the x-axis (R2 = 0.891). The time-course is subsequently shown as well, with 

data as measured on the HPLC (diamond) and the model predictions for AMP and ADP, ATP and NADP plotted 

separately. The line represents the mean prediction value and the shaded area the 1st, 2nd and 3rd standard 

deviation of that mean. For these simulation the top 10 fits for the data produced in iteration 1 were chosen (see 

Supporting Information 3.4).  

Conclusion 

In this work, we applied an active learning workflow (Figure 1) to study the dynamics of biocatalytic 

networks of free enzymes, specifically the PPP network (Figure 2). We showed that this workflow is 

especially useful when emergent interactions (e.g., PRPPS inhibition) are present, a persistent challenge 

in network assembly (Figure 3 & Figure 4). Second, we showed that data from a single OED 

experiment were sufficiently complex to parameterize a kinetic model that captures all key sensitivities 
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governing the dynamics of the ERN in flow. Even though the addition of enzymes to the input space 

results in a more complex dynamic landscape (Figure S9), optimally perturbing enzymes and substrates 

enabled a ‘one and done’ approach, where a single OED iteration was sufficient to train a predictive 

model of 32 parameters (Figure 5 & Figure 6).  

Overall, the active learning workflow balances the complexity of the network (cross reactions included), 

the parameterization of the model, and the available information in the data (e.g., the number of 

observables or states perturbed). A change in each can result in longer or shorter optimization cycles39-

40. Going forward, we can explore the utility of a single mechanistic model to capture the dynamics for 

all regions of the input space. In this work the model had sufficient predictive power to control 

biocatalysis, but we observed small deviations in the predictions as the environment changed rapidly, 

indicating that the assumptions embedded within the model’s mechanistic description were not 

quantitatively accurate for the duration of the entire experiment 70-71. These errors might propagate as 

networks become larger24-25,71 or might hinder the forward design of functional networks, such as 

biosensors, which rely on the precise dynamic control for time or dose dependent responses72. At the 

same time, these errors shed light on the interactions that emerge in fully assembled networks. In future 

work, one could use the deviations from the model to design OED experiments that identify hitherto 

unknown interactions.  

Since we do not want a return to protracted optimization processes, validating cross reactions or 

mapping the conformational state of each enzyme in different environments is not an option. Instead, 

we should aim to leverage ability of the active learning cycle to efficiently probe the sensitivities of the 

system and use this to either rapidly screen different topologies for different parts of the input space or 

train other types of models that can support the kinetic model. Recently, new generative AI tools using 

generative adversarial networks have been developed to rapidly identify ERN topologies and kinetics73-

76. Additionally, machine learning has been introduced to control complex systems77, including catalytic 

networks, which is promising78. Overall, we propose that any general solution to map ERN dynamics 

and enable ‘plug and play’ design requires an active learning workflow that probes input sensitivities 

as efficiently as possible akin to the method presented here.  

Methods 

A CSTR (volume 121 µl) made of poly(methyl methacrylate) equipped with four inlets, which were 

doubled to eight using Y connectors. The outlet tubes differed between experiments and had their own 

volume (109 µl and 69 µl for the first and second experiment, respectively, see Figure S4. Enzyme and 

substrate input flow rates were controlled by Cetoni neMESYS syringe pumps and Hamilton syringes 

and changed every 12 or 15 min. For more information about the flow set-up, including software for 

drop detector see Supporting information 1.2-1.3. HPLC analyses were performed on Shimadzu 
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Nexera X3 instrument. Conditions: Inertsil ODS-4 C18 column (3 μm pore size, 150 × 4.6 mm; GL 

Science) and a guard column (3 μm pore size; 10 × 4.6 mm) at 40 °C. Analysis was based off59. For 

more information on the buffer solutions used see Supporting information 1.4. Protocol for plasmid 

isolation of enzymes can be found in Supporting information 1.558. The custom optimal experimental 

design software was written in Python 3.7, Delaware, USA. The code can be found at 

http://github.com/huckgroup/OED. Some elements of the software are present in previous work79-80. 

ODE solvers utilize AMICI, a C++ compiler for differentiation82. For more information on experimental 

design see Supporting information 2, previous applications39-40 or excellent work by 42-47. 

Data Availability 

Raw data and notebooks used to generate the figures can be found at Huckgroup Github at 

https://github.com/huckgroup/OED/PPP. The estimated parameters for each of the modelling steps, the 

input flow profiles, and raw data can be found in the excel sheet available in the Github repository. 
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extracting kinetic information from artificial enzymatic networks. Analytical Chemistry, 94(20), 7311-7318. 

39. Duez, Quentin, et al. "Quantitative Online Monitoring of an Immobilized Enzymatic Network by Ion Mobility–Mass 
Spectrometry." Journal of the American Chemical Society (2024). 

40. van Sluijs, B., Zhou, T., Helwig, B., Baltussen, M. G., Nelissen, F. H., Heus, H. A., & Huck, W. T. (2024). Iterative design of 

training data to control intricate enzymatic reaction networks. Nature Communications, 15(1), 1602. 
41. van Sluijs, B., Maas, R. J., van der Linden, A. J., de Greef, T. F., & Huck, W. T. (2022). A microfluidic optimal experimental 

design platform for forward design of cell-free genetic networks. Nature Communications, 13(1), 3626. 

42. de Aguiar, P. Fernandes, et al. "D-optimal designs." Chemometrics and intelligent laboratory systems 30.2 (1995): 199-210. 
43. Sinkoe, A. & Hahn, J. Optimal experimental design for parameter estimation of an IL-6 signaling model. Processes 5, 49 (2011) 

44. Raue, A. et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile 

likelihood. Bioinformatics 25, 1923–1929 (2009). 
45. Villaverde, Alejandro F., et al. "A protocol for dynamic model calibration." Briefings in bioinformatics 23.1 (2022): bbab387. 

46. Fernandez Villaverde, Alejandro, et al. "Assessment of prediction uncertainty quantification methods in systems Biology." 

IEEE/ACM Transactions on Computational Biology and Bioinformatics: 15455963 (2023). 
47. Villaverde, Alejandro F., et al. "Benchmarking optimization methods for parameter estimation in large kinetic models." 

Bioinformatics 35.5 (2019): 830-838. 

48. Velasco‐Lozano, Susana, et al. "Co‐immobilization and colocalization of multi‐enzyme systems for the cell‐free biosynthesis of 
aminoalcohols." ChemCatChem 12.11 (2020): 3030-3041. 

49. Dubey, Nidhi C., and Bijay P. Tripathi. "Nature inspired multienzyme immobilization: Strategies and concepts." ACS Applied Bio 

Materials 4.2 (2021): 1077-1114. 
50. Tang, Zhongyao, Yuri Oku, and Tomoko Matsuda. "Application of Immobilized Enzymes in Flow Biocatalysis for Efficient 

Synthesis." Organic Process Research & Development 28.5 (2024): 1308-1326. 

51. Reus, Bente, Matteo Damian, and Francesco G. Mutti. "Advances in cofactor immobilization for enhanced continuous-flow 
biocatalysis." Journal of Flow Chemistry 14.1 (2024): 219-238. 

52. Ruscoe, Rebecca E., and Sebastian C. Cosgrove. "Future directions in flow biocatalysis: the impact of new technology on 

sustainability." Current Opinion in Green and Sustainable Chemistry (2024): 100954. 
53. Paschalidis, Leandros, et al. "Modeling Enzymatic Cascade Reactions Immobilized in Plug‐Flow Reactors for Flow 

Biocatalysis." Chemie Ingenieur Technik 96.6 (2024): 741-748. 

54. Ma, Huan, et al. "Protocell Flow Reactors for Enzyme and Whole‐cell Mediated Biocatalysis." Advanced Materials (2024): 
2404607. 

55. Pogodaev, Aleksandr A., et al. "Modular design of small enzymatic reaction networks based on reversible and cleavable inhibitors." 

Angewandte Chemie 131.41 (2019): 14681-14685. 

https://doi.org/10.26434/chemrxiv-2024-vxfkz ORCID: https://orcid.org/0009-0005-7211-8790 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-vxfkz
https://orcid.org/0009-0005-7211-8790
https://creativecommons.org/licenses/by-nc-nd/4.0/


56. Teders, Michael, et al. "Reversible photoswitchable inhibitors generate ultrasensitivity in out-of-equilibrium enzymatic reactions." 

Journal of the American Chemical Society 143.15 (2021): 5709-5716. 

57. Bajić, Marijan, et al. "A paradigm shift for biocatalytic microreactors: Decoupling application from reactor design." Biochemical 

Engineering Journal 205 (2024): 109260. 
58. Arthur, Patrick K., Luigi J. Alvarado, and T. Kwaku Dayie. "Expression, purification and analysis of the activity of enzymes from 

the pentose phosphate pathway." Protein expression and purification 76.2 (2011): 229-237. 

59. Nakajima, Kazuki, et al. "Simultaneous determination of nucleotide sugars with ion-pair reversed-phase 
HPLC." Glycobiology 20.7 (2010): 865-871. 

60. Cook, Paul F., and William Wallace Cleland. Enzyme kinetics and mechanism. Garland Science, 2007. 

61. Mulcahy, Patricia, et al. "Application of kinetic-based biospecific affinity chromatographic systems to ATP-dependent enzymes: 
studies with yeast hexokinase." Analytical biochemistry 309.2 (2002): 279-292. 

62. Velasco, Pilar, et al. "Purification, characterization and kinetic mechanism of glucose-6-phosphate dehydrogenase from mouse 

liver." The International journal of biochemistry 26.2 (1994): 195-200. 
63. Hanau, Stefania, et al. "6-Phosphogluconate dehydrogenase mechanism: evidence for allosteric modulation by substrate." Journal 

of Biological Chemistry 285.28 (2010): 21366-21371. 

64. Switzer, Robert L. "19. Phosphoribosylpyrophosphate Synthetase and Related Pyrophosphokinases." The enzymes. Vol. 10. 
Academic Press, 1974. 607-629. 

65. Willemoës, Martin, Bjarne Hove-Jensen, and Sine Larsen. "Steady State Kinetic Model for the Binding of Substrates and Allosteric 

Effectors to Escherichia coli Phosphoribosyl-diphosphate Synthase." Journal of Biological Chemistry 275.45 (2000): 35408-
35412. 

66. Ruess, Jakob, et al. "Iterative experiment design guides the characterization of a light-inducible gene expression 

circuit." Proceedings of the National Academy of Sciences 112.26 (2015): 8148-8153. 
67. Donzella, Silvia, and Martina Letizia Contente. "The joint effort of enzyme technology and flow chemistry to bring biocatalytic 

processes to the next level of sustainability, efficiency and productivity." Journal of Flow Chemistry 14.1 (2024): 85-96. 

68. De Santis, Piera, Lars-Erik Meyer, and Selin Kara. "The rise of continuous flow biocatalysis–fundamentals, very recent 
developments and future perspectives." Reaction Chemistry & Engineering 5.12 (2020): 2155-2184. 

69. Wilding, Kristen M., et al. "The emerging impact of cell-free chemical biosynthesis." Current opinion in biotechnology 53 (2018): 
115-121. 

70. Gunawardena, Jeremy. "Models in biology:‘accurate descriptions of our pathetic thinking’." BMC biology 12 (2014): 1-11. 

71. Rohwer, Johann M., Arno J. Hanekom, and Jan-Hendrik S. Hofmeyr. "A universal rate equation for systems biology." Proc. 2nd 
Int. Symp. on Experimental Standard Conditions of Enzyme Characterizations (ESEC 2006), Beilstein Institute, Frankfurt am 

Main, Germany. 2007. 

72. Kurbanoglu, Sevinc, Cem Erkmen, and Bengi Uslu. "Frontiers in electrochemical enzyme based biosensors for food and drug 
analysis." TrAC Trends in Analytical Chemistry 124 (2020): 115809. 

73. Choudhury, Subham, et al. "Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial 

networks." Nature Machine Intelligence 4.8 (2022): 710-719. 
74. Choudhury, Subham, et al. "Generative machine learning produces kinetic models that accurately characterize intracellular 

metabolic states." bioRxiv (2023): 2023-02. 

75. Keyl, Philipp, et al. "Single-cell gene regulatory network prediction by explainable AI." Nucleic Acids Research 51.4 (2023): e20-
e20. 

76. Helleckes, Laura M., et al. "Machine learning in bioprocess development: from promise to practice." Trends in biotechnology 41.6 

(2023): 817-835. 
77. Dijkman, Jacobus, et al. "Learning Neural Free-Energy Functionals with Pair-Correlation Matching." arXiv preprint 

arXiv:2403.15007 (2024). 

78. Owoyele, Opeoluwa, and Pinaki Pal. "ChemNODE: A neural ordinary differential equations framework for efficient chemical 
kinetic solvers." Energy and AI 7 (2022): 100118. 

79. Sakai, Andrei, et al. "Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium." ACS Synthetic Biology 

12.6 (2023): 1616-1623. 
80. Hu, Xinyu, et al. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs." Nature 

Communications 15.1 (2024): 3918. 

81. Fröhlich, Fabian, et al. "AMICI: high-performance sensitivity analysis for large ordinary differential equation models." 
Bioinformatics 37.20 (2021): 3676-3677. 
 

 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2024-vxfkz ORCID: https://orcid.org/0009-0005-7211-8790 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-vxfkz
https://orcid.org/0009-0005-7211-8790
https://creativecommons.org/licenses/by-nc-nd/4.0/

