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Abstract 

 

Machine learning (ML) models have become key in decision-making for many disciplines, 

including drug discovery and medicinal chemistry. ML models are generally evaluated prior to 

their usage for high-stake decisions, such as compound synthesis or experimental testing. 

However, no ML model is robust and predictive in all real-world scenarios. Therefore, 

uncertainty quantification (UQ) in ML predictions has gained importance in recent years. Many 

investigations have focused on developing methodologies that provide accurate uncertainty 

estimates for ML-based predictions. Unfortunately, there is no UQ strategy that consistently 

provides robust estimates about model’s applicability on new samples. Depending on the 

dataset, prediction task, and algorithm, accurate uncertainty estimations might be unfeasible to 

obtain. Moreover, the optimum UQ metric also varies across applications, and previous 

investigations have shown a lack of consistency across benchmarks. Herein, the UNIQUE 

(UNcertaInty QUantification bEnchmarking) framework is introduced to facilitate the 

comparison of UQ strategies in ML-based predictions. This Python library unifies the 

benchmarking of multiple UQ metrics, including the calculation of non-standard UQ metrics 

(combining information from the dataset and model), and providing a comprehensive 

evaluation. In such framework, UQ metrics are evaluated for different application scenarios, 

e.g. eliminate the predictions with the lowest confidence or obtain a reliable uncertainty 

estimate for an acquisition function. Taken together, this library will help to standardize UQ 

investigations and evaluate new methodologies.  

 

Keywords: Uncertainty quantification, uncertainty estimation, applicability domain, machine 

learning, benchmarking, model evaluations, decision-making.  
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1. Introduction 

Machine learning (ML) models have been increasingly applied to various fields, including life 

sciences and drug discovery1–4. Even when high performance is observed in model evaluations, 

some predictions might be unreliable in real-world applications. Assessing model’s robustness, 

stability, and applicability to new samples is challenging and uncertainty quantification (UQ) 

has gained great importance for ML-based decision-making5–7. Providing uncertainty estimates 

alongside model’s predictions equips end-users with crucial information on when or to what 

degree to trust ML predictions for their decisions.  

 

UQ strategies aim at estimating the likelihood of outcomes associated with a prediction, which 

can be reported as probabilities for classification or prediction intervals for regression tasks8–

11. Uncertainty in predictions is strongly related to the data used for training the ML model. 

The ‘applicability domain’ concept  has been used for many years to assess uncertainty in terms 

of the feature space, also known as covariate shift, generally using a distance to the training 

set12–14. This type of uncertainty metrics related to the data (and generally based on distances) 

can be termed data-based UQ metrics. With the rise of ML, UQ metrics based on models’ 

output have become more standard. Such model-based UQ metrics can be obtained through 

multiple strategies depending on the ML algorithm, and often consist of a variance. Some 

examples include the variance from the posterior distribution of a Bayesian model, from an 

ensemble of models (generated by bootstrapping, Monte Carlo dropout or random 

initializations) or from a mean-variance estimation that uses a negative log likelihood (NLL) 

loss15–21. Such variance values are generally used to obtain a prediction interval. 

 

The relevance of UQ in ML applications has given birth to tools spanning different fields22–26. 

For instance, Fortuna and MAIPE libraries calibrate uncertainty estimations and provide 

https://doi.org/10.26434/chemrxiv-2024-fmbgk ORCID: https://orcid.org/0000-0002-2992-3402 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-fmbgk
https://orcid.org/0000-0002-2992-3402
https://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

conformal sets and prediction intervals22,26, and the uncertainty toolbox by Chung et al. also 

includes functions to calculate evaluation scores and compare UQ metrics25. However, 

limitations have been reported in previous investigations both for data- and model-based UQ 

methods. Ovadia et al. showed the lack of robustness of uncertainty estimates since UQ’s 

quality consistently degraded with increasing data shift9. Moreover, there is generalized lack 

of correlation between UQ methods and model errors27. It has been reported that the most 

suitable UQ method highly depends on the modeling task and, even more interestingly, the 

type of evaluation28–30. Hence, there is not a reliable and consistently superior method to 

quantify prediction uncertainty. This highlights the need for a consistent and standardized 

benchmarking framework that considers the application scenario when evaluating UQ 

methodologies31.   

 

Herein, the UNIQUE (UNcertaInty Quantification bEnchmarking) framework is presented to 

facilitate the benchmarking of different strategies and metrics to quantify uncertainty in ML-

based predictions. To the best of the authors’ knowledge, no tool unifies the benchmark of 

multiple UQ methodologies, calculation of additional UQ metrics, and a comprehensive 

evaluation. In this work, the design and implementation of the UNIQUE Python library is 

detailed and illustrated with a practical example on compound property prediction.  
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2. Design and implementation 

The UNIQUE library allows calculating, combining, and benchmarking multiple UQ metrics 

for a given dataset and model. Comprehensive evaluation statistics and intuitive visualizations 

are generated to assess the quality of the uncertainty estimates (UQ metrics). Current UNIQUE 

implementation supports UQ for regression tasks. UNIQUE is a model-agnostic tool, meaning 

it is not dependent on any specific upstream ML model or its building platform and training 

functionalities. To achieve that, UNIQUE requires the user to provide information about the 

dataset and model’s outputs. As shown in Figure 1, the framework is composed of four main 

components: (i) input types, (ii) uncertainty metrics (or methods), (iii) error models, and (iv) 

evaluation metrics (or scores). The input types module defines the data features or ML model 

outputs that are provided by the user. The uncertainty metrics component pre-processes or 

calculates UQ metrics based on the input types. The error models component allows building 

ML models to predict the error of the original model’s predictions. Error models’ predictions 

are considered as a special case of UQ metric. Finally, the evaluation metrics module includes 

different functionalities to estimate and compare the quality of all calculated UQ metrics. 

 

 

Figure 1. General scheme of the UNIQUE library. The main modules of the UNIQUE 

library are shown with a brief description. The UNIQUE framework allows obtaining a 

comprehensive benchmark of UQ metrics from provided original ML model outputs and input 
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data. UNIQUE also includes the capability of calculating additional UQ metrics, error models, 

and perform different evaluation types to estimate the quality of UQ metrics.  

 

2.1. User input 

The user needs to create an input file and a configuration file to run UNIQUE’s pipeline. The 

input file should have a table-like format with the following columns (or keys): 

- IDs: unique identifiers (IDs) (if no available, the index of the table is used). 

- Labels: target labels used to train the ML model. 

- Predictions: ML model predictions (a single value per ID is expected). 

- Data split: subset each datapoint belongs to. UNIQUE can be run with training and test 

subsets only, but some functionalities require a calibration set.  

Depending on the UQ metrics to evaluate, additional columns can be added accordingly. Two 

additional types of columns are accepted: 

- Data features column(s): featurization of each sample. Features generally correspond 

to the ones used in the original ML model, but other representations can also be used. 

- Model outputs column(s): output(s) related to the ML model. For example, a column 

containing the prediction variance per each sample. 

 

The configuration file (YAML) contains all the specifications needed to retrieve and run the 

UNIQUE pipeline, such as information for different inputs and which UQ metric to evaluate. 

Once both files are prepared, the UNIQUE benchmarking workflow can be run end-to-end 

through the unique.Pipeline object.  
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2.2. Input types 

This module defines the type of input for each column included in the data table provided by 

the user. Following the distinction between data-based and model-based UQ metrics, UNIQUE 

identifies two classes of inputs: data- (or feature-based) and model-based input types. Feature 

input types correspond to columns containing featurization of the samples, such as real-valued, 

counts or binary vectors. Since UNIQUE currently focuses on regression problems, model 

input types correspond to model variances, which might be obtained through multiple methods 

(e.g. ensemble model or Bayesian model). 

 

The user could directly provide a UQ metric (e.g. variance) or information to generate a UQ 

metric within UNIQUE (e.g. a feature vector to calculate the distance to the training set). Each 

input type is associated with a set of UQ metrics that could be calculated (supported UQ 

metrics), which are detailed below.  

   

 

Figure 2. General workflow and components of the UNIQUE framework. The input from 

the user is a tabular dataset containing identifiers, labels, predictions, subset labels, and other 

feature- or model-related inputs. Columns of this input table are mapped to UNIQUE’s input 
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types, which are defined as UQ metrics or used to compute UQ metrics. Error models are 

considered as a special category of UQ metric and consist of ML models that predict the error 

of the original model. In the evaluation module, all UQ metrics are evaluated with different 

scores (ranking-based, calibration-based or proper scoring rules). The final output of UNIQUE 

is a benchmark of several UQ metrics specific to the input dataset and ML model. 

 

2.3. Uncertainty metrics  

This UNIQUE component focuses on calculating and defining UQ metrics, which can be either 

derived from data- or model-based inputs (base UQ metrics), or a combination of both 

(transformed UQ metrics). Such transformed UQ metrics have been introduced to enable the 

benchmark of more complex methods that potentially combine the strengths of data- and 

model-based UQ metrics.  

 

Data-based UQ metrics are either distances to the k-nearest neighbors (k-NN) in the training 

set or kernel density estimations (KDEs) from the training set. k-NN is available with 

Manhattan, Euclidean, and Tanimoto distances, whereas KDE is implemented with 

Gaussian or Exponential kernels, and Euclidean or Manhattan distance in the following 

combinations: Gaussian-Euclidean, Gaussian-Manhattan, and Exponential-Manhattan 

KDE. Model-based UQ metrics correspond to the estimated Variance. All mentioned data- 

and model-based UQ metrics can be referred as base UQ metrics. 

 

Transformed UQ metrics combine data- and model-based uncertainty estimates to generate 

more complex uncertainty estimates. The sum of variances is calculated to include information 

from multiple sources of variance estimations, primarily a distance metric (data-based UQ) and 

model predicted variance (model-based UQ). For that, distances are first converted to variances 

assuming a linear relationship and using the calibrated NLL, as described in Hirschfeld et al.29:	

𝜎
^ "(𝑥): = 𝑎𝑈(𝑥) + 𝑏	
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where coefficients a and b are computed from the minimization of the NLL of errors in the 

validation set: 

𝑎∗, 𝑏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
$,&

1
2 4 𝑙𝑛(2𝜋) + 𝑙𝑛(𝜎

^ "(𝑥)) +
(𝑦 − 𝜇(𝑥))"

2𝜎
^ "(𝑥)

',(∈*!"#

 

 

DiffkNN is another transformed UQ metric that was adapted from Sheridan et al.32 and further 

generalized for UQ estimations. In UNIQUE, DiffkNN is defined as the absolute difference 

between predicted values of a test sample and its k-NN in the training set. Here, the 

implementation is also available with UQ metrics instead of predicted values. For instance, 

absolute difference between the variance of each sample and its closest neighbors from the 

training set (using a given distance metric and features). 

 

2.4. Error models  

UNIQUE supports the generation of ML models to predict the error of the original model. 

These so-called error models have been proposed in previous works both to predict the absolute 

and squared differences between predicted and observed values33,34. As illustrated in Figure 3, 

UNIQUE includes predictions of L1, L2, and unsigned errors with two algorithms: least 

absolute shrinkage and selection operator (Lasso)35 and random forest (RF)36. Three subset of 

input features are considered to build the error model: (i) original model prediction, UQ 

metrics, and input features provided by the user, (ii) original model prediction and UQ metrics, 

(iii) original model prediction and transformed UQ metrics. Error predictions are a special case 

of UQ metric, which can also be evaluated accordingly in UNIQUE’s benchmark. In this case, 

a calibration subset is required to have a wider distribution of error values33. 
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Figure 3. Workflow for error models generation. Error models are built with three different 

feature subsets: (i) original model prediction, UQ metrics, and input features provided by the 

user, (ii) original model prediction and UQ metrics, (iii) original model prediction and 

transformed UQ metrics. Prediction errors can be defined as L1, L2, or unsigned. Lasso or RF 

models are generated based on the training and calibration data.  

 

2.5. Evaluation  

The evaluation module indicates the quality of the uncertainty estimates and provides a 

recommendation for future usage. There are three evaluation types to cover different use cases: 

- Ranking-based evaluation. It evaluates whether a UQ metric is a good indicator of the 

model prediction errors. The ranking of samples based on their actual prediction error 

is compared to the ranking based on the UQ metric. Example: Spearman’s correlation 

coefficient. 

- Calibration-based evaluation. It assesses whether the prediction intervals are well-

calibrated, i.e. consistent with the underlying target distribution. Example: mean 

absolute calibration error (MACE)37. 
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- Proper scoring rules. It focuses on the distributional prediction quality by assigning a 

scalar summary measure, where the maximum score is reached when the predicted 

distribution exactly matches the target one. Example: NLL38,39. 

Table S1 reports the complete list of implemented scores from each evaluation type and a brief 

description.  

 

2.6. Output benchmarking results 

UNIQUE’s output consists of a collection of summary tables and plots that benchmark all UQ 

metrics. Each figure reports the results for a type of evaluation and highlights the best 

performing UQ metric. For the selection of the most promising UQ metric, bootstrapping is 

carried out on the test set and a distribution of evaluation scores is obtained. Wilcoxon ranked 

sum tests are conducted to assess whether the differences in evaluation scores are statistically 

significant across UQ metrics (pairwise comparisons) and Bonferroni correction is considered 

due to multiple testing29. Bootstrapping is applied with three evaluation metrics: Spearman’s 

correlation coefficient (ranking-based evaluation), mean absolute calibration error (calibration-

based evaluation), and NLL (proper scoring rules). The best UQ metric is defined as the one 

with the highest number of occurrences with significantly better distribution of evaluation 

scores than its counterparts. Hence, the best UQ metric could be different across evaluation 

types and scores. Additional visualizations can be obtained for additional insights into the most 

promising UQ metrics. 
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3. Application: LogD7.4 prediction 

 
To highlight the application of UNIQUE, a practical example is presented in the context of 

molecular property predictions. A model was built to predict the lipophilicity of a molecule, 

which is an important parameter in drug discovery. A publicly available dataset from ChEMBL 

(ID: CHEMBL3301361)40,41 was used, which consists of 4,200 compounds with measured 

LogD7.4 values (distribution coefficients between n-octanol and buffer at pH = 7.4). Different 

uncertainty estimates were calculated and benchmarked with the UNIQUE library. 

 

3.1. Model building 

Molecules were represented numerically using Morgan fingerprints (RDKit version 

2023.09.142), which encoded atom environments up to radius 3 and were mapped onto a vector 

of dimensionality 204842,43. Compounds were randomly split into training (50%), calibration 

(30%), and test (20%) subsets. A random forest (RF)36 regressor was generated using the 

training set (number of trees: 200; minimum of samples per split: 2, and minimum of samples 

in a leaf node: 2; scikit-learn version v. 1.344 ), and predictions were obtained for the calibration 

and test sets. Model performance was estimated with the mean absolute error (MAE), root 

mean squared error (RMSE), and coefficient of determination (R2). Calibration (and test) set 

performance was MAE = 0.66 (0.65), RMSE = 0.87 (0.87), and R2 = 0.47 (0.45) respectively. 

The predictions from 200 trees were collected, and their prediction variances associated with 

each sample used as one of the UQ metrics. 

 

3.2. Running UNIQUE  

Table S2 shows an exemplary input file, which contains the (i) ChEMBL identifiers, (ii) LogD 

values as labels, (iii) RF predictions, (iv) the subset memberships that were used during RF 

model building, (v) Morgan fingerprints per each compound (feature input type), and (vi) 
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prediction variance across individual decision trees (model input type). Table S3 reports the 

configuration file for UNIQUE’s pipeline definition and Table S4 reports the code snippet to 

run the pipeline. The outputs of Pipeline are the computed UQ metrics and their evaluation 

scores. 

 

3.3. Calculation protocol 

With the provided inputs, UNIQUE calculated three data-based UQ metrics using the input 

features (Morgan fingerprints): the distance to the k-NN in the training set using Manhattan 

and Euclidean distances, as well as the KDE with Gaussian kernel and Euclidean distance. 

Moreover, prediction variance was considered as model-based UQ metric. Transformed UQ 

metrics were also computed, namely sum of variance and distances and DiffNN. Specifically, 

Manhattan and Euclidean distances, and KDE from the training set were converted to variances 

using the calibrated NLL formalism (vida supra) and summed together with the RF’s prediction 

variance. DiffNN was calculated using Morgan fingerprints and the two selected distance 

metrics to identify the k-NNs in the training set. Then, the absolute mean differences in 

variances and predicted values between the test compounds and its k-NNs were calculated to 

obtain the DiffNN scores (i.e. DiffNN variances and DiffNN predictions). Finally, three RF 

error models were built to predict L1-error with different subsets of features: (i) original RF 

model LogD7.4 prediction, UQ metrics, and Morgan fingerprints, (ii) original RF model 

LogD7.4 prediction and UQ metrics, (iii) original RF model LogD7.4 prediction and 

transformed UQ metrics. UQ metrics were evaluated as detailed above. 
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Figure 4. Evaluation summary for the LogD7.4 dataset. Reported are the (a) ranking-based, 

(b) calibration-based, and (c) proper scoring rules evaluation summary tables. Multiple 

evaluation metrics or scores are reported for each UQ metric (UQ Method column). For each 

evaluation score, the UQ method with the best value (highest/lowest) is highlighted in bold. 

Finally, the best UQ metric is obtained with the Wilcoxon rank sum test on bootstrap samples 

and is highlighted in green. The best performing UQ metric is obtained for each evaluation 

type, using Spearman’s correlation coefficient (ranking-based), MACE (calibration-based), 

and NLL (proper scoring rules). 

 

 

 

(a) Ranking-based evaluation

(b) Calibration-based evaluation

(c) Proper scoring rules evaluation
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3.4. UNIQUE’s results 

Figure 4a and Figure 4c show that one of the error models was highlighted as the best UQ 

method in both the ranking-based and proper scoring rules evaluations. Such error model was 

a RF trained on the input features (Morgan fingerprints), all the base UQ metrics, and the 

original RF model predictions. Specifically, the RF error model predicted the L1-error of the 

original RF model. This UQ metric achieved the highest Spearman’s correlation coefficient 

(ρ=0.38) and the lowest NLL (NLL=1.21) in the bootstrap estimations. Figure 4b shows that 

the sum of the ensemble variance and Tanimoto distance to the training set was the best UQ 

method according to the calibration-based evaluation. In that case, model-based and data-based 

UQ metrics were summed, and converted to a variance using the calibrated NLL. Such strategy 

showed the lowest MACE (MACE=0.07) in the bootstrap estimations.  

 

Figure S1a and Figure S1b show that the RF error model provided lower uncertainty estimates 

for compounds associated to lower errors, and vice versa. Test set predictions were binned into 

three categories (low, medium, high) according to the estimated uncertainty. Compounds with 

predicted L1-error lower than 0.39 resulted in an average MAE of 0.41, whereas compounds 

with L1-error predictions higher than 0.71 and lower than 1.63 showed an average MAE of 

0.86. Figure S1c reports the MAE estimations at varying number of test compounds, which 

are added according of increasing or decreasing uncertainty estimate’s values. The figure 

shows how test samples with higher uncertainty estimates are associated with larger errors, and 

vice versa. These visualizations focus on the ranking-based evaluation. Figure S2 reports 

visualizations related to the calibration-based evaluation, namely the calibration curve and 

ordered prediction intervals25, which can also be generated within the framework. 
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Overall, these results indicate that depending on the application, a different UQ metric could 

be preferred. A RF error model would be more successful at identifying compounds with high 

or low prediction confidence, and thus defining an applicability domain for the model. On the 

other hand, the sum of data-based and model-based UQ metrics would more accurately 

estimate prediction intervals (error bars), which might be more useful to build an acquisition 

function for active learning. 
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4. Conclusions 

Finding accurate and robust uncertainty estimations in prediction models constitutes a principal 

focus in ML research. Different strategies to quantify uncertainty are available, but there is no 

method that can be generally applied and produces consistently accurate estimations of 

prediction uncertainty. Moreover, for many datasets, finding an appropriate UQ strategy 

constitutes a challenging task. Attempting to alleviate this issue, the UNIQUE library has been 

introduced as a framework for UQ benchmarking. This library extends some methods reported 

in previous libraries with new state-of-the-art UQ metrics, namely a combination of data- and 

model-based uncertainty estimates and error models (ML models to predict the original model 

error). Since there is no gold standard UQ method that is consistently superior and successful 

across modeling tasks and datasets, UNIQUE also facilitates the comparison of UQ strategies 

and scrutinizes their quality with several evaluation metrics that capture different aspects. This 

comprehensive benchmark allows for ad-hoc evaluation of the UQ metrics by ensuring 

application-specific prioritization of the score to optimize for. For instance, ranking-based 

evaluations might be more relevant for the removal of the least confident predictions to avoid 

decision-making based on those. On the other hand, well-calibrated uncertainty estimates might 

be required for acquisition functions in active learning efforts (assessed by calibration-based 

evaluation). Taken together, the UNIQUE framework enables an extensive comparison 

between different uncertainty estimates, standardizing the benchmark of new developments in 

the field of UQ for AI/ML. 

 

Data and software availability 

The presented framework is available in GitHub: https://github.com/Novartis/UNIQUE. The 

dataset used is publicly available in ChEMBL. 
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