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Abstract 9 

Developing smart materials with tunable high-temperature afterglow (HTA) luminescence remains a 10 

formidable challenge. This study presents a metal-free doping system using boric acid as matrix and 11 

polycyclic aromatic hydrocarbons as dopants. This composition achieves dynamically tunable afterglow 12 

combining a bright blue HTA lasting for over ten seconds even at 150℃ and an ultra-long yellow room-13 

temperature phosphorescence (RTP) below 110℃. The observed HTA is attributed to the electron-hole 14 

recombination within the dopant molecules. Heating stimuli release the trapped electrons from oxygen 15 

vacancies formed by boric acid. The planarity of dopants is investigated playing a pivotal role in 16 

modulating Dexter electron transfer (ET) for capturing released electrons by dopants and thereby 17 

affecting the overall performance of tunable HTA. This work provides an efficient and universal doping 18 

strategy to engineer tunable HTA through the synergistic action of thermally releasing electrons, Dexter 19 

ET and electron-hole recombination. 20 

Introduction 21 

The ultralong afterglow luminescence after ceasing excitation source has caught wide attention in 22 

bioimaging1-3, information encryption4-7, and other attractive areas8-14. While numerous ultralong 23 

afterglow materials have been successfully synthesized through strategies like H-aggregation15-17, host-24 
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guest doping18-22, polymerization23-26, and others27-36, the developments of smart materials with dynamic 25 

tunable afterglow, especially those resilient to high temperature, are still challenging. The dynamic high-26 

temperature afterglow (HTA) materials could respond to external stimuli and manifest varying 27 

luminescence behaviors, which offer a broader practical application such as in photonic communication37. 28 

Both thermally activation delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) 29 

rely on triplet states (Figure 1a), exhibiting prolonged lifetime ranging from microseconds to seconds. 30 

Therefore, the integration of dual emission based on TADF and RTP was considered one of the most 31 

convenient strategies to obtain dynamic afterglow materials in the past works38-43. Traditional dynamic 32 

dual ultralong afterglow requires two prerequisites: 1) Sufficiently long-lived triplet states to support 33 

persistent luminescence. 2) Multiple exciton decay pathways to enable multi-channel emission at 34 

differing temperatures. However, triplet states tend to deactivate at elevated temperatures, rendering 35 

TADF and RTP emissions difficult to maintain44-46. This results in a restricted temperature range for 36 

tunable HTA, seriously impeding the realization of materials with a truly broad and dynamic temperature-37 

dependent tunability in their afterglow properties. 38 

Thermoluminescence (TL), commonly found in inorganic system, arises from the recombination of 39 

thermally released electrons with ionization centers47;48. Generally, TL materials contain a specific 40 

concentration of both luminescent centers and traps49. These traps are locally anomalous structures 41 

formed by the defects or impurities within a crystal. Upon materials exposure to light or ray particles 42 

radiation, free electrons are generated and diffuse towards defects and impurities and thus be trapped41. 43 

When the materials are heated up, the captured electrons receive energy through thermal lattice vibrations 44 

and escape from these traps. Subsequently, the rediffused free electrons recombine with free holes, 45 

accompanying TL emission. It was reported that boric acid (BA), following heat treatment, exhibited TL 46 

emission at high temperature due to the presence of oxygen vacancies50;51. The heated BA was regarded 47 

as a good energy donor to realize the dynamic HTA through the Dexter electrons transfer (ET).  48 
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 49 

Figure 1. Schematic diagram of tunable HTA emission and material preparation. (a) Simplified 50 

Jablonski diagram showing RTP at lower temperature, IC: internal conversion; ISC: intersystem crossing; 51 

RISC: reverse intersystem crossing; (b) Schematic diagram of HTA generated through recombination of 52 

thermally released free electrons; (c) Preparation method of BA@CE; photographs of temperature-53 

dependent ultralong afterglow, and corresponding CIE coordination. 54 

Herein, the coronene (CE) was strategically selected as the acceptor of the thermally released free 55 

electrons within BA matrix for giving efficient HTA. After doped into BA matrix, the CE molecules 56 

served as the recombination center of the accepted electrons and residual holes, yielding 25% singlet and 57 

75% triplet excitons which, respectively, contribute to ultralong delayed fluorescence and 58 

phosphorescence (Figure 1b). Remarkably, despite the typically rapid decay of triplets at elevated 59 
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temperatures, a blue HTA persisted even at temperature as high as 150℃ due to the presence of excited 60 

singlets and long-lived trapped electrons. At temperature below 110℃, the trapped electrons hardly 61 

escape to produce either TL or DF emissions. However, benefiting from BA's rigid microenvironment 62 

created upon heating and dehydration, yellow phosphorescence from CE became dominant, following 63 

conventional photophysical pathways with intersystem crossing (ISC) as a pivotal step (Figure 1a). 64 

Rigidity-induced RTP and thermally released electrons-triggered delayed fluorescence conjointly 65 

constitute the temperature-tunable ultralong afterglow, of which white afterglow (0.33, 0.35) could be 66 

achieved at 110℃  (Figure 1c). To further explore the influence factors of HTA efficiency and 67 

temperature-responsive tunability, a series of polycyclic aromatic hydrocarbons (PAHs) varying in 68 

planarity were employed. It was observed that dopants with increased planarity facilitate closer proximity 69 

to the matrix, thereby promoting HTA via more efficient Dexter electron transfer (ET) processes. This 70 

research presents a metal-free doping strategy that universally enables tunable HTA by effectively 71 

harnessing the recombination of thermally released free electrons. 72 

Results and discussion 73 

Preparation and structural characterization of doping materials. The preparation procedure of 74 

BA@CE is showed in Figure 1c. A BA@CE precursor powder was obtained by gentle evaporation of a 75 

water/1,4-dioxane (1/1, v/v) solvent containing dopant/BA (0.5 wt%) to ensure an even distribution of 76 

dopants throughout the mixture. The resulting BA@CE precursor powder was then heated under 130℃ at 77 

air atmosphere for 20 minutes to facilitate dehydration and yield the final product. During this 78 

dehydration process, BA undergoes two distinct phase transformations: first from its triclinic structure to 79 

orthorhombic metaboric acid, followed by conversion to vitreous boron oxide50;51. This process inherently 80 

creates oxygen vacancies and a rigid microenvironment within the material. The thermogravimetric 81 

analysis (TGA) of BA, CE and BA@CE were tested in Figure 2e to analyze the dehydration behavior 82 

and thermal stability. The TGA curve of BA displayed a significant weight loss above 100°C, with a 83 
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maximum weight loss of 43.7%, signifying the complete dehydration transition from BA to boron oxide. 84 

In contrast, TGA results for CE showcased excellent thermal stability within the temperature range up to 85 

130°C, evidencing that CE did not decompose during the heat treatment process. 86 

 87 

Figure 2. Structural characterization of BA@CE. (a) Dehydration process of BA under heating 88 

treatment; (b) XRD of BA, B2O3, CE, and 0.5 wt% BA@CE; (c) XPS of 0.5 wt% BA@CE; (d) FT-IR of 89 

BA, B2O3, and 0.5 wt% BA@CE; (e) TGA of BA and CE. 90 

The composite structure of bicomponent system was analyzed by X-Ray powder diffraction (XRD), X-91 

ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR). Figure 2a 92 

demonstrating the dehydration process of BA after the heating treatment. The XRD analysis of CE, B2O3, 93 

BA@CE, and BA were collected in Figure 2b. BA showed a sharp diffraction peaks, indicating the 94 

crystalline structure. The strong diffraction peaks of CE are invisible after doped into the matrix BA. 95 

Besides, BA@CE exhibited similar feature with B2O3, a broaden peak in 15°, 25°, 28° and 40°, 96 

illustrating the decrease of crystallinity. These results were consistent with the XPS analysis (Figure 2c). 97 
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The high-resolution B 1s spectra of BA@CE can be fitted to two bands centered at 193.6 eV, and 194.7 98 

eV, which belonged to the B2O3 and B-O respectively. In Figure 2d, FT-IR characterized peaks of BA, 99 

locating at 763, 1195, 1476, and 3316 cm-1, were corresponding to stretching vibrations of B–O–B bonds, 100 

plane B–O–H bending, stretching vibrations of B–O and –OH, respectively. Results above demonstrated 101 

the dehydration process after heating process. 102 

 103 

Figure 3. Photophysical properties of materials. (a) Delayed emission spectra of BA@CE (0.5 wt%); 104 

Decay curves of delayed emissions at 450 nm (b) and 560 nm (c); (d) Afterglow images of 0.5 wt% 105 

BA@CE after 365 nm UV irradiation; Temperature-dependent emission intensity and lifetime at 450 nm 106 

(e) and 560 nm (g) of 0.5 wt% BA@CE; (f) TL glow curves of heated BA; (h) ESR of BA, heated BA, 107 

and 0.5 wt% BA@CE after 365 nm UV irradiation. 108 
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The photophysical properties of BA@CE. Among the myriad of luminophores in PAHs, the CE was 109 

selected as a representative to be the electron acceptor due to its high electron mobility and excellent 110 

optical properties. The delayed emission spectra and relevant lifetime decay curves of 0.5 wt% BA@CE 111 

at different temperature were tested and detailed in Figure 3a-c. The delayed emission peaks for 112 

BA@CE, observed at around 560 nm, were found to be in alignment with the phosphorescence emission 113 

peaks of a CE solution at 77K (Figure S1a). Similarly, the delayed emission at 450 nm for BA@CE was 114 

consistent with the fluorescence emission of the CE solution (Figure S1b). The emission's multi-peak 115 

pattern is ascribed to the vibrational energy levels inherent in PAHs52. These correspondences confirm 116 

that the dual delayed emission phenomenon originates from the dopant itself. Table S1 summarized the 117 

delayed emission lifetimes for 0.5 wt% BA@CE across various temperature. The longest lifetime for 118 

delayed fluorescence was 1.95 s and the longest lifetime for phosphorescence extended to 2.41 s. The 119 

afterglow images of BA@CE (Figure 3d) delineate a shift in the afterglow color from the yellow of 120 

phosphorescence at 30℃ to the blue of delayed fluorescence at 150℃. At 110℃, the system exhibits a 121 

distinctive white light afterglow, with the Commission Internationale de l'Eclairage (CIE) coordinates 122 

(Figure 1c) precisely measured at (0.33, 0.35). Upon surpassing a temperature threshold of 110°C, there 123 

is a marked escalation in the delayed emission observed at 450 nm (Figure 3e). This enhancement is 124 

attributed to the CE's role as an electron acceptor, capturing thermally released electrons. Because the 125 

rigidity environment formed by heated BA suppressed radiative energy loss by molecular vibration, a 126 

strong RTP emission from was originated of dopants itself. The phosphorescence intensity of BA@CE 127 

exhibited a decline with an increase in temperature from 30℃ to 110℃. Notably, an anomalous 128 

enhancement occurred upon reaching 130°C from 110℃ (Figure 3g). This observation suggests a process 129 

of thermally induced electron release. The behavior of different concentrations of CE (1.0 wt% and 5.0 130 

wt%) in doping systems was also discussed, as shown in Figures S3 and S4, which display a tendency 131 

analogous to that of 0.5 wt% BA@CE. 132 
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The intrinsic mechanism of HTA. The luminescence behaviors of heated BA across various 133 

temperatures were studied firstly. Initially, the temperature-dependent delayed emission spectra of heated 134 

BA were examined. Notably, under 360 nm excitation, a broad peak at 495 nm was observed (Figure 135 

S11a), which was attributed to the TL emission. A significant surge in intensity was detected at a pivotal 136 

temperature of 110℃, which was consistent with the delayed emission trend at 450 nm for BA@CE. TL 137 

glow curve in Figure 3g exhibited a maximum peak temperature (Tm) at 114℃, which indicated the 138 

presence of trapped electrons by structural defects. The trap depth was estimated to be 0.77 eV below the 139 

conduction band, calculated using the formula E(eV) = Tm(K)/500. Additionally, the ESR spectrum of 140 

heated BA and BA@CE were also displayed in Figure 3h. The central resonance field corresponds to g-141 

value of 2.0032, which falls within the range typically attributed to oxygen vacancy. The TL observed in 142 

heated BA is attributed to the recombination of thermally released electrons originating from oxygen 143 

vacancies53. Upon the incorporation of CE into BA, the generated TL-like HTA emission is also 144 

hypothesized to occur through a similar recombination mechanism involving thermally released electrons 145 

from oxygen vacancies. However, the presence of CE introduces a key difference in the system. The 146 

addition of CE introduces a favorable recombination center within the material. The provision of an 147 

alternative recombination site by CE likely alters the energy levels and pathways available for electron-148 

hole recombination, thus influencing the emission characteristics, including its wavelength.  149 

Figure 4a illustrates the detailed photophysical processes of HTA observed in BA@CE. The traps of 150 

matrix were built up in crystallographic vacancies-induced defects (i). Upon UV exposure, excited 151 

electrons are diffused throughout crystalline lattice and attracted to electron traps, leaving behind holes 152 

(ii). These trapped electrons are immobilized until external heat provides enough energy for them to 153 

escape and would recombine with holes, emitting TL (iii). However, the introduced dopant could add new 154 

charge recombination centra and generate the HTA instead of TL with different wavelength through 155 

Dexter ET of escaped electrons (iv). A model in Figure 4b explains the afterglow mechanism at high 156 

temperatures, where electrons of matrix absorb light, moving to the conduction band (CB) and creating 157 
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electron and hole carriers. The electrons, captured by oxygen vacancy traps, can be released with 158 

additional energy, such as heat. When luminophores act as electron acceptors, Dexter ET can occur at the 159 

matrix-dopant interface, with the efficiency potentially influenced by the intermolecular distance between 160 

donor and acceptor. Electrons can move from the CB to the dopant's lowest unoccupied molecular orbital 161 

(LUMO) and recombine with holes in the highest occupied molecular orbital (HOMO), forming singlet 162 

and triplet states with probabilities of 25% and 75%, respectively54-56.  163 

 164 

Figure 4. Schematic diagram of charge trapping and releasing. (a) Mechanism of HTA in the 165 

BA@CE materials. (b) A crystalline lattice (i), depicting common lattice defects induced by vacancies; 166 

Trapping (ii) and escaping (iii) of an electron-hole pair in the crystal; (iv) HTA caused by Dexter ET after 167 

doping in the matrix. 168 
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 169 

Figure 5. Photophysical properties of contrasting agents. (a) Delayed emission spectra of 0.5 wt% 170 

BA@BPE (i), 0.5 wt% BA@CA (ii), and 10 wt% BA@CE (iii) under different temperature; (b) Dopant 171 

substitutes of plane BPE, twisty CA and CE aggregates. 172 

As discussed above, the distance between dopants and matrix is likely a crucial determinant of HTA, as it 173 

significantly influences the efficiency of Dexter ET. To investigate this, two PAHs with similar chemical 174 

structures but distinct planarity, namely CA and BPE, were selected for comparative analysis (Figure 5b). 175 

The bowl-shaped CA was hypothesized to exhibit lower Dexter ET efficiency than complanate BPE. This 176 

hypothesis was supported by the temperature-dependent delayed emission spectra (Figure 5a). With 177 

rising temperature, the BA@CA exhibited only a decreased RTP while the BA@BPE exhibited an 178 

enhanced HTA. The excitation spectrum of BA@CA showed a consistent with the absorption spectrum 179 

of CA, indicating hard electron transfer between BA and CA. Besides, the excitation spectra of BA@CE 180 

and BA@BPE both showed the same characteristic peak at 310 nm, aligning with heated BA, 181 

demonstrating the thermally released electrons transfer process. To further emphasize the effect of 182 

molecular conformation on efficiency, a series of PAHs were chosen as the acceptors to dope into matrix 183 
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(Figure S15). Their emission results were summarized in Table S5. Only plane PAHs exhibited the 184 

tunable HTA, whereas the twisted PAHs did not, demonstrating the importance of molecular planarity for 185 

Dexter ET. The concentration of CE in BA@CE system was furtherly increased to generate aggregates, 186 

BA@CE demonstrated a red-shifted dual emission, featuring green delayed fluorescence peaking at 530 187 

nm and red phosphorescence at 610 nm (Figures 5a (iii) and S7a). The fluorescence peak at 530 nm 188 

were consistent with that of CE solid powder, while the phosphorescence peak at 610 nm matched the 189 

emission observed for CE powder at 77K (Figure S8). Regrettably, the high concentration doping in the 190 

system resulted in a degradation of HTA performance. The lifetime of the dual emissions was 191 

summarized in Table S4 and the CIE coordinates were presented in Figure S7b.  The packing behaviors 192 

of aggregates were supposed to influence the electron transfer process. Thus, a convenient regulation 193 

strategy for HTA is proposed by combining thermally released electrons and Dexter ET.  194 

 195 

Figure 6. Applications of materials. (a) Fabrication of multifunctional display device; (b) Afterglow 196 

images of a two-dimensional code produced by transmitting 365 nm UV light through a hollow mold; (c) 197 

Heat distribution mapping via afterglow imaging equipment positioned on the heating platform, where 198 
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blue indicates areas of higher temperature and yellow signifies lower temperature regions; (d) Afterglow 199 

images of characters written with a 365 nm UV pencil. 200 

The applications of HTA materials. The controllable luminescent attributes of BA@CE facilitate the 201 

advancement of photonic technologies. Herein, the BA@CE is used as the luminescent layer in 202 

fabricating a multifunctional display device, enclosed with a transparent glass sheet as the cover and an 203 

alumina ceramic sheet serving as the base (Figure 6a). Initially, a hollow mold embedding a QR code is 204 

utilized in segment (i) for light-printing to produce discernible information within the resulting afterglow 205 

images. This afterglow printing demonstrates self-erasing and persistent information storage (Figure 6b). 206 

Segment (ii) showcases extensive thermal imaging capabilities. The smart photonic device was place on a 207 

heating plate and subjected to 150°C for 60 seconds. The afterglow images visualization highlights the 208 

blue regions indicating high temperatures, aligned with the focal points of heat concentration (Figure 6c). 209 

Upon natural cooling to ambient temperature, the afterglow of the heat center gradually changes to white 210 

or even yellow, highlighting an efficacious thermal field mapping function. Real-time temperature can be 211 

read out through a colorimetric card. In Figure 6d, alphabets “I”, “O”, and “A” were written with 365 nm 212 

UV pencil, harnessing the ultralong afterglow of BA@CE. UV light writing was seen as a potential 213 

application scenario that can temporarily retain handwritten input information, which can be employed as 214 

a time-informed information transmit technology. 215 

Conclusion 216 

In summary, we have successfully developed a series of doped materials capable of tunable high-217 

temperature afterglow. This was achieved by utilizing BA as the matrix and PAHs as dopant, followed by 218 

a thermal dehydration process. The thermal dehydration treatment led to the creation of oxygen vacancies 219 

within the matrix, effectively stabilizing the long-lived trapped electrons upon exposure to light. 220 

Subsequent thermally release of the trapped electrons and Dexter ET to the dopant facilitated the 221 

generation of HTA through electron-hole recombination within the dopant. Therefore, a tunable dual 222 

emission was demonstrated by integrating thermally activated HTA with thermally quenched RTP. 223 
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Moreover, comparative analyses with contrast agents CA and BPE were conducted to explore the Dexter 224 

ET mechanism, which indicates that the planarity of dopants is a critical factor in the electron transfer 225 

process. This study presents an efficient and universal strategy for fabricating tunable HTA materials by 226 

recombination of thermally released electrons. 227 

Methods  228 

Materials. BA was purchased from Admas with further purities by recrystallizations. PHAs were all 229 

obtained from commercial purchase. All solvents were obtained commercially and used as supplied 230 

without further purification.  231 

General Methods. The UV-Vis absorption spectra were obtained on a SHIMADZU 2600 232 

spectrophotometer. Delayed emission spectra and emission decay curves were recorded on an Agilent 233 

Cary Eclipse spectrophotometer. PL spectra and time-decay curves at 77 K were recorded on 234 

EDINBURGH FLS-1000. Thermogravimetric analysis spectra were determined with TGA-50 235 

Thermogravimetric Analyzers (SHIMADZU, Japan). Fourier transform infrared spectroscopy (FT-IR) 236 

was obtained on INVENIO S. X-ray diffraction experiments were carried out on D/max2550VB/PC. X-237 

ray photoelectron spectroscopy (XPS) was obtained on ESCALAB 250Xi. Density functional theory 238 

(DFT) and time-dependent (TD) DFT calculations were performed with the Gaussian 09 (Revision E.01) 239 

software package 240 
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