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Abstract

We propose a generic, modular framework to optimize the placement of continu-

ous monitoring sensors on oil and gas sites aiming to maximize the methane emissions

detection efficiency. Our proposed framework substantially expands the problem scale

compared to previous related studies and can be adapted for different objectives in

sensor placement. This optimization framework is comprised of five steps: (1) simulate

emission scenarios using site-specific wind and emission information; (2) set possible

sensor locations under consideration of the site layout and any site-specific constraints;

(3) simulate methane concentrations for each pair of emission scenario and possible

sensor location; (4) determine emissions detection based on the site-specific simulated

concentrations; and (5) select the best subset of sensor locations, under a given sensor

budget, using genetic algorithms combined with Pareto optimization. We demonstrate

the practicality and effectiveness of our framework through its application to an oil and

gas emission testing facility with a large search space of possible sensor locations; a

setting which is computationally infeasible to solve with commonly used mixed-integer

linear programming formulations. Additionally, a case study illustrates the success-
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ful application of our algorithm to a real oil and gas site, showcasing its real-world

applicability and effectiveness.

Keywords: methane emission reduction, oil and gas, continuous monitoring systems, sensor

placement, genetic algorithms, Pareto optimization

Synopsis: We develop a sensor placement optimization framework for continuous monitor-

ing systems for methane emissions detection on oil and gas sites.

Introduction

Mitigating anthropogenic methane emissions is pivotal for achieving the goal of limiting

increase in the global average temperature to below 1.5◦C above pre-industrial levels set

by the 2015 Paris Climate Agreement.1,2 Oil and gas emerges as a key sector for reducing

emissions, contributing 22% of the global anthropogenic methane emissions3,4 and 32% in

the United States.5 In June 2024, the U.S. Environmental Protection Agency (EPA) and

the U.S. Department of Energy (DOE) announced $850 million in federal funding aimed at

reducing methane emissions from the oil and gas sector.6 Methane emissions from this sector

are characterized by significant temporal fluctuations,7,8 with sporadic, short-lived events of

high emissions—known as super emitter events—accounting for a substantial portion of the

total emissions.9,10 In this context, Continuous Monitoring Systems (CMS), comprising mul-

tiple point-in-space sensors that continuously measure methane concentrations, are becoming

increasingly vital for emission monitoring. They offer near real-time tracking capabilities es-

sential for identifying both highly fluctuating emissions and transient super emitters.11–13

CMS plays a crucial role in detecting, localizing, and quantifying site emissions.14–16

CMS sensor placement, the strategy of positioning multiple fixed point sensors on an oil

and gas site, significantly affects the efficiency of methane emissions detection, especially

when considering a limited sensor budget.17 Sensor placement optimization has been exten-

sively studied in environmental monitoring applications such as air pollutant monitoring,18,19
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water contamination monitoring,20–24 temperature monitoring,25,26 and wind monitoring.27,28

The goal is to optimize the locations of a limited number of sensors to maximize objectives

such as coverage, detection capability, and data quality for subsequent analyses. Until re-

cently, sensor placement optimization for methane emission monitoring on oil and gas sites

had not been extensively studied due to CMS being a relatively new technology. Other

methane emission monitoring technologies, such as satellite,29 aerial monitoring systems,30

and handheld optical gas imaging (OGI) cameras,31 do not require sensor placement. These

systems can either cover entire sites (e.g., satellite and aerial systems) or be moved to var-

ious locations on-site (e.g., OGI). In contrast, as a ground-based monitoring system, CMS

involves sensors that cannot be easily moved, and a limited number of sensors cannot cover

an entire site. Therefore, effective sensor placement optimization methods are essential for

maximizing the efficiency of methane emissions detection.

In the realm of methane emission monitoring at oil and gas sites, Klise et al. 32 developed

a sensor placement optimization framework designed to enhance the detection capabilities of

sensor networks. This framework begins by employing site-specific wind data and emission

characteristics to create simulated emission scenarios, thereby closely approximating the ac-

tual conditions present at the site. Following this, the framework applies mixed-integer linear

programming (MILP) to identify optimal sensor placements. Klise et al. 32 showcased their

methodology through a case study within a confined space of 100 x 100 x 10 meters, arrang-

ing potential sensor locations at intervals of 10 meters horizontally and 1 meter vertically,

culminating in a search space comprising 100,000 potential sensor locations. This complexity

is further amplified by introducing three sensor categories with different detection threshold

and cost, expanding the search space to 300,000 distinct configurations. Moreover, to refine

the simulation of real-world conditions, 1,200 emission scenarios were generated, capturing

a range of meteorological conditions and emission patterns. Building upon Klise et al. 32 ’s

foundational work, Zi et al. 33 introduced a novel approach by incorporating wind condi-

tion uncertainties and employing a distributionally robust optimization (DRO) strategy to
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bolster the sensor network’s detection robustness, particularly in worst-case scenarios. This

methodology was evaluated using the same spatial domain as in Klise et al. 32 ’s study, demon-

strating significant improvements in detection capabilities. Both studies leveraged MILP for

optimization, showcasing its efficacy in smaller search spaces. However practical applications

such as reducing sensor spatial resolution to 1 meter on oil gas sites or extending the analysis

to larger regions reveal the limitations of MILP due to its computational demands, which

escalate exponentially with the increase in decision variables — in this context, the potential

sensor locations. Although advanced computational strategies like branch-and-bound34 or

branch-and-cut35 can alleviate some computational burdens, the nature of MILP algorithm

means that solving them remains NP-hard in the most challenging scenarios.

In the present study, we endeavor to expand the search space for potential sensor locations

and advocate for the utilization of genetic algorithms (GAs)36 to overcome the computational

challenges encountered with MILP. GAs, distinguished by their emulation of natural selection

processes, demonstrate high efficiency in navigating extensive and intricate solution spaces.

Through the application of evolutionary mechanisms such as selection, crossover, and mu-

tation, GAs are posited to achieve near-optimal solutions with greater rapidity and reduced

computational burden compared to conventional MILP methods, particularly in instances

where exact optimization proves to be computationally prohibitive. GAs have been widely

used in sensor placement optimization across various applications, including structural health

monitoring37 and seismic building monitoring.38 While GAs do not guarantee finding the ex-

act optimal solution, their high efficiency in finding a sub-optimal solution that is very close

to the optimum makes them well-suited for applications in methane emissions detection on

oil and gas sites, where errors in the modeled emissions make an exact solution superfluous.

Within this context, we conceptualize the sensor placement as a multi-objective optimization

problem guided by the principles of Pareto optimization39 which entails the simultaneous

optimization of multiple conflicting objectives. Specifically, our objective is twofold: first,

to identify a subset of sensor locations that optimizes detection capabilities, and second, to
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ensure that the number of selected sensors remains within a predetermined sensor budget.

To address this dual-objective optimization problem, we employ the method developed by

Qian et al. 40 which leverages GAs to facilitate an effective solution search.

Compared to the work of Klise et al. 32 and Zi et al. 33 , we use a much higher spatial reso-

lution to define possible sensor locations resulting in finding a sensor placement with higher

detection efficiency. Also, we utilize all available wind data for a site with a resolution of one

minute to achieve a more precise approximation of the actual meteorological conditions at

the site. Moreover, we simulate methane emissions with the Gaussian puff model rather than

the Gaussian plume model owing to its superior accuracy in capturing the dynamics of atmo-

spheric dispersion by allowing for variable wind conditions. As a result of the aforementioned

enhancements, our sensor placement optimization algorithm delivers solutions of increased

accuracy and granularity, thereby offering substantial benefits for practical applications. As

such our algorithm offers an effective solution for optimal sensor placement which can serve

as an open-source reference tool for CMS technology vendors and advance the quest towards

rapid elimination of methane emissions on oil and gas sites.

Methods

In this study, we introduce a data-driven algorithm designed to optimize the placement of

CMS sensors. The algorithm is modular and a visual summary of the algorithm is provided

in Section S1 in the Supporting Information (SI) document. The algorithm requires three

critical inputs: site-specific wind patterns, emission characteristics, and a predefined sensor

budget which dictates the number of sensors that can be deployed. Utilizing these inputs, our

algorithm calculates the optimal sensor arrangement within the budget, aiming to maximize

emission detection efficiency, defined as the frequency or likelihood with which at least one

sensor in the system detects an emission. Detection efficiency, the objective to be optimized

in the sensor placement problem, can also be defined using other metrics such as time to
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first detection or detection fraction based on total time or amount of emissions. Due to the

flexibility of GAs, the objective function can be adjusted accordingly without altering the

entire framework. The workflow of the algorithm is structured into five distinct steps:

1. Generation of numerous emission scenarios that reflect the site’s actual emission char-

acteristics and wind conditions.

2. Specification of possible sensor locations based on site geometry and operational guide-

lines if any.

3. Simulation of methane concentrations at all possible sensor locations for each emission

scenario.

4. Evaluation of detection for each sensor location and emission scenario pair.

5. Optimization of sensor placements that ensure maximum detection across all scenarios

under a given budget.

In the following subsections, we first outline the experimental data utilized to showcase

our algorithm. We then detail each step by first providing a general description and then

explaining the experimental approach used in this study. It is important to reiterate that

our algorithm is highly modular and that the components demonstrated in our experimental

study, such as the wind and emission distribution estimators and the atmospheric transport

model, can be readily replaced.

Data description

To validate the effectiveness of our proposed algorithm, we employ wind data acquired from

the 2022 Advancing Development of Emissions Detection (ADED) campaign41 conducted

at the Methane Emissions Technology Evaluation Center (METEC), which was operational

from January 28 to May 16, 2022. Due to data availability and for demonstration purposes,

we used a period of less than four months of wind data. In practice, a full year of wind
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data is recommended to accurately represent the actual meteorological conditions, including

seasonal variations, at the site. This is implemented in the case study of a real oil and gas site

as detailed in the final section of this manuscript. The configuration of the METEC site is

illustrated in Figure 1(a), where five distinct sets of equipment are outlined, each representing

a potential emission source. Wind speed and direction were continuously recorded by three

on-site anemometers throughout this period, with data captured at one-minute intervals.

For the purposes of our analysis, we assumed wind conditions to be homogeneous across

the site, thereby aggregating the data from the three anemometers to compute mean wind

speed and direction. Note that the calculation of wind direction used the circular mean,

appropriately addressing the circular nature of directional data. Figure 1(b) shows the wind

rose that describes the wind distribution throughout the period.

Figure 1: Experimental setup used to demonstrate the sensor placement optimization al-
gorithm. (a) Satellite imagery of the Methane Emissions Technology Evaluation Center
(METEC) site. Potential emission source locations are marked with colored boxes. (b) Dis-
tribution of wind data during the Advancing Development of Emissions Detection (ADED)
experiment period from January 28 to May 16, 2022.

Step 1. Generation of emission scenarios

In accordance with the definition in Klise et al. 32 , an emission scenario is determined by

a combination of wind conditions and emission characteristics during a period of time. To
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generate emission scenarios, two probability distribution functions are constructed: a joint

distribution fe of emission source attributes including locations x0, durations τ , and rate q,

and a joint distribution fw of wind speed ws(t) and wind direction wd(t), t ∈ [0, τ ]. The

wind distribution can be inferred from historical wind data recorded on or in the vicinity of

the site. The emission distribution can be obtained from operational logs and/or expertise

from operators. Practically, we can decompose the joint distribution fe using conditional

distributions, i.e., fe(x0, τ, q) = f(τ, q|x0)×f(x0). That is, each potential source, based on its

functionality, may have its own emission pattern. The two distributions fw and fe are deemed

independent, which we believe to be a reasonable assumption since the wind conditions

should not affect the source attributes of an emission event and vice versa. Nevertheless, it

is acknowledged that correlations may arise via confounding temporal factors. For instance, a

certain type of emission may tend to occur at a specific hour of the day or in a specific season

when the wind might have a specific pattern. In cases where prior knowledge pertaining to

such relationships is available, it can be readily incorporated into the distributions facilitating

a more nuanced modeling approach. Then, emission scenarios, which are defined by a tuple

of (x0, q, τ,ws(t),wd(t), t ∈ [0, τ ]), are generated by randomly sampling from fe and fw.

In this case study, we consider only single-source emissions because our goal is to max-

imize detection efficiency. Thus, achieving successful detection of single-source emissions

should inherently guarantee success in detecting multiple-source emissions. For demonstra-

tion purposes, we fix the emission duration for each emission event to be one hour and

assume all five equipment have equal likelihood to be an emission source. Additionally,

we prescribe three possible emission rates, [1, 5, 10] kg/h to each of the potential emis-

sion sources with equal probability. This constructs a simple uniform distribution, i.e.,

P (x0,i, qj) = 1/15, i = 1, 2, . . . , 5, j = 1, 2, 3. It’s important to mention that the fixed

duration value, emission rates and probabilities we used in this experiment are only for

demonstration purpose. In practice, a realistic distribution should be derived based on ac-

tual site-specific data and practitioners’ insights, and an example of this guidance is provided
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in the case study at the end of this paper. For wind data, we approximate the true wind

distribution fw by using one-hour non-overlapping segments from the historical wind data

throughout the entire experiment period to reflect the actual meteorological conditions on

the site within the experiment period. In practice, a full year of wind data is desired to thor-

oughly represent the actual meteorological conditions, including seasonal patterns, which is

implemented in the case study for a real oil and gas site. Finally, this yields a total number

of 38,685 emission scenarios which comprehensively represent the actual emission conditions

on the site during the experiment period.

Step 2. Specification of possible sensor locations

The determination of possible sensor locations is contingent upon the desired spatial search

grid resolution as well as the geometry of the site. Specifically, areas occupied by equipment

or driveways must be excluded from the search space. Furthermore, regions restricted by

operational guidelines also necessitate exclusion. In summary, information regarding the

search grid resolution sought by the site operator and any pertinent restrictions is essential

for the specification of possible sensor locations.

In this case study, we first set possible sensor locations by creating a 3D grid over the

entire site. The resolution for the two horizontal directions (Northing and Easting) is 1 m

while the resolution for the vertical direction is 0.5 m. The dimensions of the METEC site

are approximately 125 meters in Easting and 75 meters in Northing. Considering practical

feasibility, the vertical range was designated as spanning from 1 to 10 meters. Subsequently,

we excluded all points within the grid that were occluded by any of the five equipment

groups present on the site. This exclusion process resulted in a total of 21,774 viable sensor

locations, forming the search space for the subsequent optimization analysis. Figure 2 shows

the possible sensor locations as well as the potential emission sources on the METEC site.

The gap areas correspond to spaces obstructed by equipment and hence devoid of possible

sensor locations.
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Step 3. Simulation of methane concentrations

In this step, we simulate methane concentrations for each emission scenario generated in

Step 1 at all potential sensor locations specified in Step 2, using an atmospheric transport

model. This step is summarized by Equation 1:

cji (t) = g (x0,i, qi,wsi(t),wdi(t);xj) , t ∈ [0, τ ], i = 1, 2, . . . ,M ; j = 1, 2, . . . , N. (1)

Here, cji represents the simulated methane concentration time series for emission scenario i

at sensor location j; M and N denote the total numbers of emission scenarios and potential

sensor locations, respectively; g is the atmospheric transport model. We will use these

simulated methane concentrations to assess detection capabilities at each sensor location for

each emission scenario.

In our experiment, the simulations were conducted using the Gaussian puff model which

is more accurate than the Gaussian plume model as it accounts for the wind dynamics

within the simulation period (see Jia et al. 42 for details). All the parameters used in the

Gaussian puff simulations are listed in Section S2 of the SI. We note that other, e.g. more

sophisticated, atmospheric transport models can straightforwardly be integrated within the

proposed optimization framework by replacing the Gaussian Puff model. Finally, there are

a total of 38, 685 × 21, 774 = 842, 327, 190 one-hour simulated concentration time series.

Memory issues arise when dealing with such large data. To address it, we utilize memory-

mapping files provided in Numpy43 to store the data.

Step 4. Evaluation of detection

In this step, we establish detection of every sensor location and emission scenario pair based

on the simulated methane concentrations cji obtained in the previous step. We then combine

all the detection results into a single detection matrix which serves as the input to the final

optimization problem.
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We determine detection by applying two thresholds to the simulated methane concentra-

tions: an amplitude threshold, A, to identify significant high values and a temporal threshold,

B, to ensure the persistency of the high readings. Therefore, a successful detection is defined

to be elevated concentrations above A ppm for more than B% of the total time steps in a

simulated concentration time series as shown in Equation 2.

∥c(t) ≥ A∥1 ≥ |c(t)| ·B% (2)

where c(t) is the simulated methane concentration time series (or vector); ∥ · ∥1 is the L1

norm of a vector and | · | is the length of a vector. The value of A will typically be set as

a function of the sensor quality, with lower quality sensors requiring a higher threshold to

distinguish true spikes from the noisy background which consists of ambient atmospheric

concentrations and sensor noise. Since we use simulated concentrations in this step, repre-

senting concentration enhancements in the observed data, the detection threshold A should

be based on the background variations in the observed data to ensure that the signal cor-

responding to true emissions stands out. Specifically, A is set to be the difference between

the upper bound and the lower bound of the background concentration, ensuring that any

concentration enhancement above A is guaranteed not to be drowned out by the background.

The value of B dependents on the tolerance for false positives. In practice, sporadic spikes

may correspond to sensor malfunctions or error from raw data processing rather than actual

emissions. We need a metric to evaluate the persistence of the high values defined using the

amplitude threshold A. In this study, we use an amplitude threshold of A = 0.5 ppm and

B = 20% for the main analysis. An example of a successful detection is illustrated in Section

S3 of the SI. We also analyzed how different sensor types may affect the detection efficiency

by using A = 5.0 ppm and B = 20% to generate results corresponding to a lower quality

sensor. There are various ways to define detection which can be easily accommodated within

our framework, and we included a brief analysis of different choices in Section S4 of the SI.
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Next, we synthesize all detection results to construct a detection matrix, denoted as D,

whose rows correspond to sensor locations and columns to emission scenarios. The entries

of the matrix are binary; zero indicates a non-detection for a specific scenario at that sensor

location, and one indicates a detection, see Equation 3.

Dij =


1 if emission scenario j is detected at sensor location i,

0 otherwise.
(3)

Step 5. Optimization of sensor placement

In the final step, we find the optimal sensor placement under a given sensor budget. Using

the detection matrix D constructed in the previous step, we can model the optimization

problem as a best subset selection problem. Recall that the rows of the detection matrix

correspond to possible sensor locations and columns to emission scenarios. Given the sensor

budget k, i.e, the number of sensors to install, selecting k sensors translates to selecting k

rows from the detection matrix. In the resulting sub-matrix D
(k)
sub, we assess the column-wise

sums which indicate the number of sensors that detect the corresponding emission scenario.

The number of non-zero column-wise sums is the total number of detected emission scenarios,

which is called detection coverage. The objective is to find the optimal selection of k rows

from this matrix to maximize the detection coverage.

The next step is to apply Pareto optimization to the best subset selection problem we have

formulated. Pareto optimization has been developed to handle situations with conflicting

objectives. In our case, we want to find a subset of rows from the detection matrix to

maximize the detection coverage, while minimizing the size of the subset, that is, using

fewer sensors if possible. The Pareto optimization problem is formulated by following the
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set up used in Qian et al. 40 .

argmax
x∈{0,1}N

(g1(x), g2(x))

g1(x) =


f(x), ∥x∥1 ≤ 2k

−∞ otherwise.

g2(x) = −∥x∥1

(4)

Here, N is the number of rows of the detection matrix, x is a binary vector of length N and

xi = 1 if the ith row of the detection matrix is selected; f is the detection coverage and

∥x∥1 is the L1 norm of the binary vector which is the number of selected rows. Note that for

solutions which unduly exceed the budget (by two times in this setting), the corresponding

objective value in g1 is set to be negative infinity to make the subsequent searching process

more efficient.

For large-scale optimization problems, such as those involving matrices with dimension in

the order of hundreds of thousands, traditional approaches like exhaustive search or standard

MILP algorithms are impractical due to their computational cost. Instead, here we use

genetic algorithms, a type of randomized algorithms to efficiently search a solution that is

close to the optimal one. By conducting selection, mutation, and combination operations

inspired by natural selection, the solutions evolve to an optimal or near optimal state in

an efficient way. Specifically, we use the Pareto optimization with recombination for subset

selection (PORSS) proposed by Qian et al. 40 . The pseudo-code for the algorithm is presented

in Section S5 in the SI and the full code is available at the GitHub repository provided at

the end of this paper. The algorithm accepts three primary inputs: a detection matrix D,

a sensor budget k, and an objective function g1 which is the detection coverage in this case.

The iterative nature of the algorithm is governed by the parameter I, specifying the total

number of iterations to execute. The desired output is an optimized subset comprising no

more than k rows from the detection matrix D that maximizes the objective function g1.
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Given the monotonic property of g1, which ensures that the objective value of the original set

is always greater than or equal to that of any of its subsets, the output will consist precisely

of k rows.

We start with a null vector x of length N , the total number of possible sensor locations,

initializing a solution population set P with this vector. The iteration counter i is set to

zero to track the progression of the algorithm.

The core of the algorithm is an iterative loop that continues until either the iteration

counter i reaches the predefined limit I or the prescribed early stop condition is satisfied.

Within each iteration, the following steps are undertaken:

1. Selection: A pair of vectors, x,y, are randomly chosen from the solution population

set P .

2. Recombination: The selected vectors undergo a recombination process to produce off-

spring vectors x′,y′. Specifically, a cut point is randomly selected to split each of x,y

into two segments: (x1,x2), (y1,y2). Then, x1 is combined with y2, and y1 is combined

with x2 to produce the offspring vectors x′ and y′.

3. Mutation: A bit-wise mutation is applied to the offspring x′ and y′, resulting in new

vectors x′′,y′′. Specifically, a subset of points is randomly selected, and the values at

these points are swapped between 0 and 1 to produce the new vectors x′′,y′′.

4. Survival of the Fittest: For each of x′′ and y′′, the algorithm assesses whether it rep-

resents an improvement over the existing solutions in P . Only vectors not dominated

by any member of P are retained. Here, we define a solution x dominating another

solution x′, i.e, x ≻ x′ if g1(x) ≥ g1(x
′) and g2(x) ≥ g2(x

′) and either g1(x) > g1(x
′)

or g2(x) > g2(x
′).

5. Early Termination: At the end of each iteration, an early stop condition is evaluated

to determine if the optimization can be concluded ahead of schedule.
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Upon reaching the termination criterion, the algorithm concludes by selecting from P

the solution x that adheres to the budget constraint k and maximizes the objective function

g1.

The proposed algorithm demonstrates a robust capability for optimizing complex subset

selection problems. Through the iterative process of selection, recombination, mutation, and

survival of the fittest, the algorithm converges towards an optimal or near-optimal solution.

The inclusion of an early termination condition enhances computational efficiency, enabling

the algorithm to halt upon sufficient convergence, thereby saving computational resources.

To address the inherent stochastic nature of genetic algorithms which can result in di-

verse outcomes due to their random selection and mutation processes, we have implemented

a strategy that involves running multiple independent genetic algorithms in parallel. By

conducting these algorithms separately, we can harness the variability in their search pat-

terns, thereby mitigating the risk of converging to local optima that might be mistaken for

global solutions. Upon completion of these independent runs, we aggregate their results,

systematically comparing and combining the distinct solutions to identify the most optimal

outcomes. This approach not only leverages the exploratory strengths of genetic algorithms

but also significantly enhances the robustness of the solution set, ensuring that the best

possible solutions are identified amidst the randomness.

To evaluate the performance of our algorithm, we generated test data with known ground

truth. These test data were designed to present more challenging scenarios than the original

problem in this study, and our algorithm successfully identified the true solution in all cases.

Detailed descriptions and results of the tests are provided in Section S6 of the SI.

Results

We first present the optimal placement of sensors across the METEC site, considering various

sensor budget constraints ranging from 1 to 12. For each budget level, we conducted 20
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independent optimization trials and aggregated the results to identify the most effective

sensor configuration. Figure 2 showcases exemplary configurations for the optimal placement

of four and eight sensors, with additional configurations for varying budgets detailed in

Section S7 of the SI. The sensors’ horizontal positions are marked with red dots, while

their heights are denoted by corresponding numbers. The top row shows the optimal sensor

placements by searching from all possible sensor locations specified in Step 2 across the entire

site. The detection coverage achieved by these configurations is 0.52 and 0.75 for the four-

sensor and eight-sensor systems, respectively, indicating that the systems could detect 52%

and 75% of simulated emission scenarios, respectively. Not surprisingly, the arrangement

of the best sensor placement is clearly informed by the predominant wind directions from

the northwest and southeast (see Figure 1(b)). Additionally, the sensor heights are highly

correlated with the heights of the emission sources. In situations where operational guidelines

restrict sensor installation exclusively to the perimeter of a site, we also explore optimal

fenceline sensor placements. Adhering to the methodology outlined in the Methods section,

we limited potential sensor locations to a narrow zone along the site boundary, specifically

within a 2-meter buffer area. The bottom row shows the optimal configurations for placing

four and eight sensors, as determined by our algorithm. Again, the arrangement of the

optimal sensor placements is informed by the predominant wind directions. Specifically,

rather than being uniformly distributed along the perimeter, the sensors are shifted towards

the northwest and southeast direction, the predominant wind directions over the experiment

period. The four sensor locations in the best four-sensor solution are approximately retained

in the best eight-sensor solution, but their heights are adjusted to synergize with the newly

added sensors, enhancing detection efficiency.
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Figure 2: Optimal placements for four and eight sensors as determined by the PORSS
algorithm. The top row shows the optimal sensor placements across the entire site, and the
bottom row shows the optimal sensor placements constrained along the fenceline of the site.
Gray dots indicate possible sensor locations, while blue stars represent potential emission
source locations, with their heights indicated by the adjacent numbers. Red dots denote
the sensors selected by the algorithm, with their corresponding heights also indicated by
the adjacent numbers. The optimal placement of four sensors across the site and along the
fenceline achieves detection coverage of 52% and 47%, respectively. The optimal placement
of eight sensors across the site and along the fenceline achieves detection coverage of 75%
and 70%, respectively.

Figure 3 illustrates the detection coverage ratio, the proportion of detected emission

scenarios out of the total emission scenarios generated in Step 1, achieved with the optimal

sensor placement for each budget. The blue lines show the coverage ratio associated with the
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optimal sensor placements derived by the PORSS algorithm in this setting. The observed

trend indicates diminishing returns in terms of detection coverage with increasing sensor

budgets. This type of analysis enables us to determine the minimum number of sensors

required for a desired detection coverage. Additionally, we compared the results under two

different detection amplitude thresholds: 0.5 ppm and 5 ppm representing high and low

end sensors, respectively. Low-end sensors generally exhibit larger background variation

compared to high-end sensors and hence require higher detection thresholds.44 The analysis

shows that to achieve a specific detection coverage ratio, more low-end sensors are needed.

For example, to achieve a detection coverage ratio of 0.50, four high-end sensors or nine

low-end sensors are required. In practice, operators can use this analysis to decide on the

sensor type and the corresponding number of sensors.

The effectiveness of the PORSS algorithm was further evaluated by benchmarking it

against a greedy search method which served as the baseline for comparison. In the greedy

search approach, the best current row is iteratively chosen based on a continually updated

detection matrix. This matrix evolves by excluding previously selected rows and any columns

containing at least a value of one across these rows. As depicted in Figure 3, the solutions

derived from the PORSS algorithm represented by the blue lines consistently outperform

those obtained through the greedy search method represented by orange lines for both low-

and high-end sensors. Notably, for the single-sensor (best-1) configuration, the solution

identified by the greedy search is considered the ground truth, which PORSS successfully

matched. This outcome underscores the PORSS algorithm’s ability to find optimal solutions.
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Figure 3: Detection coverage ratios achieved through optimal sensor placement across various
sensor budgets. Blue solid lines denote solutions derived from the PORSS algorithm, while
orange dash-dot lines represent outcomes from the greedy search method. Circles indicate
solutions achieved under a detection amplitude threshold of 5.0 ppm, representing the sen-
sitivity of low-end sensors. Squares denote solutions achieved under a detection amplitude
threshold of 0.5 ppm, representing the sensitivity of high-end sensors. The black dashed line
illustrates the theoretical maximum coverage ratio, achievable by distributing sensors across
all possible locations.
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Case Study for a Prototypical Midstream Oil and Gas Site

In this section, we present a case study demonstrating our sensor placement algorithm in

a real-world scenario at the request of a site operator. The study illustrates how operator

knowledge and site constraints can be incorporated into our optimization scheme for an

actual midstream oil and gas site. The site operator and site locations are anonomyzed for

confidentiality.

This site initially had nine industry-standard sensors placed on the perimeter fenceline,

following the vendors recommendation. The operator wanted to compare this setup to a new

configuration using four higher-quality sensors. Given that precise placement becomes more

critical with fewer sensors, our framework was used to determine the optimal locations for

the new sensors under the operator constraint of restricting placement to the fenceline at a

2-meter height to facilitate installation and minimize operational interference.

Our optimization framework was configured as follows:

Wind Data Wind data was collected over a year at one-minute intervals from two anemome-

ters co-located with the existing sensors. To create a single time series for our frame-

work, we averaged the wind speed and direction (x and y component wise) when both

anemometers had data, using the available value when one was NA. Instances with

both NA (0.684% of the data) remained NA. We then randomly selected 1,000 non-

consecutive hours of gap-free data, with the sampled distribution closely matching the

full year’s data (see Figure 4).

Emission Scenarios Operator guidance indicated that the 10 site compressors were the

primary sources of fugitive emissions, and overflight data had suggested that emissions

of 5 kg/hr were typical. We simulated emissions using these values across the 1,000

hourly wind data samples for each compressor, generating 1,000 scenarios per compres-

sor and 10,000 total for all sources combined, allowing us to find the overall optimal

placement.
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Simulation, Detection, and Optimization All simulations used the Gaussian puff model

with parameters listed in Section S2 of the SI. For each simulation, we recorded the

candidate locations along the 2 m resolution site fenceline where the simulated methane

concentration exceeded 1 ppm for at least 1 minute in accordance with a conservative

estimate of sensor sensitivity provided by the sensor vendor. We first determined op-

timal sensor placements for each compressor individually (see Figure S8 in the SI)

then combined the results to create a single detection matrix D as described in Step

4. The PORSS algorithm (see Step 5) was then used to find the optimal sensor lo-

cations. Lastly, we verified our solution’s stability by comparing it against 10 million

random samples of 4 sensor locations along the fenceline, imposing a 30 m minimum

distance between sensors. The PORSS algorithm found the optimal solution in 210

seconds, about 30 times faster than evaluating the random samples which took 6,177

seconds, with nearly identical results but a slightly higher coverage ratio for the PORSS

algorithm (see Figure S9 in SI).

The site operators have installed the four new sensors in the recommended locations

and are actively recording data as of this paper’s publication. While a detailed compari-

son between these four advanced sensors and the nine existing ones is beyond this paper’s

scope, this case study illustrates the practical implementation of our framework, integrating

operator knowledge effectively.

Conclusion

In this work, we introduced an open-source data-driven algorithm for optimizing sensor

placement on oil and gas sites. The demonstration example (METEC experiment) and the

real oil and gas site case study outlined in this paper detail the workflow and highlight

the efficiency and accuracy of our proposed framework. This algorithm provides site-specific

solutions that are more accurate and reliable than traditional sensor placement strategies and
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Figure 4: Subplot (a) shows the distribution of wind data recorded over a full year for
this site. Subplot (b) shows the distribution of the subset of wind data used within our
optimization framework. Subplot (c) shows the optimal fenceline placement for four sensors
on this site.
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those proposed in prior studies.32,33 Additionally, our algorithm’s analysis of the relationship

between sensor budget and detection efficiency is crucial for operators when making decisions

during the planning phase.

Our approach significantly expands the problem scale compared to prior research in

related studies by efficiently solving large-scale problems often encountered in practice. Fur-

ther, the high modularity of our algorithm allows users to incorporate their own methods

and models, such as wind and emission distribution estimators (in cases with limited or no

existing wind data) or different atmospheric transport models. As such, the algorithm holds

substantial practical value, particularly as the use of Continuous Monitoring Systems (CMS)

becomes increasingly prevalent and critical in the quest to rapidly reduce methane emissions.

While this paper focuses on optimizing sensor placement for methane emission detection ef-

ficiency, the algorithm can be extended to various other applications, involving emission

localization and quantification, by simply changing the objective function in the optimiza-

tion problem. This flexibility is due to the genetic algorithm’s ability to handle non-linear

objective functions, a capability not possible with the Mixed-Integer Linear Programming

(MILP) approach adopted in prior studies.32,33
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