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Abstract:  

Diazo compounds have extensively been investigated under light or metal-mediated conditions to carry out 

carbene-mediated transformations. In the search for novel reactivity, investigating these dinitrogen substrates 

under electrochemical conditions remained underexplored. Herein, we have explored diazo compounds under 

electrochemical conditions to establish a cascade sequence of thiolation/cyclization/reduction reactions. 

Electrolyzing styryl diazo imides and aryl thiols enables direct access to a single diastereoisomer of 2,5-pyrrolidine-

dione-fused thiochromans in good yields under mild and metal-free conditions. Notably, a tunable reactivity was 

achieved via S-H insertion at the diazo center in slightly modified reaction conditions. Based on the experimental 

evidences, including the detection of key intermediates and computational studies, the mechanism for the 

electrochemical cascade reaction has also been established. 
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Introduction 

Diazo compounds have served as valuable precursors in organic synthesis via photochemical, thermal, or 

transition metal-mediated decomposition to carbenes/metal carbenoids. These reactive intermediates have 

generally been investigated for well-established Wolff rearrangement, X-H insertion, cyclopropanation, ylide 

formations, etc.1-9 Beyond carbene reactivity, the diazo compounds display amphiphilic behaviour by serving as 

nucleophiles and electrophiles.10-16 In addition, under high temperature, transition-metal mediated conditions, 

with stoichiometric strong oxidants or photoredox catalysis, the diazo functionality was found to serve as a radical 

acceptor to generate another radical at the same carbon from where the dinitrogen is eliminated.17-22  

In the context of radical reactions, over the last few years, the electrochemical redox process has emerged 

as an excellent tool to develop not only a similar reactivity to that mediated by the oxidants/metal 

catalysis/corresponding photoredox catalysis but also open the gate for unusual reactions, which are otherwise 

not established.23-34 Despite the massive potential of diazo compounds in organic synthesis and electro-organic 

synthesis being a sustainable approach, the applications of diazo compounds to explore new radical reactivity 

under electrolysis remain elusive. Lei and co-workers35-36 were the first to establish the diazo compounds as a 

radical acceptor in electrochemical conditions to initiate the corresponding cascade sequences. The concept of 

electrolysis-assisted generation of radical species at the diazo carbon center was further explored by the research 

groups of Mo,37 Huang,38 and Wang39  Alternatively, Rybicka-Jasińska and co-workers demonstrated the well-

established formal [2 + 1] cycloaddition of diazo compounds with alkenes via radical cation intermediates under 

electrolysis.40 In all these electrochemical strategies, the radical/radical cation intermediates generated at the 

anode add directly to the site of N2 exclusion. Furthermore, these strategies are mainly alternatives to the existing 

established methods and mostly employ diazoacetates as substrates. We anticipated a huge scope for further 

development in the electrochemical reactions of diazo compounds, especially by going beyond the simpler diazo 

esters or amides and having diazo substrates having an additional reactive site along with the diazo functionality.  

Recently our group disclosed an unusual solvent-controlled divergent reactions of styryl diazo imides 1 

with thiols 2 under photochemical conditions to construct indane-fused pyrrolindiones via aryl C-H 

functionalization/thiolation sequence or reduction of diazo group to hydrazones.41 In the former case,  photolysis 

of diazo imide led to the generation of triplet carbene, which makes intramolecular C-C bond formation more 

facile to initially form a five-membered intermediate, which eventually undergoes diastereoselective C-S bond 

formation. We were intrigued to exploit the different reactivity of these diazo imides with aryl thiols under 

electrochemical conditions. Our idea was not only to have direct electrochemical C-S bond formation at the diazo 

center,36, 38 but to initiate a new electrochemical cascade sequence. It was envisioned that at the outset, electricity 

should assist the one-electron oxidation of thiol to thiyl radical42 to allow initial C-S bond formation, contrary to 

the photochemical conditions. Further, it was realized that the anodically generated thiyl radical intermediate, 
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apart from adding to the diazo center, should undergo the addition to the C=C, leading to a cascade sequence, 

where one of the aromatic rings will undergo further cyclization at the diazo center. Such a reaction sequence is 

not only mechanistically distinct from that reported under light by using the same substrates,41 but also leads to 

an entirely different class of heterocycles, i.e. pyrrolidine-2,5-dione-fused thiochromans.43-45 

  

Scheme 1. Reactivities of diazo compounds under electrochemical conditions and divergency in the photo- vs electrochemical reactions 
of diazo imides.  

Results 

Optimization Studies 

Our efforts began with the electrolysis of cyclic diazo imide 1a with thiophenol 2a in an undivided cell (Table 1). 

After screening various solvents (entries 1-3) by using graphite electrodes and tetrabutylammonium 

tetrafluoroborate as an electrolyte at 5 mA current, 2,2,2-trifluoroethanol was found to be the best solvent 

providing the desired product 3a as a single diastereoisomer in 78% yields (entry 3). Slightly increasing or 

decreasing the magnitude of the current led to a lower yield of product 3a, whereas at 10 mA current, the product 

was not observed (entries 4-6). The reaction was found to be sensitive to temperature change as the desired 

Electricity driven reactions of diazo compunds

S
N

O

O

R

H H

HAr

Light or electricity driven divergent reactivities of styryl diazo imides

N

O

O

R

N
NH2

N

O

O

R

S

Ar

Ar/Het N

S

O
Ar/Het

Ar

O

R

H

N

N2

O

O

R

SH

Ar

Ar/Het

via 
triplete carbene

via 
electron tranfer

RSH + NuH

Ar
CO2H

R = H

Ar EWG

D/H H/DR1 R2

R1

R2

EWG

R1XH

EWG

XR1

R = H

Wang’s group[8]

Huang’s group[7]

Lei’s group[5b]

Rybicka-Jasińska’s Group[9]

RS EWG

Nu

EWG

N2

R = H

RSeSeR + Nu1H

Mo’s group[6]

RSe EWG

Nu

R1

R2

O N

EWGR1

R2 t-BuONO +

Lei’s group[5a]

RX

EWG

XR1

electroxidatively 
generated

Our previous work[10]

This work

+

CH3CN CH2Cl2

S
N

O

O

R

H

Ar

S

2

1

2 1
N

O

O

RS

N
N

-e, -H -e, -H, -N2

2H + 2e

34

Ar/Het

Ar

Ar

Ar/Het Ar/Het

EWG = CO2R/CO2NR2

R = H

R = H

Ar

https://doi.org/10.26434/chemrxiv-2024-m4c1v ORCID: https://orcid.org/0000-0002-8779-0652 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m4c1v
https://orcid.org/0000-0002-8779-0652
https://creativecommons.org/licenses/by-nc-nd/4.0/


product was not observed at higher temperatures (entry 7). Varying electrolytes to n-Bu4NClO4, NaClO4, and NaCl 

did not help in improving the yield of 3a (entries 8-10). Further, the change in electrode materials also turned out 

to be ineffective in increasing the product yields (entry 11). When the reaction was carried out without electricity, 

the product formation was not observed, which establishes the importance of current in the reaction. While 

slightly modifying the reaction conditions by using slightly different electrode materials, solvent, and excess 

thiophenol, 4a as a major product was isolated in 64% yield via S-H insertion to the diazo carbon center (Table 1 

entry 13 and see Table S1.1 for optimization leading to product 4a).46 

 

Table 1: Optimization studies 

 

Entry Deviation from standard conditions 3a/4a Yield (%)b 

1 MeOH as solvent 3a 50 

2 EtOH, HFIP, DMA, DMSO as solvent 3a ND 

3 None 3a 78 
4 Constant current @ 3 mA 3a 48 

5 Constant current @ 8 mA 3a 25 
6 Constant current @ 10 mA 3a ND 

7 At 50 °C and 70 °C 3a ND 

8 n-Bu4NClO4 as electrolyte 3a 20 

9 NaClO4 as electrolyte 3a ND 

10 NaCl as electrolyte 3a ND 
11 C(+)/Pt(-) as electrode 3a 60 

12 No electricity 3a NR 

13 5.0 eq. 2a, MeOH, C(+)/Pt(-) 4a 64 
Standard reaction conditions: 1a (0.1 mmol), 2a (0.1 mmol), n-Bu4NBF4 (0.05 M), C(+)|C(-) as electrodes, current (5 mA) in CF3CH2OH (2.0 
mL) at rt. Electrodes size (W x H x D): 8.0 mm x 52.5 mm x 2.0 mm. ND: not detected, NR: No Reaction. Yield refers to the isolated yield of 
products 3/4. 
 

Substrate Scope Evaluation 

After optimizing the reaction conditions for the electrochemical synthesis of pyrrolidinedione-fused thiochroman 

3a (Table 1, entry 3), we investigated the substate scope and limitations by varying diazo imides and thiols (Scheme 

2). Initially, the scope was investigated with different diazo imides. The para-substituted electron-rich (R = Me, 

OMe) diazo imides give products 3b and 3c in 70% and 82% yields. A 4-fluoro substituted substrate found to be 

compatible, however resulted in lower yield (57%) of 3d. The reaction works well with meta-methoxy and -chloro 

substituted diazo imides to access 3e-f in good yields; however, a meta-fluoro substituted substrate resulted in a 

diminished yield 54% of 3g. The sterically crowded substrates i.e. ortho-substitution diazo imides were well 

tolerated for our electrochemical cascade sequence, yielding 3h-j in 52-74% yields. In addition, the diazo imides 

bearing 2-F, 4-OMe phenyl and naphthyl groups also react without much difficulty to provide 3k and 3l in 62% and  
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Scheme 2. Substrate scope for electrochemical thiolation/cyclization/reduction cascade sequence involving diazo imides. Reaction 
conditions: 1 (0.1 mmol), 2 (0.1 mmol), n-Bu4NBF4 (0.05 M), C(+)|C(-) as electrodes, current (5 mA) in CF3CH2OH (2.0 mL) at rt. Electrodes 
size (W x H x D): 8.0 mm x 52.5 mm x 2.0 mm. ND = not detected. Yield refers to the isolated yield of products 3a-ac. aUnidentified signals 
have been seen in 1H NMR of the product in a 3:1 ratio. 
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64% yields, respectively. A thiophene-substituted diazo imide also provided the desired product 3m, however, in 

a modest yield of 45%. The different N-aryl groups (Ar = 4-OMeC6H4, 2,6-Me2C6H3 or 2-tert butylC6H4) fit well to 

the substrate scope providing desired products 3n-p in acceptable yields. The N-benzyl and N-alkyl substitutions 

were also allowed, as the former provided 3q in a higher yield of 80%, whereas the latter gave 3r-s in moderate 

yields (48-49%).After screening diverse diazo imides, we pursued to examine the behaviour of different 

substituted thiophenols. The 2-Me, 4-Me, 4-OMe and 4-F substituted thiophenol derivatives provided 

thiochroman products 3t-w in 57-78% yields. The reaction with meta-substituted thiophenols (R = 3-Me, 3-OMe) 

gives the products 3x-y, but the products could not be completely purified due to unknown impurities in a 3:1 

ratio (probably the diastereoisomers). Nonetheless, with 3-fluorothiophenol, only a single product, 3z obtained a 

55% yield. A disubstituted 3,5-dimethyl thiophenol gives product 3aa in 72% yields.  

The electro-cascade reaction occurs efficiently with the diazo imides bearing a natural product (Menthol), 

and amino acid (L-tert-Leucine) as side chain. The corresponding products 3ab-ac were isolated in reasonable 

yields with no diastereo-differentiation. The limitation of the present method lies within the use of strongly 

electron-withdrawing groups (eg. -NO2/-CN) on the aryl ring of diazo imides and corresponding thiophenol 

derivative as well as thiophene-2-thiols, as the desired reaction failed in all these cases.  

Further, the generality of direct S-H insertion to the diazo center was investigated to access the divergent 

class of products 4. (Scheme 3). The reaction was found to be fairly general in terms of variation in the substituent 

on both aryl rings of diazo imides and aryl thiols to afford 4a-h in 52-70% yields. The N-benzyl diazo imide also 

provided the desired product 4i, however, in a lower yield of 40%.  

 

Scheme 3. Substrate scope for S−H insertion of diazo imides. Reaction conditions: 1 (0.1 mmol), 2 (0.5 mmol), n-Bu4NBF4 (0.05 M), C(+)|Pt(-) 
as electrodes, current (5 mA) in MeOH (2.0 mL) at rt. Electrodes size (W x H x D): 8.0 mm x 52.5 mm x 2.0 mm. ND = not detected. Yield 
refers to the isolated yield of products 4a-i. 
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Scale-Up Reaction and Synthetic Transformation 

After evaluating the substrate scope/limitations of electro-cascade synthesis of pyrrolidinedione-fused 

thiochroman 3a, a scale-up process was performed. The reaction worked with equal efficiency, without a 

significant loss in the yield, suggesting the practicability of the developed electrochemical process (Scheme 4A).  

Further, a synthetic application of the thiochroman product 3a has been demonstrated by H2O2-AcOH mediated 

oxidation of sulfide to sulfoxide 5 in good yield (Scheme 4B). 

  

Scheme 4. Scale-up reaction and a synthetic transformation. 
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In order to gain insight into the mechanism, various control experiments were carried out (Scheme 5A). The radical 
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derivatives (7a and 7b) could be the intermediate formed at the anode, which undergoes cathodic reduction of 
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anode.  
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Scheme 5. Control experiments and CV studies. 
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kcal/mol vs. 12.1 kcal/mol).53 In the next step, the departure of the labile diazo group from intermediate C leads 

to the formation of an intermediate F via TS [C-F]‡, which can undergo an intramolecular nucleophilic attack either 

by the phenyl ring attached to the β-carbon or sulphur atom. Prior to this, an intermediate F undergoes a 

conformational change to generate lower energy intermediates G and G’. Intramolecular nucleophilic attack by 

the phenyl ring attached to the sulphur atom leads to the formation of an adduct D (six-membered) via TS [G-D]‡ 

whereas an adduct D’ (five-membered) is formed following an intramolecular nucleophilic attack by the phenyl 

ring attached at β-carbon via TS [G’-D’]‡. The corresponding Gibbs free energies of these transition states are 

found to be 3.0 kcal/mol [G-D]‡ and 9.1 kcal/mol [G’-D’]‡ respectively. A comparison of these transition states 

suggested the favourable formation of a six-membered ring as the activation barrier for the TS [G-D]‡  is 

significantly lower (3.4 kcal/mol) than the ([G’-D’]‡  (10.8 kcal/mol).54 Subsequently, intermediate D undergoes 

single electron oxidation at the anode to generate a cation, which loses a proton to retain the aromaticity of the 

C(+)/C(-), 5 mA
TEMPO+ No reaction

TEMPO+

SH

MeMe

MeMe

NO
S

57%

(2.0 equiv.)

(2.0 equiv)

Divided cell

N

O

O

Ph
S

Ar

A. Control Experiments

Ph N

N2

O

O

R

1a

!-Bu4NBF4 (0.05 M)
CF3CH2OH, rt, 3 h

C(+)/C(-), 5 mA

Ph N

N2

O

O

Ph +

!-Bu4NBF4 (0.05 M)
CF3CH2OH, rt, 3 h

1a 2a

SH

2a 6

MeMe

MeMe

NO
S

47%

!-Bu4NBF4 (0.05 M)
CF3CH2OH, rt, 3 h

C(+)/C(-), 5 mA

6

3a
Not formed

C(+)/C(-), 5 mAAr N

N2

O

O

Ph +

1a 2a

SH

N

O

O

Ph
S

Ar
Divided cell

C(+)/C(-), 5 mA

B. CV Experiments

!-Bu4NBF4 (0.05 M)
CF3CH2OH, rt, 3 h

!-Bu4NBF4 (0.05 M)
CF3CH2OH, rt, 2 h

7a or 7b

3a, 72%   or   3j, 74%

1a, Ar = Ph 
1j, Ar = 2-Ph-C6H4

TEMPO (2.0)

Formed at anode

Ar N

O

O

Ph

S
+

4a, R = Ph, 36%
4j, R = 2-Ph-C6H4, 34%

Formed at cathode

Undivided cell

Undivided cell

Undivided cell

7a, Ar = Ph, 43%
7b Ar = 2-Ph-C6H4, 40%

7b
(CCDC: 2376990)

https://doi.org/10.26434/chemrxiv-2024-m4c1v ORCID: https://orcid.org/0000-0002-8779-0652 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m4c1v
https://orcid.org/0000-0002-8779-0652
https://creativecommons.org/licenses/by-nc-nd/4.0/


phenyl ring, thereby leading to the formation of thiochromen intermediate 7a. In the final step, an addition of 

two electrons and two protons at the cathode to an intermediate 7a leads to the formation of final product 3a. 

Finally, the relative configuration of the experimentally obtained product was found to be in agreement with the 

DFT computed product, as the former was found to be 2.0 kcal/mol lower than the diastereomeric product.  

  

Scheme 6. Proposed mechanism based on experimental finding and DFT studies. 
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radical takes place to the diazo center. However, in the reaction of styryl diazo imides, the anodically generated 

thiyl radical species initially adds to the C=C to initiate the unique cascade sequence involving 

thiolation/cyclization at the anode followed by a reduction reaction at the cathode. A detailed mechanism for this 

cascade sequence has been established by carrying out several experimental investigations, including the 

recognition of key intermediates and DFT studies. An S-H insertion at the diazo center is also possible in slightly 

modified reaction conditions, making this electrochemical approach involving diazo compounds more versatile. 
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