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Abstract

Water’s ability to autoionize into hydronium (H3O+) and hydroxide (OH−) ions dictates the acidity

or basicity of aqueous solutions, influencing the reaction pathways of many chemical and biochemi-

cal processes. In this study, we determine the molecular mechanism of the autoionization process by

leveraging both the computational efficiency of a deep neural network potential trained on highly ac-

curate data calculated within density-corrected density functional theory and the ability of enhanced
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sampling techniques to ensure a comprehensive exploration of the underlying multidimensional free-

energy landscape. By properly accounting for nuclear quantum effects, our simulations provide an

accurate estimate of autoionization constant of liquid water (pKw = 13.71 ± 0.16), offering a real-

istic molecular-level picture of the autoionization process and emphasizing its quantum-mechanical

nature. Importantly, our simulations highlight the central role played by the Grotthuss mechanism

in stabilizing solvent-separated ion pair configurations, revealing its profound impact on acid-base

equilibria in aqueous environments.

Water is the most fundamental and ubiquitous substance on Earth, often referred to as the

matrix of life.1, 2 Its unique behavior stems from two key features: the propensity to form fluc-

tuating, extensive hydrogen-bond networks, and the ability to dissociate into hydronium (H3O+)

and hydroxide (OH−) ions. H3O+ and OH− ions, also known as water’s self-ions, modulate the

solution’s acidity/basicity, which is quantified in units of pH = − log[H3O+], where [H3O+] is the

hydronium concentration. The pH of a solution governs reaction pathways and rates by influencing

molecular interactions and transformations, making a detailed understanding of the autoionization

process essential for characterizing molecular mechanisms in various aqueous chemical and bio-

chemical processes.3–8 In bulk water, hydronium and hydroxide ions are stabilized by surrounding

water molecules, creating structural defects in the underlying hydrogen-bond network.9 The hy-

drated H3O+ ion can organize into various local arrangements, with Eigen (H9O+
4 )10 and Zundel

(H5O+
2 )11 complexes generally considered as two of the primary limiting structures. These local

protonated structures are dynamic, enabling rapid proton diffusion across the hydrogen-bond net-

work via the Grotthuss mechanism.12–21 In contrast, the hydrated hydroxide ion is highly fluxional,
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adopting various local arrangements due to the diffuse excess electron density forming a “ring”

around the oxygen atom, which lies in a plane perpendicular to the OH bond.22–25 In liquid water

at ambient conditions, the recombination of H3O+ and OH− ions occurs significantly faster than

proton diffusion,26 directly correlating with their relatively low concentrations ([H3O+] = [OH−]

= 10−7 M) and the correspondingly small equilibrium constant Kw = [H3O
+][OH−] = 10−14,

known as the autoionization constant of water.

While ultrafast vibrational spectroscopy has shed light on proton transport in aqueous acidic

solutions,14, 18–21 gaining direct experimental insights into the autoionization process remains chal-

lenging. The challenge arises because the autoionization of a water molecule is a rare event, occur-

ring on time scales of several hours.27–29 In this context, computer simulations can play a central

role by directly probing the thermodynamics and kinetics of water’s autoionization at the molecu-

lar level. However, they face challenges such as accurately modeling reactive processes, efficient

sampling of rare events, and accounting for nuclear quantum effects (NQEs). In particular, com-

mon force fields enable large scale molecular dynamics (MD) simulations of million-atom systems

but fall short at describing chemical transformations as they generally do not allow molecules to

form and break bonds. On the other hand, ab initio molecular dynamics (AIMD) simulations30

and machine-learning potentials (MLP)31 based on density functional theory (DFT)32, 33 allow for

modeling the rearrangement of chemical bonds. While these methods are powerful, the density-

functional approximations they rely on are typically hindered by functional-driven and density-

driven errors.34–37 These errors significantly impact the accuracy of AIMD and MLP-based simu-

lations when modeling aqueous systems.38–40 In particular, AIMD and MLP-based simulations are
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commonly performed using semi-local functionals derived from the generalized gradient approxi-

mation (GGA functionals) and its improved variant, the meta-generalized gradient approximation

(meta-GGA functionals). However, GGA and meta-GGA functionals have been shown to exhibit

artificially strong hydrogen-bond networks due to spurious charge transfer contributions arising

from delocalization errors.40, 41 These functionals, therefore, tend to overestimate the dissociative

character of water. In this regard, it should be noted that classical AIMD simulations performed

with GGA and meta-GGA functionals may sometimes predict pKw values close to 14.42–45 How-

ever, when NQEs are properly accounted for in analogous AIMD simulations performed using

path-integral methods, water molecules display an unphysically high propensity to dissociate, re-

sulting in pKw values lower than 14.44 As a consequence, although various DFT-based models

have been used to investigate the autoionization process in liquid water, a realistic estimate of Kw,

which accounts for a rigorous description of both underlying Born-Oppenheimer potential energy

surface and NQEs, remain elusive.42–54

Recent studies have demonstrated the capability of ab initio models developed within the

density-corrected DFT (DC-DFT) formalism,35, 55, 56 which extends beyond conventional Kohn-

Sham theory, to accurately simulate aqueous-phase chemistry.38, 40, 57–60 In particular, it has been

shown that DC-SCAN,38, 58, 61, 62 a density-corrected version of the SCAN functional,63 achieves

similar accuracy to the coupled cluster method, including single, double, and perturbative triple ex-

citation, i.e., CCSD(T),64, 65 which is considered the current “gold standard” for chemical accuracy.66, 67

While DC-SCAN offers greater accuracy than SCAN, AIMD simulations with DC-SCAN are com-

putationally expensive, requiring the calculation of the Hartree-Fock exchange term as well as the
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solution of costly coupled-perturbed Kohn-Sham equations.59, 68, 69

Building upon the accuracy achieved by DC-SCAN for aqueous systems, we introduce here

a deep neural network potential (DNN@DC-r2SCAN) trained on reference data calculated at the

DC-r2SCAN level of theory70 (see Methods for details). The accuracy and high computational

efficiency of the DNN@DC-r2SCAN potential enable realistic MD simulations of the autoion-

ization process in liquid water by explicitly accounting for NQEs, a key factor often overlooked

in computational studies. The combination of an accurate representation of the underlying Born-

Oppenheimer potential energy surface and a correct treatment of molecular motion at the quantum-

mechanical level enables a realistic modeling of Kw at the molecular level.

Results and Discussion

Free-energy landscape of water’s autoionization. Given that the autoionization process in liq-

uid water is a rare event occurring on timescales far exceeding those feasible for current MD sim-

ulations, we employed enhanced sampling methods, including umbrella sampling71, 72 and well-

tempered metadynamics,73 to monitor the formation of H3O+ and OH− ions in water. These en-

hanced sampling simulations allowed for efficient exploration of the relevant free-energy landscape

by inducing the dissociation of a water molecule through the application of a biasing potential

along an appropriate collective variable describing the autoionization process. We then deter-

mined Kw from the free-energy difference between the undissociated (neutral water molecules)

and dissociated (hydronium and hydroxide ions) states of water. All simulations were carried out

with the DNN@DC-r2SCAN potential for a periodic system containing 256 water molecules (see
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SSIPCIPNeutral watera) b) c)

Figure 1: Molecular structures involved in the autoionization process of liquid water. a,

Neutral water. b, Contact ion-pair (CIP). c, Solvent-separated ion pair (SSIP).

Methods for details).

The autoionization event of a water molecule results in the formation of a hydroxide ion and

a proton, which promptly transfers to the nearest hydrogen-bonded molecule, forming a hydro-

nium ion. This hydronium ion is highly dynamic, with the excess proton continuously hopping

from one water molecule to another, causing the hydronium ion to constantly change its iden-

tity. Proton diffusion across the hydrogen-bond network of water, described by the Grotthuss

mechanism,12–21, 74 causes the proton to move away from the hydroxide ion, resulting in the for-

mation of a stable solvent-separated ion pair (SSIP) where the hydronium and hydroxide ions are

separated by one or more water molecules. As illustrated in Figure 1, the autoionization of a water

molecule involves two limiting structures, corresponding to neutral water and SSIP configurations,

respectively, which are connected by contact-ion pair (CIP) configurations.

The free-energy landscape associated with the autoionization of a water molecule can be

mapped into a two-dimensional space using the number of covalent bonds (ncov) of the dissociating
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Figure 2: Free-energy landscape of water’s autoionization. Two-dimensional free-enery surface

(in kcal/mol) representing the autoionization process in liquid water as a function of covalent OH

bonds (ncov) of the self-dissociating molecule and the distance (Rion) between the resulting H3O+

and OH− ions. a, b Classical and quantum free-energy surfaces, respectively. Contour lines are

drawn every 1 kcal/mol.

water molecule and the distance (Rion) between the resulting H3O+ and OH− ions as collective

variables (Figure 2). The value of ncov directly reports on the dissociation state, with ncov = 1.0

denoting the dissociated species (i.e., OH−) and ncov = 2.0 corresponding to the undissociated

species (i.e., H2O). The distance Rion allows for classifying the dissociated state in terms of well-

defined molecular configurations. Specifically, Rion ∼ 2.8 Å indicates CIP configurations, while

larger Rion values correspond to SSIP configurations.
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As shown in Figure 2a, the two-dimensional free-energy landscape obtained from classical

MD simulations indicates a free-energy difference of 14.93 ± 0.08 kcal/mol between the SSIP

and neutral water configurations. Figure 2b shows that accounting for NQEs does not change

the overall shape of the free-energy landscape, which however becomes significantly shallower.

In particular, quantum simulations with the DNN@DC-r2SCAN potential predict relatively more

stable SSIP (10.99 ± 0.11 kcal/mol) and CIP (13.01 ± 0.19 kcal/mol) configurations relative to

neutral water. Additional details are reported in Figure S10 of the Supplementary Information.

Both classical and quantum free-energy landscapes indicate that the recombination of H3O+ and

OH− ions along the pathway connecting SSIP and neutral water configurations requires overcom-

ing a barrier, corresponding to the location of CIP configurations. Partial Hessian normal-mode

analysis75–77 indicates that CIP configurations, where the H3O+ and OH− ions are adjacent, effec-

tively serve as transition states for the autoionization process (see Section 5 of the Supplementary

Information). Classical and quantum simulations with the DNN@DC-r2SCAN potential predict

a barrier of ∼2.47 ± 0.06 kcal/mol and ∼2.02 ± 0.22 kcal/mol, respectively, indicating that the

recombination reaction occurs on a picosecond timescale.26, 44 As shown in Figure S15 of the Sup-

plementary Information these values are converged with respect to the system size. Experimentally,

the recombination reaction barrier was estimated to be within 3 kcal/mol,27 supporting the reliabil-

ity of the present simulations with the DNN@DC-r2SCAN potential. The barrier predicted by the

DNN@DC-r2SCAN potential for the recombination reaction is also comparable with the barriers

associated with proton-transfer reactions in liquid water, as determined from analyses of NMR78

and ultrafast infrared spectra.79
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To calculate Kw, it is necessary to compute the free-energy change associated with separating

the H3O+ and OH− ions to an infinite distance. However, due to the periodic boundary conditions,

it is not possible to reach an infinite separation between the H3O+ and OH− ions in actual MD sim-

ulations. In practice, this free-energy change can be calculated from the corresponding Coulomb

interaction energy, assuming that the H3O+ and OH− ions can be represented as +1 and −1 point

charges, respectively.43–45 By performing umbrella sampling simulations over the H3O+· · ·OH−

distance at both classical and quantum levels, we determined an average distance, ⟨Rion⟩, of ap-

proximately 6.01 Å and 5.98 Å, respectively. ⟨Rion⟩ was then used to calculate the electrostatic

Coulombic correction, which was added to the free-energy change to account for ion-pair separa-

tion at an infinite distance. In these configurations, the H3O+ and OH− ions are separated by two

water molecules. It should be noted that the compression of this H3O+· · ·H2O· · ·H2O· · ·OH− wa-

ter wire has been shown to lead to the recombination of the H3O+ and OH− ions into neutral water

via a concerted mechanism.26, 44 Starting from a SSIP configuration, we determined a free-energy

change of 0.71 kcal/mol and 0.72 kcal/mol for the transition to infinitely separated point charges

at the classical and quantum levels, respectively. Finally, the value of Kw was calculated from the

free-energy changes associated with the autoionization of a water molecule and the separation of

the H3O+ and OH− ions to an infinite distance, accounting for standard state concentrations.45, 51, 80

Classical simulations with the DNN@DC-r2SCAN potential predict pKw = 19.44 ± 0.11.

This corresponds to an equilibrium concentration of 1.91 × 10−10 M for both hydronium and hy-

droxide ions, which is approximately 500 times lower than the experimental concentration of these

two ions in liquid water at ambient conditions (10−7 M). In contrast, quantum simulations with
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the DNN@DC-r2SCAN potential predict pKw = 13.71 ± 0.16, which is in excellent agreement

with the experimental value (pKw = 14). For heavy water (D2O), the reduction in ZPE due to the

heavier mass of the deuterium atoms leads to a decrease in NQEs. Consequently, D2O exhibits

properties that lie between those of classical H2O and quantum H2O, with an experimental pKw

value of 14.86.81 Figure S16 indicates that the free-energy profile associated with the autoioniza-

tion reaction in liquid D2O is intermediate between those obtained from classical and quantum

simulations of liquid H2O, aligning with the expected behavior based on the reduced ZPE and

NQEs in liquid D2O. The free-energy difference of 12.02 ± 0.20 kcal/mol calculated for liquid

D2O corresponds to pKw = 15.07 ± 0.30, which is in close agreement with the experimental

value. The difference between the pKw values calculated from classical and quantum simulations

of H2O and D2O with the DNN@DC-r2SCAN potential unambiguously demonstrates the quan-

tum nature of the autoionization process in liquid water. These results are consistent with analyses

reported for liquid water under electric fields.82

Hydrogen-bonding topologies and water’s autoionization. Further insights into the autoioniza-

tion process are gained from the analysis of the evolution of the local hydrogen-bonding topolo-

gies as a water molecule dissociates into its self-ions. In liquid water at ambient conditions, every

molecule, on average, participates in four hydrogen bonds, each accepting and donating two hy-

drogen bonds, i.e., nHB(D) ≈ 2 and nHB(A) ≈ 2, respectively. During the autoionization event, Fig-

ure 3a shows that the dissociating water molecule progressively decreases its number of covalent

OH bonds (ncov) by transferring a proton to the closest hydrogen-bonded molecule. As the proton

is transferred, this molecule gradually transforms into a nascent hydroxide ion, a change reflected
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in the value of ncov progressively decreasing from 2.0 to 1.0. Figure 3 shows that, in its limiting dis-

sociated structure (ncov = 1.0), the hydroxide ion, on average, accepts five hydrogen bonds (Figure

S17 of the Supplementary Information), in agreement with previous MD simulations showing the

tendency of OH− to be hypercoordinated.22, 24, 25 The increase from nHB(A) ≈ 2 to nHB(A) ≈ 5

indicates the formation of a defect within the water hydrogen-bond network, with more water

molecules preferentially donating hydrogen bonds to the hydroxide ion.26, 42, 47 It should be noted

that, within a CIP configuration, one of the hydrogen bonds accepted by the nascent hydroxide

ion is donated by the nascent hydronium ion. Figure 3b also demonstrates that the incorporation

of NQEs tends to further delocalize the transferring proton. This is evidenced by the relatively

larger percentage of nHB(A) for configurations where the proton is equally shared between the
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Figure 3: Changes in hydrogen-bonding topologies during the autoionization process. Matrix

showing the percentage of hydrogen bonds (nHB) relative to the number of covalent bonds (ncov)

of the self-dissociating water molecule. a, b, Results from classical and quantum MD simulations,

respectively.
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nascent hydronium and hydroxide species (ncov = 1.5 − 1.6) compared to the corresponding val-

ues obtained from classical simulations. These differences in hydrogen-bonding environment thus

explain the relatively higher acidity of “quantum” water compared to “classical” water, which is

directly reflected in the higher Kw value as a consequence of the more diffuse nature of the trans-

ferring proton. Both classical and quantum simulations indicate that the autoionization process

does not occur until the distance between the oxygen atom of the dissociating water molecule and

its transferring proton (H∗) remains between 0.97 and 1.30 Å (Figure S18 of the Supplementary

Information). When the distance of H∗ from the oxygen atoms of the nascent hydronium (OA)

and hydroxide (OD) ions is between 1.34 and 1.37 Å, H∗ is equally shared by the two ions, which

corresponds to configurations with ncov = 1.5 − 1.6. When the distance between OD and H∗ ex-

ceeds 1.45 Å, the number of covalent OH bonds drastically changes for both ions, signaling the

formation of well-defined CIP configurations (Figure S19 of the Supplementary Information).

Grotthuss mechanism and water’s autoionization. As time progresses, the excess proton on the

hydronium ion within the initial CIP configuration hops through the hydrogen-bond network, lead-

ing to the formation of stable SSIP configurations. In these configurations, RODH∗−ROAH∗ > 3 Å,

where OA and OD now define the oxygen atoms of the stable hydronium and hydroxide ions (Fig-

ure 4a). To assess the role played by the Grotthuss mechanism on the thermodynamics of the

autoionization process, we performed MD simulations where proton transfer was only allowed

between two labeled water molecules, with the rest of the water acting as passive spectators (Fig-

ure 4b). Figure 4c shows that suppressing proton hopping through the underlying hydrogen-bond

network in the classical simulations leads to a significant increase in the free energy associated with
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Figure 4: Effect of the Grotthuss mechanism on the autoionization of water. a, b, Two-

dimensional free-energy surface of water’s autoionization calculated from classical simulations

with the Grotthuss mechanism allowed and suppressed, respectively. RODH∗ − ROAH∗ on the

x-axis defines the proton transfer coordinate and ROH−···H3O+ on the y-axis defines the oxygen–

oxygen distance between the hydroxide and hydronium ions. c, Comparison between classical

and quantum free-energy changes from neutral water (ncov = 2) to SSIP (ncov = 1) configu-

rations calculated from simulations with both the Grotthuss mechanism allowed and forbidden.

d,e, Schematic representation of neutral and ionized water with Grotthuss-allowed and Grotthuss-

forbidden mechanisms, respectively.

SSIP configurations (21.29± 0.03 kcal/mol) compared to the corresponding value obtained when

the Grotthuss mechanism is allowed (14.93±0.08 kcal/mol). Explicitly accounting for NQEs qual-

itatively provides the same trends in the free-energy change from neutral water (ncov = 2) to SSIP
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(ncov = 1) configurations, with the latter being destabilized by 4.64 kcal/mol when the Grotthuss

mechanism is suppressed. Without proton hopping, the formation of stable SSIP configurations

requires the diffusion of both hydronium and hydroxide ions. This process necessitates continuous

rearrangements of the surrounding hydrogen-bond network, which adds an energetic penalty. Ad-

ditionally, in the Grotthuss-allowed mechanism, a proton can hop between several water molecules

in the dissociated SSIP state, resulting in a larger number of possible configurations (Figure 4d).

Each of these accessible configurations increases the entropy of the dissociated state, making it

more stable. In contrast, in the Grotthuss-forbidden mechanism, proton transfer occurs only be-

tween a pair of water molecules, resulting in relatively lower entropy for the dissociated state due

to the reduced number of possible configurations (Figure 4e). Thus, the entropic effects intro-

duced by the Grotthuss mechanism play a crucial role in stabilizing the SSIP state, significantly

influencing the thermodynamics of the autoionization process. This analysis implies that, without

the Grotthuss mechanism, Kw would be significantly smaller, which may have implications for

acid-base equilibria in aqueous environments where proton diffusion is suppressed.

Discussion

In this study, we have introduced a deep neural network potential (DNN@DC-r2SCAN) trained on

accurate data for both neutral and dissociated water, calculated at the DC-r2SCAN level of theory,

which enables realistic MD simulations of the autoionization process in liquid water. By combin-

ing enhanced sampling techniques, which ensure a comprehensive exploration of the underlying

multidimensional free-energy landscape, with a proper treatment of nuclear quantum effects, our

14

https://doi.org/10.26434/chemrxiv-2024-zkz7v-v2 ORCID: https://orcid.org/0000-0002-4451-1203 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-zkz7v-v2
https://orcid.org/0000-0002-4451-1203
https://creativecommons.org/licenses/by-nc-nd/4.0/


simulations predict a pKw value of 13.71 ± 0.16, in excellent agreement with the experimental

value (pKw = 14.00). Importantly, upon isotopic substitution, our quantum simulations predict a

pKw value of 15.07±0.30 for liquid D2O, which is in close agreement with the experimental value

of 14.86, further supporting the ability of the DNN@DC-r2SCAN potential to accurately represent

the underlying Born-Oppenheimer surface of water. This agreement between experiment and sim-

ulation establishes a realistic molecular-level picture of the mechanistic steps involved in the au-

toionization process. Detailed analyses of the evolution of hydrogen-bonding topologies during the

autoionization process indicate that nuclear quantum effects lower the free energy of contact-ion

pair (CIP) configurations, which effectively serve as transition states along the pathway connecting

neutral water molecules to solvent-separated ion pair (SSIP) configurations. Importantly, our sim-

ulations reveal that the Grotthuss mechanism plays a critical role in stabilizing SSIP configurations

and, consequently, determining the value of Kw. These findings indicate that the thermodynam-

ics of the autoionization process may be altered in aqueous environments where the Grotthuss

mechanism is inhibited, which can, in turn, impact acid-base equilibria in those systems.

Methods

The DNN@DC-r2SCAN potential was trained within the DeePMD framework83 on extensive

datasets for neutral and autoionized water calculated at the DC-r2SCAN level.70 Although DeePMD-

based potentials for water do not precisely replicate their parent models,84, 85 they offer robust rep-

resentations for specific properties when trained on relevant regions of the configuration space,86

as done in this study for modeling water autoionization. Specific details about the development and
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validation of the DNN@DC-r2SCAN potential are discussed in the Supplementary Information.

The simulations were carried out using LAMMPS87 patched with PLUMED88, 89 and DeePMD-

kit 83 for a system consisting of 256 water molecules in periodic boundary conditions. Nuclear

quantum effects were incorporated using the path-integral generalized Langevin equation ther-

mostat (PIGLET) method90 as implemented in i-PI.91 All simulations were conducted at 300 K

in the canonical (NVT: constant number of molecules, volume, temperature) ensemble, with the

temperature controlled by a global Nosé-Hoover thermostat.92–95 The equations of motion were

propagated using the velocity-Verlet algorithm.96, 97 Umbrella sampling71, 72 and well-tempered

metadynamics73 simulations were performed to characterize the free-energy landscape associated

with the autoionization process. In the classical case, the umbrella sampling simulations were

carried out for 2 ns for each window, using a time step of 0.5 fs. In the quantum case, the um-

brella sampling simulations were carried out for 1 ns for each window, using a time step of 0.1

fs. Well-tempered metadynamics simulations were carried out for 40 ns. Specific details about all

MD simulations and numerical analyses are presented in the Supplementary Information.

Data availability

All DNN@DC-r2SCAN MD trajectories are available from the authors upon request. The DNN@DC-

r2SCAN potential, along with the corresponding training set, is publicly available on GitHub at:

https://github.com/-paesanilab/Data Repository/tree/main/DC-r2SCAN water autoionization%20.
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Code availability

All DNN@DC-r2SCAN MD simulations were carried out with LAMMPS87 and i-PI91 patched

with the DeePMD-kit plugin.83
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