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ABSTRACT 

Natural product (NP) databases are crucial tools in computer-aided drug design (CADD). Over the last decade, 

there has been a worldwide effort to assemble information regarding natural products (NPs) isolated and 

characterized in certain geographical regions. In 2023, it was published LANaPDB, to our knowledge, it is the 

first attempt to gather and standardize all the NP databases of Latin America. Herein, we present and analyze 

in detail the contents of an updated version of LANaPDB, which includes 619 newly added compounds from 

Colombia, Costa Rica, and Mexico. The present version of LANaPDB has a total of 13,578 compounds, 

coming from ten databases of seven Latin American countries. A chemoinformatic characterization of 

LANAPDB was carried out, which includes the structural classification of the compounds, calculation of six 

physicochemical properties of pharmaceutical interest, visualization of the chemical space, determination of 

the structural diversity, molecular complexity, synthetic feasibility, commercial availability, predicted and 

reported biological activity. In addition, the LANaPDB compounds were cross-referenced to two of the largest 

public chemical compound databases annotated with biological activity: ChEMBL and PubChem. The Latin 

American natural product collection LANaPDB is publicly available and can be downloaded at 

https://github.com/alexgoga21/LANaPDB-version-2/tree/main. 
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INTRODUCTION 

Historically, natural products (NPs) have been the largest source of inspiration for the design of new drugs. In 

recent years (2018 compared to 2006), there has been a significant increase in the number of NP-based drugs.1 

The recent technological advances, especially in the artificial intelligence (AI)2 and chemoinformatics3 areas, 

have boosted the computer-aided drug design (CADD) NP-based. Among the recent progress in AI, the 

development of machine learning models to predict the target proteins of natural products stands out.4 During 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic outbreak, the CAAD NP-based 

represented a main approach in the design and identification of lead compounds against the virus.5–8 Natural 

product (NP) databases are crucial tools for the CADD, since they provide access to thousands of molecules. 

In the last years, the number of NP databases has grown, and some of the databases already established are 

continuously being updated. Among the largest freely available NP databases is Supernatural 3.09 with 449,048 

NPs. The Collection of Open Natural Products (COCONUT)10 contains 411,000 NPs and The Universal 

Natural Product Database11 has 229,000 NPs. The Universal Natural Product Database is still accessible on 

the ISDB website.11 NPASS database12 has 94,413 NPs, of them 43,285 are annotated with the biological 

activity information. Hippo(crates)13 database contains 45,300 NPs, NP derivatives and synthetic compounds, 

many of them annotated with their biological targets. There are NP databases that contain NPs isolated and 

characterized in certain geographical areas. TCM@Taiwan14 is the largest database of NPs from China, which 

is employed in traditional Chinese Medicine and contains 58,000 compounds. IMPPAT 2.015 is the largest 

compilation of NPs from India with 17,967 phytochemicals, employed in traditional Indian medicine. The 

largest collection of NPs from Africa is AfroDb,16 containing over 1000 molecules. 

 Latin America is a region with an extraordinary biodiversity and richness in endemic species. It is a 

region that may be home to at least a third of global biodiversity.17 Brazil, for example, is considered to host 

the earth’s richest flora, with at least 50,000 species or one-sixth of the planetary total. Another example is 

Ecuador with its mega-diverse flora comprising more than 25,000 plant species (and thus twice the number of 
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plant species found in Europe). Ecuador, also has the highest vertebrate species density worldwide.18 

Therefore, Latin America is a major source of bioactive compounds. Moreover, it has been reported that several 

databases contain NPs isolated and characterized in Latin American countries. More than 92 molecules with 

therapeutic effects have been identified from Latin American NP databases.19 Just recently, a NP database 

from Argentina20 and Colombia21 were published. In 2023 was published the first version of LANaPDB, a 

compendium that aims to gather and standardize the NP databases of Latin America22 which was already 

included in COCONUT 

(https://coconut.naturalproducts.net/search?type=tags&q=Latin+America+dataset&tagType=dataSource).10 

In early 2024, and update was reported regarding the NP-likeness profile of the database.23 

 Herein, we report a major update of LANaPDB,19 a compound collection that aims to gather and 

standardize all the Latin American NP databases. The analysis of the database includes the structural 

classification of the compounds, calculation of six physicochemical properties of pharmaceutical interest, 

visualization of the chemical space, quantification of the structural diversity, molecular complexity, synthetic 

feasibility, commercial availability, reported and predicted biological activity.  

 

RESULTS AND DISCUSSION 

Database update and data curation 

The first version of LANaPDB comprised 12,959 compounds.22 This reported update includes 619 new 

compounds, resulting a total of 13,578 compounds in its second version published in early 2024.23 A new 

dataset was included: NPDB EjeCol which contains NPs from foods and plants isolated and characterized in 

Colombia, from the Coffee Region (Eje Cafetero). Moreover, the database was updated with new NPs from 

Costa Rica (NAPRORE-CR) and Mexico (BIOFACQUIM). Table 1 shows the ten Latin American NP 

databases currently contained in LANaPDB. Initially, 1,707 compounds were considered for the update of 

LANaPDB from the two updated databases BIOFACQUIM, NAPRORE-CR, and the new database NPDB 

EjeCol. Nevertheless, from the initial 1,707 compounds, 1,088 molecules were duplicates and were no longer 

included. The remaining 619 molecules were added to LANaPDB. 
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During the curation process, before the elimination of repeated molecules, a Venn diagram was constructed 

(Figure 1) to determine the number of unique molecules in every Latin American country of the databases that 

contain LANaPDB. It was found that the number of unique molecules is associated with the number of 

molecules in the country. Brazil is the country with more unique molecules (10,580), followed by Mexico 

(1360), Costa Rica (585), Panama (289), El Salvador (174), Peru (178), and Colombia (72). 

 

Table 1. Natural product databases in the updated version of LANaPDB 

Database Size Source General description References 

NuBBEDB 

(Brazil) 

2223 Plants 

Microorganisms 

Terrestrial and marine 

animals 

Natural products of Brazilian biodiversity. 

Developed by the São Paulo State University and 

the University of São Paulo. 

24,25 

SistematX 

(Brazil) 

9514 Plants Database composed of secondary metabolites and 

developed at the Federal University of Paraiba. 

26,27 

UEFS 

(Brazil) 

503 Plants Natural products that have been separately 

published, but there is no common publication nor 

public database for it. Developed at the State 

University of Feira de Santana. 

28 

NPDB EjeCol 

(Colombia) 

200 Plants 

Plants-derived food 

Natural products and foods derived from plants 

present in the Eje Cafetero Región of Colombia, 

database created and curated at the Technological 

University of Pereira. 

21 

NAPRORE-CR 

(Costa Rica) 

~1600 Plants 

Microorganisms 

Developed in the CBio3 and LaToxCIA 

Laboratories of the University of Costa Rica. 

* 

LAIPNUDELSAV 

(El Salvador) 

214 Plants Developed by the Research Laboratory in 

Natural Products of the University of El 

Salvador. 

* 

UNIIQUIM 

(Mexico) 

1112 Plants Natural products isolated and characterized at the 

Institute of Chemistry of the National Autonomous 

University of Mexico. 

29 

BIOFACQUIM 

(Mexico) 

750 Plants 

Fungus 

Propolis 

Marine animals 

Natural products isolated and characterized in 

Mexico at the School of Chemistry of the National 

Autonomous University of Mexico and other 

Mexican institutions. 

30,31 

CIFPMA 

(Panama) 

363 Plants Natural products that have been tested in over 

twenty-five in vitro and in vivo bioassays for 

different therapeutic targets, developed at the 

University of Panama. 

32,33 
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PeruNPDB 

(Peru) 

280 Animals 

Plants 

Natural products representative of Peruvian 

biodiversity. Created and curated at the Catholic 

University of Santa Maria. 

34 

*The database has not been published yet. 

 

Figure 1. Venn diagram showing the number of unique and overlapped compounds of the Latin American natural 

product databases contained in LANaPDB. The compounds are grouped according to the country of origin of the 

database. The two countries with less compounds (El Salvador and Peru) were grouped. The number of unique molecules 

for El Salvador is 174 and Peru 178. 

 

Structural classification 

The compounds in LANaPDB were structurally classified according to a classification system based on the 

literature from the specialized metabolism of plants, marine organisms, fungi, and microorganisms. The 

classification system is divided in three hierarchical levels: pathway (nature of the biosynthetic pathway), 

superclass (chemical properties or chemotaxonomic information) and class (structural details). At the three 

hierarchical levels, the predominant compounds are the terpenoids (Figure 2). At the hierarchical level of 

pathway, the terpenoids, shikimates, phenylpropanoids, and alkaloids encompass more than 90% of the total 
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compounds. At the hierarchical level of superclass and class, the terpenoids and the flavonoids were the 

predominant compounds (Figure 2). The above was expected because the terpenoids are the predominant 

secondary metabolites produced by natural sources.35 Compared to the previous version of LANaPDB the 

above tendencies have not changed.22 

 

 
Figure 2. Pie charts showcasing the distribution of the LANaPDB compounds, according to a classification system36 

based on the literature from the specialized metabolism of the producing organisms. 

 

 

Physicochemical properties 

We calculated physicochemical properties of pharmaceutical interest for the LANaPDB compounds and 

compared them with two reference datasets: COCONUT10 and FDA-approved small-molecule drugs.37 Figures 

3 and 4 show the distribution of the calculated physicochemical properties: SlogP,38 molecular weight (MW), 

topological polar surface area (TPSA),39 number of rotatable bonds (Rb), hydrogen bond acceptors (HBA), 

and hydrogen bond donors (HBD). The violin plots (Figures 3 and 4) are marked with a horizontal line the 

limits of some drug-likeness rules of thumb: Lipinski's rule of 5 (Ro5),40,41 Veber's rules,42 GlaxoSmithKline's 

(GSK) 4/400 rule,43 and Pfizer 3/75 rule.44 The improvement of some drug-like parameters is attributed to the 

fulfillment of these rules of thumb. In Figure 3 are not appreciated noticeable changes in the distribution of the 
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physicochemical properties of LANaPDB compared to the previous version.22 The above can be attributed to 

the fact that the terpenoids remain as the prevalent compounds (Figure 2). Moreover, the LANaPDB and 

COCONUT distribution of the compounds (Figure 3) is very similar for all the physicochemical properties, 

except for the rotatable bonds whose distribution in LANaPDB is focused in a region with less rotatable bonds. 

The compound distribution (Figure 3) of LANaPDB and FDA-approved small-molecule drugs overlaps in all 

the cases, and in both datasets are the same regions where the greatest number of compounds are focused. 

Besides, the violin plots (Figure 3) shows that most of the LANaPDB compounds have physicochemical 

properties of pharmaceutical interest that fulfill the drug-likeness rules of thumb. Therefore, most of the 

LANaPDB compounds have a desirable physicochemical profile that allows them to be employed in the design 

of new drugs, either as potential drug candidates or as a starting point to design semi-synthetic drugs or pseudo-

NP. 
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Figure 3. Violin plots summarizing the distribution of seven physicochemical properties of pharmaceutical interest of 

the compounds of three databases: LANaPDB, COCONUT and FDA-approved small-molecule drugs. 

 

Figure 4 shows the distribution of the physicochemical properties of pharmaceutical interest of LANaPDB, 

considering the seven countries individually. For comparison, the distribution of the compounds in the FDA-

approved drugs is included. In general, it is observed that the distribution of the compounds is mainly focused 

on regions that fulfill the drug-likeness rules of thumb. Nonetheless, El Salvador is a country with many 

compounds outside of the drug-likeness parameters considering the SlogP and MW. In the current version of 

LANaPDB were added new compounds of Costa Rica and Mexico, nevertheless, the distribution of the 

physicochemical properties of the compounds of both countries compared to the previous version of 

LANaPDB22 remained without significant changes. The distribution of the physicochemical properties of the 

compounds of the new country added to the current version of LANaPDB, Colombia, is in such a way that 

most of the compounds fulfill the drug-likeness rules of thumb. 
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Figure 4. Violin plots summarizing the distribution of seven physicochemical properties of pharmaceutical interest of 

the compounds in LANaPDB and FDA-approved small-molecule drugs (App. drugs). The databases that encompass 

LANaPDB for every country: Brazil (NuBBEDB, SistematX and UEFS), Colombia (NPDB EjeCol) Costa Rica 

(NAPRORE-CR), El Salvador (LAIPNUDELSAV), Mexico (UNIIQUIM and BIOFACQUIM), Panama (CIFPMA) and 

Peru (PeruNPDB). 

 

Chemical space visualization 

Figure 5 shows the TMAP of LANAPDB generated from the MACCS keys (166-bit) fingerprint,45 and their 

comparison with the FDA-approved small-molecule drugs.37 The interactive version of the TMAP is freely 

available at https://github.com/alexgoga21/LANaPDB-version-2/blob/main/Interactive%20TMAP.html (to open the 

interactive map, download the file and open it in a web explorer, zoom in option available with the mouse 

scroll). In the interactive version of Figure 5, it can be appreciated that the TMAP accomplished effectively 

the clustering of structurally similar compounds in “branches.” Figure 5 shows that all the countries and the 

approved drugs overlap with the Brazilian NPs. Therefore, Brazil is the country with the highest structural 
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diversity of NPs according to the TMAP. Moreover, Figure 5 shows that the compounds for each one of the 

seven Latin American countries are in general not focused on a certain region of the chemical space. Instead, 

they are distributed across the chemical space and, in many cases, clustered, forming branches of structurally 

similar compounds. Besides, all the Latin American countries partially overlap with the approved drugs in 

specific regions. Figure 6 depicts the comparison of LANaPDB with COCONUT and the approved drugs. 

LANaPDB totally overlaps with COCONUT. Interestingly, the overlap of LANaPDB with COCONUT is 

mostly in a well-defined area (left side of the TMAP), which shows that COCONUT covers a huge area (right 

side of the TMAP) of the chemical space not covered by LANaPDB. It is important to consider that 

COCONUT has more than 400,000 compounds and LANaPDB 13,578. In Figure 5, it is appreciated that the 

approved drugs are distributed across the chemical space, overlapping LANaPDB and COCONUT in different 

regions. 

 

 

Figure 5. Tree MAP of LANaPDB and the comparison with FDA-approved small-molecule drugs, generated from 

MACCS keys (166-bits) fingerprint. An interactive version of the TMAP at https://github.com/alexgoga21/LANaPDB-
version-2/blob/main/Interactive%20TMAP.html (to open the interactive map, download the file and open it in a web explorer, 

zoom in option available with the mouse scroll). 
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Figure 6. Tree MAP of LANaPDB and the comparison with COCONUT and FDA-approved small-molecule drugs, 

generated from MACCS keys (166-bits) fingerprint. 

 

Cross-references to other databases 

The LANaPDB compounds were cross referenced to two of the biggest publicly available chemical compound 

databases annotated with biological activity: PubChem, version 202446 and ChEMBL, version 34.47 From both 

databases was retrieved the ID (identification) code that allows to identify and differentiate every single 

compound. In the case of PubChem the ID code is known as CID (compound identification) and SID 

(substance identification). From all the LANaPDB compounds, were successfully retrieved 71.71% of the ID 

codes from PubChem and 23.69% from ChEMBL. 

Therefore, most of the LANaPDB compounds can be found in PubChem and just a minority in ChEMBL. 

To consult additional information for the LANaPDB compounds in PubChem and ChEMBL it is just needed 

to type the correspondent ID code in the respective websites of both databases. The additional information that 
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can be checked in PubChem for the LANaPDB compounds includes spectral information, toxicity, and patents. 

ChEMBL contains information about the metabolism, target predictions, drug indications, and mechanism of 

action. 

 

Commercial availability and chirality 

It was found that 70.5% of the LANaPDB compounds are commercially available, as annotated on the 

PubChem website. The information about the companies that sell the individual molecules can be consulted in 

the PubChem website, from the PubChem ID codes added to LANaPDB. Moreover, all the molecules were 

classified in three categories: achiral (16.16%) and chiral with chirality annotated (55.53%) or not annotated 

(28.31%).  

 

Biological activity 

The biological activity of the LANaPDB compounds was retrieved from ChEMBL, version 34, employing two 

different approaches. In the first one, the biological activity was retrieved from the ChEMBL website with the 

ChEMBL API. It was found that only 0.29% of the LANaPDB compounds (39 molecules) have a reported 

biological activity that can be retrieved with the ChEMBL API. These compounds have up to three biological 

activities reported. The most common biological activities are pharmaceutic aid (flavor) (4 compounds), 

pharmaceutic aid (solvent) (3 compounds), antifungal (3 compounds), pharmaceutic aid (antimicrobial agent) 

(2 compounds), pharmaceutic aid (emulsion adjunct) (2 compounds) and inhibitor (alpha-glucosidase) (2 

compounds). 

The second approach was based on a study of Peter Ertl who previously extracted the ring systems from 

the molecules in ChEMBL (version not specified) and associated them with their reported bioactivity in 

ChEMBL against the following biological target families: G protein-coupled receptor (GPCR), kinase, 

protease, nuclear receptor, ion channel, transporters, and epigenetic.48 For LANaPDB, it was determined which 

compounds contain these bioactive ring systems reported by Ertl. It was found that 31.51% of the LANaPDB 

compounds (4,279 molecules) have bioactive ring systems. Chart 1 shows the twenty most abundant ring 
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systems found in the LANaPDB compounds, the most abundant ring system agrees with the most abundant 

pathway found in LANaPDB (Figure 2) as it pertains to bioactive sesquiterpenic lactones.49 It is important to 

take in account that the remaining percentage of compounds (68.49%) without bioactive ring systems, are not 

necessarily inactive compounds, they may be active but against other biological targets different from the ones 

that reported Ertl.48 Take into account that the currently known scaffold space is far from being fully explored. 

This is exemplified by the fact that in 2024, Ertl published a database of four million medicinal chemistry-

relevant scaffolds that are not included in ChEMBL and PubChem.50 

 

 
Chart 1. The twenty most abundant bioactive ring systems in LANaPDB, their biological target, percentage of 

occurrence and the total number of compounds that contain the ring system in LANaPDB. 
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Structural diversity 

The structural diversity of LANaPDB was quantified with two types of molecular representations, molecular 

scaffolds and fingerprints. The diversity was compared with COCONUT and FDA-approved small-molecule 

drugs. The scaffold diversity of all data sets was measured with cumulative scaffold recovery (CSR) curves 

that represent the fraction of molecules in the data set contained in a fraction of scaffolds. To generate the CSR 

curves, the scaffolds are ordered by their frequency of occurrence (most to least common). Then, the fraction 

of scaffolds is plotted on the x-axis and the fraction of compounds that contain those scaffolds on the y-axis. 

Two metrics were obtained from the CSR curves: area under the curve (AUC) and the fraction of scaffolds to 

retrieve 50% of the compounds in the database (F50) (i.e., if a dataset has F50=0.43, 50% of the compounds in 

the dataset are distributed in 43% of the scaffolds). A data set with maximum diversity would contain a 

different scaffold for each molecule in the library and the curve would be a diagonal with AUC of 0.5. As the 

scaffold diversity decreases the curve will move away from the diagonal. The minimum diversity would be a 

data set where all the compounds have the same scaffold. In this case, the CSR function would be a vertical 

line with AUC equal to 1.0. The fingerprint-based diversity was assessed with the mean of the paired Tanimoto 

similarity (MPTS), using the MACCS keys (166-bit) fingerprint.51,52 

In the consensus diversity plots (Figures 7A and 7B) it is shown that FDA-approved small-molecule drugs 

is the dataset with the highest scaffold and fingerprint-based diversity (AUC=0.80, F50=0.028 and 

MPTS=0.29), followed by LANaPDB (AUC=0.87, F50=0.007 and MPTS=0.47) and COCONUT (AUC=0.90, 

F50=0.002 and MPTS=0.39). This result can be attributed to the fact that this dataset has not just NPs, instead 

a significant proportion are NP-derivatives and purely synthetic molecules,53 which increases the structural 

diversity. According to the MPTS metric, the side chain structural diversity of LANaPDB is lower than 

COCONUT. Nonetheless, considering the AUC and F50 metrics, LANaPDB has higher scaffold diversity than 

COCONUT, nevertheless, the difference between both databases considering these two metrics is small 

(ΔAUC=0.03 and ΔF50=0.005). Therefore, the structural diversity of LANaPDB is very similar to COCONUT, 

with less side chain diversity and a little more scaffold diversity.  
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Figure 7. A) Cumulative scaffold recovery (CSR) curves of LANaPDB, COCONUT and FDA-approved small-molecule 

drugs. Consensus diversity plots of LANaPDB, COCONUT and FDA-approved small-molecule drugs, which describe 

the datasets diversity considering the MACCS keys (166-bit) fingerprint, B) area under the curve and C) the fraction of 

scaffolds to retrieve 50% of the database (F50). D) Degree of scaffold and fingerprint-based diversity in the consensus 

diversity plots quadrants. 

 

Molecular complexity and synthetic feasibility 

Molecular complexity can be quantified using several different metrics.54 In this work, as a quantitative 

measure of molecular complexity we employed the recently developed metric normalized spacial score 

(nSPS).55 The synthetic feasibility was determined calculating the synthetic accessibility score (SAscore).56 

The distribution of both metrics was represented with kernel density estimate (KDE) plots which represent the 

data using continuous probability density curves (Figure 8). nSPS takes into account the atom hybridization, 

stereoisomerism, presence and complexity of aromatic or non-aromatic rings, and the number of heavy-atom 

neighbors.55 As a reference, in an earlier study, it was found that the nSPS values of most of the approved 

drugs is between ten and twenty and this has remained without any significant changes in the last eight 

decades.57 The nSPS values for the compounds of the three databases studied in this work are centered around 

https://doi.org/10.26434/chemrxiv-2024-jjdsq ORCID: https://orcid.org/0000-0003-4940-1107 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jjdsq
https://orcid.org/0000-0003-4940-1107
https://creativecommons.org/licenses/by/4.0/


17 

ten and twenty (Figure 8A). Thus, LANaPDB has a significant proportion of compounds with nSPS values 

between ten and twenty (39.78%) and those compounds are expected to have a similar pharmacokinetic profile 

to the approved drugs according to the molecular similarity principle.57 Moreover, unlike the other two 

reference databases, the LANaPDB compounds presented mainly nSPS values around thirty and fifty (26.88%) 

(Figure 8A). Previously, it has been found that the ligand potency and target selectivity are maximized in 

compounds with nSPS values between twenty and forty.55 Therefore, LANaPDB has a significant proportion 

of compounds with nSPS values between twenty and forty (37.95%) which are expected to have a good 

potency and target selectivity. The nSPS value for each compound in LANaPDB is indicated in the database 

publicly available.  

The synthetic feasibility was estimated with the SAscore which considers the complexity of the molecular 

fragments, stereocomplexity, and molecule size. The synthetic feasibility is positively correlated with the 

SAscore, i.e., highest SAscores is associated with a higher synthetic feasibility.56 In this work, approved drugs 

and COCONUT presented mainly SAscores between two and three (Figure 8B). The accumulation of SAscores 

of approved drugs and COCONUT in the same zone can be attributed to the fact that a large proportion of the 

approved drugs are NPs or NP-based molecules.53 The LANaPDB compounds have mostly SAscores around 

five, which implies that a significant proportion of the LANaPDB compounds have a higher synthetic 

feasibility than the approved drugs. 

 

 

https://doi.org/10.26434/chemrxiv-2024-jjdsq ORCID: https://orcid.org/0000-0003-4940-1107 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-jjdsq
https://orcid.org/0000-0003-4940-1107
https://creativecommons.org/licenses/by/4.0/


18 

Figure 8. Kernel density estimate plots that represent the distribution of the A) Normalized Spacial Score and B) 

Synthetic accessibility score of LANaPDB, COCONUT, and FDA-approved small-molecule drugs. 

 

EXPERIMENTAL SECTION 

The version of the Python programming language that was used for all the analysis in this manuscript is 3.10.7. 

The version of the Python modules: RDKit (2022.03.5),58 MolVS (0.1.1),59 Venn (0.1.3),60 Plotly express 

(0.4.1),61 Scikit-learn (1.2.2),62 NumPy (1.23.2)63 and seaborn (0.12.2).64 

 

Database update and data curation 

The first version of LANaPDB had 12,959 NPs coming from nine different databases of six different Latin 

American countries. To the first version of LANaPDB was added a new database: NPDB EjeCol which is a 

compilation of NPs isolated and characterized in Colombia, specifically from the region known as the Coffee 

Region. This database is set to be published in 2024 and is accessible through an open-data portal 

(www.npdbejecol.com). Furthermore, LANaPDB was updated with new NPs from Costa Rica (NAPRORE-

CR) and Mexico (BIOFACQUIM). In total, 619 new compounds were added to LANaPDB, to have a total of 

13,578 NPs in the second version of the database. The curation of the second version of LANaPDB was carried 

out with the same workflow employed in the first version of the database.22 The process was made in the 

Python programming language, employing the RDKit and MolVS modules. The standard curation process of 

MolVS was implemented through the standardize function included in this Python module: removal of explicit 

hydrogens, disconnection of covalent bonds between metals and organic atoms (the disconnected metal is 

removed later), application of normalization rules (transformations to correct common drawing errors and 

standardization of functional groups), reionization (ensure the strongest acid groups protonate first in partially 

ionized molecules), and recalculation of the stereochemistry (ensures preservation of the original 

stereochemistry). From the molecules that are fragmented, i.e., the molecules that used to be connected with 

metals or other salts, just the largest fragment is kept and is tried to neutralize all the molecules of the database. 

The canonical tautomer was determined, and, from the InChIKey strings of the canonical tautomer, the 

duplicate compounds were removed. The same curation workflow was applied to two reference datasets 
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employed to compare LANaPDB: COCONUT10 and FDA-approved small-molecule drugs, version 5.1.10 

(released by DrugBank in January 2023).37 

In LANaPDB, during the curation process, before the elimination of duplicate molecules, a Venn diagram 

(Figure 1) was constructed in the Python programming language employing the Venn module, from the 

InChIKey strings of the molecules. 

 

Structural classification 

The freely available online server NPClassifier36 was employed to do the structural classification of the 

LANaPDB compounds. NPClassifier is a deep neural network-based structural classification tool for NPs. The 

distribution of the classified compounds was represented with pie plots constructed in Python utilizing the 

Plotly express module. 

 

Physicochemical properties 

The following physicochemical properties of pharmaceutical interest were calculated in Python employing the 

RDKit module: SlogP,38 molecular weight (MW), topological polar surface area (TPSA)39, number of rotatable 

bonds (Rb), number of hydrogen bond acceptors (HBA), and number of hydrogen bond donors (HBD). The 

distribution of the physicochemical properties was depicted with violin plots, constructed in the Python 

programming language with the Scikit-learn module. 

 

Chemical space visualization 

The visualization of the chemical space of LANaPDB was made using the TMAP (Tree MAP) algorithm65 

from the MACCS keys fingerprint.45 The determination of the MACCS keys fingerprint was made in the 

Python programming language with the RDKit module. The construction of the TMAP was made with Python 

following the reported protocol.65 The results were compared with two reference datasets: COCONUT10 and 

FDA-approved small-molecule drugs, version 5.1.10 (released by DrugBank in January 2023).37  
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Cross-references to other databases 

The cross-references to PubChem and ChEMBL (ID codes) were requested and retrieved from the respective 

websites of both databases. The request and retrieval of the ID codes was made in the Python programming 

language employing the corresponding application programming interface (API) for PubChem and ChEMBL. 

The InChIKey strings of the LANaPDB compounds were utilized to make the requests with the PubChem and 

ChEMBL application programming interfaces (APIs). The InChIKey strings were calculated in the Python 

programming language, employing the RDKit module. 

 

Commercial availability and chirality 

The commercial availability of every compound of LANaPDB was obtained from the PubChem website.46 It 

is not information that can be retrieved with the PubChem API. Therefore, the Python programming language 

was used to retrieve the commercial availability but without using the PubChem API. The classification of 

every compound based on the chirality was made in Python, employing the function 

Chem.FindMolChiralCenters of the RDKit module. 

 

Biological activity 

In the first approach, with the Python programming language, employing the ChEMBL API, from the 

InChIKey strings was requested and retrieved from the ChEMBL database website the reported biological 

activity of the LANaPDB compounds. In the second approach, in the Python programming language 

employing the RDKit module, it was determined if the SMILES strings of the LANaPDB molecules contained 

the SMILES strings of the ChEMBL bioactive rings reported by Ertl.48 

 

Structural diversity 

The Bemis and Murcko scaffolds66 were determined from the SMILES strings in the Python programming 

language with the RDKit module. The AUC was obtained from the CSR curves with the trapezoidal rule in 

the Python programming language with the trapz function of the numpy module. The F50 metric was obtained 
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from the CSR curves, interpolating the x-axis value of 0.5 to find the corresponding y-axis value, in the Python 

programming language with the interp function of the numpy module. The MACCS keys (166-bit) fingerprint 

and the paired Tanimoto similarity were calculated in the Python programming language with the RDKit 

module. The paired Tanimoto similarity calculation for the COCONUT dataset was made with a random 

sample of the 10% (with more than 40,000 compounds) that represents the diversity of the whole database.67 

 

Molecular complexity and synthetic feasibility 

The nSPS and SAscore were determined in the Python programming language with the RDKit module, 

employing the SpacialScore and sascorer68 functions. The KDE plots were constructed in the Python 

programming language with the seaborn module. 
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