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Abstract

Animal feed production involves balancing nutritional quality, profitability and environmental 

sustainability. Although near-infrared spectroscopy (NIRS) is currently used for real-time quality 

control of feed ingredients, we demonstrate that NIRS can also predict their environmental 

sustainability in a resource-efficient way. We use NIRS to determine ingredient origins and combine 

these with global spatially-explicit life cycle assessment (LCA) to estimate environmental footprints. 

By incorporating ingredient prices and transport, we then optimize feeds towards the triple goals of 

quality, profitability and sustainability. We show 3.3-39% reductions in climate change and land stress 

impacts on biodiversity while reducing profitability by only 0.82-2.4% over current production and 

ensuring quality. Our approach provides a suite of optimal feed ratios and identifies footprint-

profitability trade-offs, aiding decision-makers in moving towards more environmentally sustainable 

feed. We conclude that NIRS-LCA is a powerful combination for enhancing sustainability that can be 

extended beyond feed to food, fiber and other biobased commodities. 
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Introduction 

Feed is vitally important in the livestock sector to sustain animal health and ensure the production of 

safe and high-quality products of animal origin1. The production of livestock feed is under continuous 

pressure from food-feed competition, disruptions in feed ingredient supply chains, contamination 

episodes, variations in nutrient quality of feedstocks and demand for sustainable agricultural 

practices1–3. Globally, feed production is responsible for an estimated 45% of the greenhouse gas 

(GHG) emissions of the livestock sector and uses 33% of the total arable land2. The projected rise in 

the demand for animal products4 increases the urgency of drastically reducing the environmental 

footprint of livestock feed production5,6.   

Animal feed is produced by selecting and combining feed ingredients to create nutritionally optimal 

mixtures that meet market demands7–9. Increasing sustainability in feed production requires finding a 

trade-off between several objectives, including economic profitability, socially acceptable practices, 

and reduced environmental footprints10. However, current production primarily focuses on 

minimizing costs within a quality range7,11; impacts on the environment are typically not considered. 

Several studies have shown that environmental footprints may vary greatly across feed ingredients, 

due to differences in cultivation, processing, and geographical origin12–14. Castonguay et al. recently 

showed that trade-offs between environmental impacts and monetary costs may improve feed 

sustainability within global beef production10. Although the environmental impacts of livestock feeds 

are increasingly assessed through life cycle assessment (LCA)15, these impacts are used mainly for 

regulatory purposes and not integrated into feed optimization. Transparent integration of LCA results 

in real-time production is therefore necessary to enable decision-makers to design more 

environmentally sustainable and high-quality feeds. 

Ensuring feed quality in industrial agriculture requires detailed chemical knowledge of the nutritional 

value of the feed ingredients16. Ideally, such information is obtained quickly and noninvasively during 

production and is available at product release. Most laboratory analyses are very costly and too time-

consuming for use in real time17,18. Therefore, to determine the nutritional composition of ingredients, 

feed manufacturers often resort to off-line laboratory measurements through occasional wet 

analysis18 or available databases19–21. Process analytical technologies (PATs) based on near-infrared 

spectroscopy (NIRS) fingerprinting are becoming increasingly available to accurately identify feed 

ingredients according to their nutritional content in rapid, non-destructive and cost-effective 

ways16,22–24. NIRS-based information is often available in (near) real time, which allows for controlling 

and improving the ongoing process to enable quality assurance even during processing24,25. NIRS 

fingerprints, however, provide more than just nutritional value information; they can also be used to 
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predict several parameters, such as geographical origin26, that are closely related to the environmental 

footprint of the ingredients. However, such a link between NIRS and quantifying, controlling and 

improving the environmental sustainability of feed production has not yet been explored. 

In this study, we show how NIRS and LCA can be combined to integrate environmental impacts in a 

transparent optimization framework that can be used to formulate feed mixtures that meet the 

desired livestock feed quality while minimizing monetary and environmental costs. Predictive machine 

learning models can be used to link chemical information to relevant feed ingredients properties, such 

as ingredient-specific nutritional compositions17,27,28 and geographical origin26,29,30. Having both quality 

information and origin as intrinsic properties of the feed ingredients allows us to optimize the 

performance of industrial feed production in economic, environmental and quality terms in real time. 

The focus of this study is on feed optimization for pigs and broilers; these feeds are among the top 

feeds produced in Europe31. Optimizing feeds for price and environmental footprint requires three 

main steps (Fig. 1). First, we predict the environmental footprints of feed ingredients by combining 

multivariate classification and global spatially explicit LCA. In classification, NIRS fingerprints are used 

to predict the country of origin of the ingredients. These predictions are the basis on which the LCA 

determines the environmental footprints of crop production. We focus on land stress (i.e., the effect 

of land occupation and transformation) and climate change, as they are the two key environmental 

impacts of agricultural production32,33. In our study, the geographical origin is directly linked to the 

location of the factory where the spectra were measured. This specification is included both in the 

classification model and in the LCA analysis by considering the transport from the country of origin to 

the factory location and, if needed, processing into miscible feed ingredients. Second, we predict 

accurate nutritional compositions of feed ingredients from NIRS fingerprints by using multivariate 

regression. By incorporating the nutritional composition, environmental footprint, and price of feed 

ingredients into a multi-objective optimization, we obtain quality-compliant mixture ratios that 

minimize the environmental and monetary costs of feed production in real time. The optimization 

step produces Pareto fronts that reveal the effect of nutritional variation on the final feed costs. The 

technique for order preference by similarity to ideal solution (TOPSIS)34 then provides trade-off 

mixture ratios for each front that leverage optimality for the environmental footprint and monetary 

price under the constraint of quality compliance.  
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Fig. 1. Workflow of the approach presented in this study. The approach uses the near-infrared (NIR) spectra of eight feed 
ingredients used in feed production, which were harvested in six different countries of origin and whose spectra were 
measured at four factory locations. After measurement, the feed ingredients were transported to a common production 
location where they were mixed into feed. The exact production location was unknown and hence excluded from the study. 
NIR spectra were assigned to 18 different classes, characterized by feed ingredient, country of origin and measurement 
location. We predicted environmental footprints by combining multivariate classification with LCA and nutritional content 
via multivariate regression of each class of feed ingredients from the spectra. The predicted nutritional content was used for 
1000 simulations with varying nutritional compositions for each class of feed ingredients. These simulations, together with 
the predicted environmental footprints, the target feed, and the price of feed ingredients, comprising commodity price77 
and transport cost, became the input for the multi-objective optimization framework. This framework aims to find, for each 
simulation, the trade-off mixture ratio that minimizes environmental footprints and monetary costs while meeting the 
quality standards. The figure was created using an existing world map92.  
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Results and discussion 

The use of NIRS fingerprints for consistent feed quality and authenticity 

The geographical origin and nutritional compositions of feed ingredients determined from NIRS 

fingerprints provide the basis for (near) real-time quality and authenticity compliance within feed 

optimization. Accurately predicting such geographical origins ensures transparent estimations of the 

environmental footprint of feed ingredients, which are then readily available for feed optimization. 

NIRS fingerprints alone were able to discriminate feed ingredient samples according to their country 

of origin with high prediction accuracy (Table S7 and Fig. S5, balanced accuracy = 0.94). These 

predictions were successfully linked to ingredient- and country-specific environmental footprints, i.e., 

land stress and climate change (Figs. S6-S7). NIRS fingerprints could also predict nutritional variations 

among and within ingredient groups with generally high accuracy (Fig. S9, root mean squared error = 

1.7–5.5 g/kg), with varying performances depending on the ingredient and nutrient analyzed and the 

sample size (Figs. S10-S15). These predictions served as the basis for thousands of simulations that 

captured the nutritional variability among and within feed ingredients during feed optimization. 

Including nutritional variability among and within feed ingredients in multi-objective optimization 

leads to mixture ratios that always meet the quality constraints within each Pareto front, for each 

target feed and environmental indicator (Fig. 2). This is essential because using occasional off-line 

measurements as an indicator of the average ingredient nutritional composition may render the 

produced feed unsuitable for meeting the animal’s nutritional requirements. For example, a mixture 

ratio optimized from accurate nutritional compositions of feed ingredients was compared with that 

optimized from off-line measurements (Fig. 2). The two optimizations selected similar feed 

ingredients, but in different ratios and from different countries of origin. The extent to which 

nutritional requirements are not met when using off-line measurements was dependent on the target 

feeds and environmental indicators. For instance, broilers need more protein and fat than do pigs 

(Table S2); thus, there is a higher preference for soybean than for barley in broiler feed (Fig. 2). Off-

line determination of ingredient quality generally failed to meet the protein, fat, and starch 

requirements for pigs or the fat and ash requirements for broilers (Fig. S17a-d). The nutritional 

requirements for pigs were not met for 92% of the simulations, with a median sum of absolute 

deviations of 8.3 g/kg. For broilers, 74-84% of the simulations did not meet the requirements, with a 

median sum of absolute deviations of 1.8-3.1 g/kg for land stress and climate change, respectively.  

Our findings show that on-line determination of feed ingredient quality is necessary for consistent 

quality compliance in continuous production. NIRS holds promise for predicting feed compositions 

that consistently meet the quality in real time and is a viable alternative to more time- and cost-
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consuming traditional methods based on wet chemical analysis. The advantages of NIRS are further 

enhanced by its ability to readily authenticate the origin of feed ingredients. Feed authentication is 

essential for ensuring correct labeling and safety in production35 and for increasing transparency, 

traceability and accountability throughout the supply chain36. Accurate origin determination 

ultimately ensures transparent environmental assessment during production, allowing decision-

makers to include environmental considerations in feed optimization. 

 

Fig. 2. Optimized monetary and environmental costs considering climate change and land stress with land-use change 
emissions. The gray lines show the stochastic Pareto fronts resulting from the optimization of the 1000 simulations built 
from predicted nutritional compositions of feed ingredients. From each Pareto front, a trade-off mixture ratio is selected 
with TOPSIS. The red line highlights an exemplary Pareto front, with the marked dot indicating the trade-off mixture ratio 
selected with TOPSIS. The blue line indicates the Pareto front obtained by optimizing the nutritional composition from off-
line measurements, with the marked dot indicating the trade-off mixture ratio selected with TOPSIS. The right upper corner 
of each panel displays the mixture ratios corresponding to these trade-offs, where the labels indicate the selected feed 
ingredient, country of origin and measurement location. The results are for a) pig feed, climate change; b) broiler feed, 
climate change; c) pig feed, land stress; and d) broiler feed, land stress.  
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Influence of environmental footprints on feed ingredient mixture ratios 

Considering different environmental footprints in feed optimization is crucial for comprehensively 

evaluating the environmental impact of the produced feed. Our analysis revealed that the choice of 

environmental indicator, e.g., the impact of land stress on biodiversity or climate change, results in 

the selection of different feed ingredients from distinct countries of origin (Fig. 2). Specifically, the 

impacts of land stress on biodiversity are decisive for origin selection, particularly for barley and wheat 

for pig feed (Fig. 2a,c), and for soybean for broiler feed (Fig. 2b,d). While barley from Great Britain 

was primarily chosen for optimizing pig feed when considering land stress, barley from Ukraine was 

also selected as a viable option when considering climate change. The climate change impacts for 

barley are similar for both countries; however, the impacts of land stress on biodiversity are roughly 

seven times greater for barley from Ukraine than for that from Great Britain (Figs. S6-S7). For broiler 

feed, soybean was selected more often from Canada when optimizing for land stress impacts due to 

the roughly two times greater impacts of land stress on biodiversity for Ukrainian soybean. 

Remarkably, the availability of environmental impact information during optimization allows feed 

ingredients to be selected from those with similar prices and nutritional compositions, while ensuring 

the lowest environmental footprint for the considered feed. For instance, in our framework, corn from 

Brazil was rarely selected due to both the associated high impact of land stress on biodiversity and 

climate change (Fig. S18). Despite having similar prices, the footprint for land stress is nine times 

greater and for climate change is three times greater for corn harvested in Brazil than for that 

harvested in Ukraine. Hence, due to its lower environmental impact, Ukrainian corn is a more 

profitable choice for both environmental and monetary costs than Brazilian corn (Fig. S18).  

Our findings show the importance of including environmental impacts in selecting feed ingredients for 

production and suggest that various footprints should be considered to avoid burden shifting, e.g., 

when a mixture ratio with low climate change but high land stress impacts is selected. For a more 

comprehensive evaluation, uncertainty in the footprint calculations may also be considered. For 

example, the effect of including the loss of carbon in agricultural land compared to natural vegetation 

was also evaluated (Figs. S16-S17, S19-S20). Including carbon loss from land-use change resulted in 

feed ingredients being selected more often from certain origins for climate change (e.g., rapeseed 

meal from Germany instead of Ukraine). However, when optimizing for land stress, this inclusion did 

not result in substantially different ingredient selection (Figs. S18-S19). 
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Including environmental costs in feed optimization to increase the environmental 

sustainability of industrial production 

The extent to which footprint reductions are possible by considering environmental costs during 

optimization can be understood by evaluating the obtained trade-off mixture ratios against feed 

ingredient mixtures that minimize only the feed price within each Pareto front (Fig. 1). Fig. 3 shows 

that accounting for trade-offs between environmental and monetary costs results in relatively large 

reductions in the environmental footprint at only marginally increased feed prices. The degree to 

which this occurs varies depending on the target feed and environmental indicator.  

The largest footprint reductions were observed when optimizing for the impacts of land stress on 

biodiversity loss, with median reductions of 39% and 34% against a median increased price of 1.1% 

and 2.4% for pig and broiler feed, respectively (Fig. 3c-d). Optimizing for climate change resulted in 

lower median environmental reductions of 5.7% and 3.3%, with lower median price increases of 0.82% 

and 0.92% for pigs and broilers, respectively (Fig. 3a-b). Compared with climate change, land stress 

impacts showed more variance within and among the countries of origin (Figs. S6-S7). For this reason, 

greater potential footprint reductions are expected with land stress than with climate change. The 

optimization of pig feed resulted in a larger footprint reduction compared to that of broiler feed. This 

may be attributed to the higher protein and fat requirements for broilers than for pigs (Table S2). 

Quality-compliant broiler feed requires selecting ingredients such as soybean, which has a greater 

environmental impact than barley or corn, which are more often selected for pigs (Fig. S18).  

Our findings reveal that factoring environmental costs into optimization is essential for increasing the 

environmental sustainability of feed production. Specifically, the large observed reductions in land 

stress impacts suggest that including this impact category in optimization is crucial for reducing the 

impact of livestock feed production on biodiversity loss. This finding is remarkable considering that 

the impacts on biodiversity are often underappreciated and unaccounted for in industrial livestock 

systems37, even compared to the more frequently estimated carbon emissions15. Making these 

estimates available through combining NIRS and LCA in feed optimization therefore offers the 

opportunity for multifaceted environmental value creation in the livestock business model. 
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Fig. 3. Footprint reduction and price increase from choosing trade-off mixture ratios, considering climate change and land 
stress with land-use change emissions. The box and whisker plots illustrate the range of reductions (or increases) resulting 
from comparing the environmental and monetary costs of the trade-off mixture ratios selected by TOPSIS with the mixture 
ratio obtained by solely minimizing the feed price. These results are based on the 1000 Pareto fronts shown in Fig. 2. The 
box extends from the lower to upper quartile values of the data, with the line indicating the median reduction (or increase), 
considered in this study as the point estimate. The whiskers indicate the range of the data, and the dots represent outliers 
that extend beyond the ends of the whiskers. Footprint reductions and price increases are expressed as relative percentages 
of the environmental and monetary costs obtained by optimizing the feed price alone, respectively. The results are for: a) 
pig feed, climate change; b) broiler feed, climate change; c) pig feed, land stress; and d) broiler feed, land stress. 
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Opportunities and challenges related to combining NIRS and LCA to enhance the 

sustainability of industrial production 

Uncovering the true impacts of production for decision-makers has recently been advocated by the 

Food and Agriculture Organization (FAO) of the United Nations as one of the major steps for increasing 

the sustainability of agri-food systems and realizing the 2030 Agenda of Sustainable Development38. 

By revealing the – as yet hidden – environmental costs during feed optimization, our approach 

provides decision-makers with an understanding of sustainability as a quantifiable property that can 

be controlled in real-time production, thus promoting increased environmental awareness and more 

responsible production patterns. By extracting valuable information on ingredient quality, 

geographical origin and other relevant attributes, such as ingredient shelf life, chemical hazards, and 

agronomic practices17,39,40, NIRS data can be used to control and optimize industrial processes towards 

increased safety and sustainability with consistent quality. Merging NIRS technology and LCA 

therefore has high potential for reducing environmental impacts throughout the processing and 

manufacturing industry, especially when the effects of process control on aspects such as energy 

usage, pollution and feedstock use are transparent. 

Creating industrial value from NIRS fingerprints, however, requires standardized spectroscopic 

procedures, robust multivariate calibration models, and regular model maintenance23,41–44. 

Incorporating ad hoc spectral pre-processing strategies and a sufficiently large number of samples is 

necessary to cover the high variability observed in industrial processes43,45 due to measurement 

changes, seasonal variability and feedstock changes. An insufficient number of samples can increase 

the possibility of spectral artefacts interfering with NIRS fingerprints45, thereby reducing the predictive 

power when modeling certain ingredients and nutrients. In our study, this was noted, e.g., for 

predicted fiber from soybean (Fig. S13). This finding emphasizes the need to include large sample sizes 

in industrial settings. Such operational expenditures in model building and maintenance are needed 

to attain the ability to predict valuable process information. 

Expanding the current coverage of the study to include more constraints and ingredients, many of 

which have been studied by NIRS 46–48, is possible with our approach. To create a more diverse and 

variable ingredient portfolio, the inclusion of the local availability of ingredients at the production site 

could be added as a model constraint; however, such information was unavailable at the time of 

analysis. The feed ratios shown in this study are thus possible only if comparable ingredients are 

available and if they are produced in a sufficiently large amount to meet the demand. Analogously, 

our approach may better quantify the footprint and thereby further optimize it through trade-off 

mixture ratios, with greater diversification of ingredient provenances. Data harmonization from 
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different measurement locations does require robust analytical quality control, such that the 

difference in measurement location can be unambiguously distinguished from the geographical origin 

for all the feed ingredients. Greater transparency could be achieved through a minor addition in the 

data collection to integrate more feed ingredients from different origins for each location (e.g., as for 

sunflower meal, Table S1, Fig. S5). Furthermore, increasing the geographical resolution of the LCA 

from country to region would better include regional agricultural practices involved in crop cultivation, 

which is particularly relevant for large and heterogeneous countries such as Brazil and Ukraine. 

Increasing this resolution, however, requires much more transparency in the value chain from field to 

factory than is currently available. 

Combining environmental and monetary goals in feed optimization offers the opportunity to 

retrospectively identify those ingredients or origins that have never or hardly ever been selected due 

to their costs and/or nutritional compositions. These spectra can ultimately be used to develop 

procurement guidelines regarding which ingredients enable environmentally and economically 

sustainable production and which are so seldomly selected that they may be excluded from purchase. 

An essential prerequisite for using this approach in procurement is the integration of the variabilities 

and uncertainties in the international commodities market: ingredient pricing will vary greatly, yet it 

may be integrated as a source of variability in addition to nutritional quality and geographical origin. 

This addition would extend the scope of the proposed approach from a process control advisory tool 

to the procurement stages of the value chain. 

Reporting environmental footprints is becoming equally important as part of traditional financial 

reporting for accessing feed markets in the European Union due to directives such as the Corporate 

Sustainability Reporting Directive (CSRD)49. In the future, large footprint reductions may be further 

encouraged by initiatives such as true pricing, environmental impact labeling, green public 

procurement or carbon pricing50–52. Environmental impact assessment is, however, a resource-

intensive task for every company, especially for small and medium-sized enterprises (SMEs)53. Our 

approach enables the repurposing of the required sustainability data on feed ingredients, which are 

generally available at the time of processing, for active value creation through feed optimization, 

thereby closing the gap between real-time operational data and value-driven managerial decisions 

towards environmentally sustainable choices that are also economically sound. 

We proposed a modeling framework that combines NIRS and LCA to improve the environmental 

sustainability of feed production. Our framework overcomes the drawbacks of seasonal and other 

variability in agricultural ingredients when designing feeds, as it enables the optimization of mixture 

ratios for ingredients under real-time variability. Additional goals, such as social sustainability or 
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customer demand, may be further implemented. The approach presented here may be ultimately 

leveraged for diverse commodities, including food and other biobased commodities, providing a 

unique opportunity to increase sustainability throughout the agri-food system. 

Experimental procedures

The key idea of our approach is to combine NIRS and LCA in an optimization framework to find optimal 

mixtures of feed ingredients that minimize the environmental and monetary costs of feed production 

while meeting the quality requirements. Fig. S2 in the Supplemental Information shows a detailed 

workflow of the proposed strategy, which consists of three main steps. In the first step, we combine 

NIRS fingerprints and life impact assessment of feed ingredients in a classification model that allows 

predicting the ingredient environmental footprints. In the second step, we employ NIRS to predict 

accurate nutritional compositions of feed ingredients. The predicted information is the input, with the 

ingredient price, of a multi-objective optimization that aims at finding the optimal ingredient mixture 

ratios that allow for achieving trade-offs between environmental and monetary costs while meeting 

the quality standards. 

NIRS dataset 

The study dataset consists of 863 near-infrared (NIR) spectra of eight different feed ingredients, 

namely barley, corn, rapeseed meal, soybean expeller, soybean meal, soybean (whole bean), 

sunflower meal, and wheat, which are employed to obtain two compound feeds: pig feed and broiler 

feed. For all the spectra, reference nutritional values were obtained with reference methods for wet-

chemical quality analysis from accredited laboratories. The considered feed ingredients were 

harvested from six countries of origin and transported to factories located in four different countries, 

where the spectra were measured. After measurement, the ingredients were transported to a 

common production location where they were mixed into feed products. The exact production 

location was unknown and hence excluded in the study. According to this specification, the NIR spectra 

belong to 18 classes, characterized by feed ingredient, country of origin and measurement location, 

as specified in Table S1 (Supplemental Information). Fig. S1 shows, as an example, representative NIR 

spectra for each class.  

Chemometric analysis of NIR spectra 

Predicting the nutritional composition and environmental footprint from NIR spectra requires 

employing multivariate chemometric techniques to remove spectral artefacts and enhance the 

model's predictive accuracy54,55. Finding the appropriate techniques enables testing the possibility of 

employing NIRS in (near) real-time feed optimization. Chemometric prediction aims at maximizing the 
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relationship between the spectral data matrix 𝐗𝐗 and the response to predict 𝐲𝐲; this can be achieved 

by selecting the optimal pre-processing technique that extracts the information in the data matrix 𝐗𝐗 

which is relevant to the response54–56. We employed a classification approach to assign each feed 

ingredient to the respective country of origin, predicting the environmental impact when associated 

with LCA. In this study, the country of origin was related to the location of the factory where the 

spectra were measured: this information was included both in the classification model and in the LCA. 

We employed a regression approach to predict the nutritional composition of feed ingredients, which 

was measured as a quantitative response (Table S1). A preliminary step of data cleaning and train-test 

splitting was needed to accurately assess model performances, as described in the Supplemental 

Information. 

Pre-processing strategy selection: removing unwanted variation to extract relevant 

information from NIR spectra 

Spectra pre-processing consists of removing unwanted variations and artefacts that hinder relevant 

information in the raw NIR spectra56. Selecting the appropriate pre-processing strategy is crucial to 

enhance the predictive power of the chemometric model; however, this procedure may be time-

consuming and subjective54,56. We therefore adopted a supervised pre-processing selection strategy 

based on exhaustive search57, similar to that proposed by Gerretzen et al.54. This strategy enables 

testing selected pre-processing techniques suitable for NIRS54,56 in combination with selected 

predictive estimators. We employed similar pre-processing techniques for regression and 

classification, including baseline correction, multiplicative scatter correction, smoothing, and variable 

scaling. Details on the selected techniques are provided in the Supplemental Information (Table S3-

S4). We selected the optimal pre-processing techniques in cross-validation by minimizing the root 

mean squared error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) in regression and maximizing the weighted balanced accuracy (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 

in classification. We evaluated the model predictive ability on the test set considering 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 for 

regression, and balanced accuracy (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) for classification. We here report a short description of 

these metrics, referring the reader to the Supplemental Information for a more detailed explanation.  

The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is defined as (equation (1)): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖− 𝑦𝑦�𝑖𝑖)𝐼𝐼
𝑖𝑖=0

𝐼𝐼
 (1) 

where 𝐲𝐲 and 𝐲𝐲 �are the vectors holding the observed and calculated nutritional values, respectively, 

and 𝐼𝐼 the number of samples. Low 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values indicate that the model is statistically appropriate to 

predict the nutritional composition of feed ingredients.  
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 allows for the assessment of classification performances accounting for class imbalance and is 

defined as the arithmetic mean of the class sensitivity 𝑆𝑆𝑛𝑛𝑔𝑔 (equation (2))58: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  
∑ 𝑆𝑆𝑛𝑛𝑔𝑔𝐺𝐺
𝑔𝑔=1

𝐺𝐺
 (2) 

where the class sensitivity 𝑆𝑆𝑛𝑛𝑔𝑔 is the ability of the classifier to correctly identify the samples of the 

𝑔𝑔 − 𝑡𝑡ℎ class (equation (3)), and 𝐺𝐺 is the total number of classes58: 

𝑆𝑆𝑛𝑛𝑔𝑔 =  𝐶𝐶𝑔𝑔𝑔𝑔
𝑛𝑛𝑔𝑔

, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑔𝑔 =  ∑ 𝑐𝑐𝑔𝑔𝑔𝑔𝐺𝐺
𝑘𝑘=1 .  (3) 

In equation (3), 𝑐𝑐𝑔𝑔𝑔𝑔 indicates the number of samples correctly classified. To select the most accurate 

model accounting for the environmental footprint of misclassification, we used a weighted version of 

balanced accuracy (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤), defined as the average of the weighted sensitivity (𝑤𝑤𝑤𝑤𝑛𝑛𝑔𝑔): 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  
∑ 𝑤𝑤𝑤𝑤𝑛𝑛𝑔𝑔𝐺𝐺
𝑔𝑔=1

𝐺𝐺
 (4) 

where the weighted sensitivity is defined as: 

𝑤𝑤𝑤𝑤𝑛𝑛𝑔𝑔 =  𝑤𝑤𝑔𝑔∗ 𝑐𝑐𝑔𝑔𝑔𝑔 
∑ 𝑐𝑐𝑔𝑔𝑔𝑔𝐺𝐺
𝑘𝑘=1 ∗𝑒𝑒𝑔𝑔𝑔𝑔∗ 𝑤𝑤𝑔𝑔

 (5) 

where 𝑐𝑐𝑔𝑔𝑔𝑔 indicates the number of samples belonging to class g and predicted to be in class k, 𝑤𝑤𝑔𝑔 is 

the class weight to correct for class imbalance (defined in equation (3) of the Supplemental 

Information), and 𝑒𝑒𝑔𝑔𝑔𝑔 is the environmental footprint associated with predicting a sample belonging to 

the class 𝑔𝑔 to the class 𝑘𝑘, computed as the absolute difference in environmental footprint among the 

classes. A weighted balanced accuracy and balanced accuracy close to or equal 1 indicate that the 

model correctly assigns the samples to their actual class.  

Predicting environmental footprints from NIRS fingerprints and LCA 

Multivariate classification 

We developed a classification approach to correctly predict the environmental footprints of feed 

ingredients while penalizing the misclassification of the classes with the highest environmental 

footprint. We considered linear discriminant analysis (LDA) as a classifier, which is a well-established 

method in chemometrics to analyze spectral data59,60. We computed a classification model for each 

considered environmental indicator (i.e., climate change and land stress with and without including 

the effect of land-use change, defined in equations (7), (10) and in equations (9), (12) in the 

Supplemental Information), to discriminate feed ingredients coming from different countries of origin 

and measured in different locations. Accurate predictions (i.e. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 close to 1) indicate that the 
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models can be associated with life cycle impact assessment to predict the environmental footprint of 

feed ingredients. 

Life cycle assessment 

The environmental impact, expressed as land stress impacts on biodiversity (potentially disappeared 

fraction year, PDF·yr) and climate change (kg CO2-eq), was calculated with life cycle assessment. For 

each indicator, two scenarios were calculated; with and without carbon stock loss due to land-use 

change (LUC). The carbon stock loss includes the initial carbon loss when land is transformed into 

agricultural land and the lost sequestration capacity of agricultural land compared to natural 

vegetation (i.e. foregone sequestration)61. These two scenarios were investigated because it was not 

known from the used database for how long agricultural land already existed and hence how much of 

this transformation effect should be attributed to crop production. The scenario without LUC 

emissions represents the situation where the area was already used as agricultural land and hence the 

effect of transforming land from agricultural to agricultural is negligible. The scenario with LUC 

emissions represents the situation where natural vegetation is transformed into agricultural land with 

an evaluation period of 30 years reflecting a typical plantation lifetime61 and is used in the main results 

of the article. The formulas used to calculate the impact excluding land-use change can be found in 

the Supplemental Information.  

Climate change 

The impact on climate change including land-use change was calculated by equations (6)-(7). 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑔𝑔 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,𝑔𝑔 +
∑ 𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿,ℎ,𝑞𝑞
𝑄𝑄𝑔𝑔
𝑞𝑞

𝑄𝑄𝑔𝑔
 (6) 

𝐟𝐟𝐶𝐶𝐶𝐶,𝐿𝐿𝐿𝐿𝐿𝐿 = [𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,1, … ,𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝐺𝐺]   (7) 

where 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑔𝑔 represents the total impact on climate change including LUC emissions for each class 

𝑔𝑔 (in kg CO2-eq./ton feed ingredient), which is specified by feed ingredient ℎ, grown in origin country 

𝑜𝑜 and transported to the location country 𝑙𝑙 where the NIR spectra were measured. 𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶  represents 

the climate change characterization factor used to express the emissions in kg CO2-eq.  𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,𝑔𝑔 are the 

emissions from the supply chain (in ton feed ingredient) for each feed ingredient ℎ, country of origin 

𝑜𝑜 and transport to location 𝑙𝑙, belonging to class 𝑔𝑔. The supply chain includes the material and energy 

requirements for agricultural practices and processing into animal feed ingredient and transport to 

the measurement location. 𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿,ℎ,𝑞𝑞 are the land-use change emissions over a period of 30 years, 

for each feed ingredient ℎ and location in 30x30 arcminute61 raster 𝑞𝑞. 𝑄𝑄𝑔𝑔 represents the maximum 
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grid level for class 𝑔𝑔. 𝐟𝐟𝐶𝐶𝐶𝐶,𝐿𝐿𝐿𝐿𝐿𝐿  is the vector containing the average impact on climate change in kg CO2-

eq/ton feed ingredient including LUC emissions for each class 𝑔𝑔. 𝐺𝐺 is the total number of classes. 

Supply chain emissions, including crop cultivation, harvesting and pre-processing into feed ingredients 

and transport to production location were based on background processes from Agri-footprint v662 

and processed in SimaPro 9.4.0.263. The processes were adjusted by removing the land-use, to avoid 

double counting with LUC emissions. The impact for climate change was calculated with ReCiPe 2016, 

midpoint, H64. The geographical resolution of Agri-footprint processes is per country, in line with the 

geographical resolution of the NIR spectra. The economic allocation of side products obtained during 

pre-processing was based on the economic allocation used in Agri-footprint v6.  

Land-use change (LUC) emissions from changing carbon stocks were estimated based on the LPJml 

global vegetation and hydrological model61,65,66, coupled with the IMAGE integrated assessment 

model67. Following the approach used by Hanssen et al.61, carbon stocks after 30 years of growing feed 

crops were compared to carbon stocks under a simulated counterfactual of natural vegetation growth 

in the same location. The difference in carbon stocks was assumed to be emitted to the atmosphere 

as CO2. These emissions were allocated to the cumulative feed crop production over 30 years, which 

was determined per location using crop yield data in MapSpam with a 5-minute resolution for 

201068,69, as shown in equation (8). 

𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿,ℎ,𝑞𝑞 = �∆𝐶𝐶ℎ,𝑞𝑞∊0,30�∗ 𝑟𝑟
𝑌𝑌ℎ,𝑞𝑞∊𝑜𝑜∗𝑡𝑡

(8) 

where 𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑞𝑞 are the LUC emissions of feed crop production (in kg CO2-eq./ton feed ingredient) for 

each feed ingredient ℎ in gridcel 𝑞𝑞. ∆𝐶𝐶 is the difference between carbon stocks under feed crop 

cultivation and natural vegetation (in tonne C) for crop ℎ and origin country 𝑜𝑜; 𝑟𝑟 is the molar mass 

ratio between CO2 and C of 44.01/12.01. 𝑌𝑌 is the feed crop yield (in ton feed ingredient/year); and 𝑡𝑡 

is the 30-year time period considered (in years)69,70.  

Land stress 

The impact on land stress, including land-use change, is the combined effect of land occupation and 

transformation and was calculated by equations (9)-(10). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑔𝑔 = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 ∗ 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑔𝑔 +
∑ 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑧𝑧∊𝑜𝑜+𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑧𝑧∊𝑜𝑜

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦ℎ,𝑜𝑜

𝑄𝑄𝑔𝑔
𝑧𝑧

𝑄𝑄𝑔𝑔
 (9) 

𝐟𝐟𝐿𝐿𝐿𝐿,𝐿𝐿𝐿𝐿𝐿𝐿 = [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,1, … , 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐺𝐺]  (10)
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Where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑔𝑔 represents the total impact on land stress including LUC emissions for each class 𝑔𝑔 (in 

PDF·yr per ton feed ingredient), which is specified by feed ingredient ℎ, grown in origin country 𝑜𝑜 and 

transported to location country 𝑙𝑙. 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 represents the ecosystem damage characterization factor 

used to express the emissions from transport to from country of origin 𝑜𝑜 to measurement location 𝑙𝑙 

(𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑔𝑔) in PDF·yr. 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑧𝑧 and 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑧𝑧 are the ecosystem specific characterization factors for 

land occupation and land transformation (in PDF·yr/m2) for each ecoregion 𝑧𝑧, respectively. 𝐟𝐟𝐿𝐿𝐿𝐿,𝐿𝐿𝐿𝐿𝐿𝐿 is 

the vector containing the average impact on land stress including LUC emissions for each class 𝑔𝑔 (in 

PDF·yr/ton feed ingredient). The yield was from MapSpam and the characterization factors for 

occupation and transformation were from Chaudhary et al.70. These characterization factors are based 

on the different ecoregions across the world71. For each country of origin, the ecoregions were 

identified together with their corresponding characterization factor. Depending on the areas where 

agricultural practices took place, based on yield, the effect of land occupation and transformation was 

calculated per PDF·yr/ton feed ingredient. A time of 30 years and economic allocation to by-products 

was used to calculate the impact on land stress per ton feed ingredient, as was also done with climate 

change.  All generated maps were added in 𝑅𝑅, using the lowest map resolution (i.e., on grid cell level 

𝑞𝑞).  

Predicting the nutritional composition of feed ingredients from NIRS fingerprints 

To predict the nutritional composition of feed ingredients, we compared the performances of two 

different regressors: partial least squares (PLS) and random forest regression. PLS regression is 

commonly used for NIR spectra analyses due to its ability to handle numerous correlated spectral 

features72. PLS identifies a set of new variables (latent variables, LVs), and finds the LVs’ direction that 

explains the highest variance in the 𝐗𝐗 matrix and is most correlated to the response vector 𝐲𝐲73. We 

selected the number of LVs employed by the model with internal cross-validation to avoid overfitting. 

Random forest74 regression has been recently demonstrated to be a powerful technique in 

multivariate calibration to deal with spectral complexity and possible non-linearity75,76. Therefore, we 

also tested this estimator to evaluate whether the final predictive accuracy would have been improved 

compared to the most commonly used PLS. Training a random forest model required tuning the model 

hyperparameters. We selected the optimal hyperparameters with genetic algorithms in cross-

validation. PLS and random forest regression models were run independently for each feed ingredient 

and nutritional value, within the pre-processing optimization framework. Their performance was 

evaluated in cross-validation in combination with the tested pre-processing strategies: the 

combination with the lowest 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in cross-validation was selected as the most optimal to predict 
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the ingredients’ nutritional composition. Details about the optimized hyperparameters and cross-

validation schemes are provided in the Supplemental Information (Table S5-S6). 

Multi-objective stochastic optimization of animal feed 

We employed multi-objective optimization to find the optimal mixture ratio of feed ingredients that 

minimizes the environmental and monetary costs of animal feed production while meeting the feed 

quality requirements. We employed the weighted sum method to deal with the multi-objective 

problem as a single-objective linear optimization. The objective function is the sum of environmental 

footprint (𝐟𝐟T𝐱𝐱) and monetary price (𝐩𝐩T𝐱𝐱), multiplied by their weighting coefficients 𝑤𝑤𝑓𝑓 and 𝑤𝑤𝑝𝑝 

(equation (11)). 

min 𝑤𝑤𝑓𝑓 ∗ 𝐟𝐟T𝐱𝐱 +𝑤𝑤𝑝𝑝 ∗  𝐩𝐩T𝐱𝐱 (11) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:   

∑ 𝑥𝑥𝑔𝑔 = 1𝐺𝐺
𝑔𝑔=1  

0 ≤  ∑ 𝑥𝑥𝑖𝑖
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=1 ≤ 𝜌𝜌 

𝐛𝐛𝐥𝐥𝐥𝐥  ≤  𝐀𝐀𝐀𝐀 ≤  𝐛𝐛𝐮𝐮𝐮𝐮  

𝑤𝑤𝑓𝑓 + 𝑤𝑤𝑝𝑝 = 1  

𝑤𝑤𝑓𝑓 ≥ 0,  𝑤𝑤𝑝𝑝 ≥ 0  

with 𝐺𝐺 optimization classes, 𝑀𝑀 nutrients, and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 classes for each feed ingredient group. 𝐱𝐱 ∈

ℝG×1is the decision vector to be optimized, holding the feed ingredient mixture ratio, 𝐟𝐟 ∈ ℝG×1 holds 

the environmental footprint and 𝐩𝐩 ∈ ℝG×1 the monetary price for each optimization class. The 

constraints defined in equation (11) ensure that the optimized mixture ratio meets the quality of the 

target feed: 𝐀𝐀 ∈ ℝM×G holds the nutritional composition of each optimization class, 𝐛𝐛𝐥𝐥𝐥𝐥 ∈

ℝM×1 and 𝐛𝐛𝐮𝐮𝐮𝐮 ∈ ℝM×1 hold the nutritional composition of the considered target feed, including the 

maximum allowed variation from the nominal value on the lower (𝐛𝐛𝐥𝐥𝐥𝐥) and upper (𝐛𝐛𝐮𝐮𝐮𝐮) boundaries. 

Nominal values and maximum allowed variation are reported in Table S2 of the Supplemental 

Information. A maximum 𝜌𝜌 value was applied to restrict the ratio of each optimization class in our 

study, thereby ensuring the diversity of ingredients in the feed. 

Objective function 

To estimate 𝐟𝐟, we considered climate change and land stress in separate models as environmental 

indicators to minimize the environmental cost, with and without including the effect of land-use 
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change, as defined in equations (7), (10) and in equations (9), (12) in the Supplemental Information. 

To estimate 𝐩𝐩, we retrieved the feed ingredients prices from the international market with the Food 

Prices Monitoring and Analysis (FPMA) Tool77 of the Food and Agriculture Organization (FAO) of the 

United Nations. We retrieved commodity prices for one selected month, March 2022, which was the 

most recent month at the time of the analysis. Prices were not available for each feed ingredient and 

country of origin considered in our study: Supplemental Information reports detailed information on 

all considered assumptions for price estimation (equations (20)-(21), Supplemental Information). 

Implementation of predicted nutritional compositions into optimization 

Constraints in multi-objective optimization (equation (11), equations (17)-(19) in the Supplemental 

Information) ensure that the optimized feed ingredient mixture ratios meet the nutritional constraint 

of the target feed. Predicting accurate nutritional compositions from NIRS fingerprints entails having 

diverse compositions due to nutritional variation. In our dataset, the number of samples for each feed 

ingredient class was too small to reproduce all the nutritional variability that might be observed in 

industrial production. Hence, we employed Monte Carlo sampling to obtain 1000 simulations with 

varying nutritional compositions among and within feed ingredients groups. Monte Carlo is a 

sampling-based methodology78 that allows us to generate random scenarios based on the probability 

distributions of the predicted nutrients to observe the effect of nutritional variability on the final 

optimization. This methodology is extensively used in stochastic optimization in quantitative 

applications such as in science, engineering and economics, to optimize the process performances 

explicitly accounting for uncertainty78,79. We utilized the predicted nutritional compositions for each 

feed ingredient to build multivariate t-distributions to sample from. We considered multivariate t-

distributions to account for the correlation among nutrients, ensuring that the simulated formulations 

respect nutritional constraints. A random error, derived from univariate normal distributions of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

values, was finally added to the sampled nutritional values to account for the model error in 

prediction. The optimization model was run independently for each simulation in a stochastic 

optimization framework.  

Selecting optimal trade-off mixture ratios 

Varying the weights 𝑤𝑤𝑓𝑓 and 𝑤𝑤𝑝𝑝 for each simulation allows for obtaining stochastic Pareto fronts of 

feasible mixture ratios. To select the optimal trade-off mixture ratio, we employed the technique for 

order preference by similarity to ideal solution (TOPSIS)34, weighting the objectives with the Shannon’s 

entropy method. TOPSIS selects the optimal trade-off by finding alternatives with the shortest 

distance from the positive ideal solution and with the longest distance from the negative ideal 

solution80,81. TOPSIS is widely used in many research areas, such as supply chain management, 
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manufacturing systems, or energy management, for its simplicity in concept and application, and for 

being able to find trade-off solutions among several objectives80–82. 

Comparison with off-line measurements 

We performed a separate multi-objective optimization (equation (11)) to evaluate quality deviations 

resulting from utilizing nutritional values from occasional off-line measurements. To compensate for 

the fact that these values were not available in our study, we considered average compositions of feed 

ingredients from available measurements. Nutritional compositions for each of the 863 samples 

measured with NIRS were available from chemical wet analyses: we estimated average nutritional 

values for each ingredient to replicate the situation where measurements are not performed for each 

of the incoming ingredient batches. Since this optimization does not consider nutritional variability 

within feed ingredient groups, only one Pareto front is obtained; we selected the optimal trade-off 

mixture ratio on this Pareto front with TOPSIS. We used the selected mixture ratio to calculate the 

deviation in quality considering off-line measurements for each of the 1000 simulations, as detailed 

in the Supplemental Information (equation (22), Supplemental Information).  

Evaluation of footprint and price reductions from trade-off mixture ratios 

We evaluated footprint and price reductions by comparing the trade-off mixture ratios selected with 

multi-objective optimization against conventional least-cost feed optimization practices (i.e. when 𝑤𝑤𝑓𝑓 

= 0 and 𝑤𝑤𝑝𝑝 = 1 in equation (11)). For each of the 1000 quality-compliant simulations, we estimated 

percentage reductions as: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%) = 𝐟𝐟T𝐱𝐱𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝− 𝐟𝐟T𝐱𝐱𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜
𝐟𝐟T𝐱𝐱𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 100 (12) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%) = 𝐩𝐩T𝐱𝐱𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝− 𝐩𝐩T𝐱𝐱𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜
𝐩𝐩T𝐱𝐱𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 100 (13) 

where 𝐱𝐱𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐱𝐱𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 are the decision vectors obtained with the single-objective 

optimization of price and the TOPSIS selection, respectively. Note that for price negative reductions 

are expected, which consequently correspond to price increases. We report median values as point 

estimates to facilitate the comparison among different environmental indicators and target feeds.  

Software 

Python v.3.9.7 was employed to develop the classification, regression, and multi-objective 

optimization models. The following Python packages were used: sklearn83, pandas84, numpy85,  

chemsy57 for supervised pre-processing optimization, ILOG CPLEX Optimization Studio v.22.1.086 
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(Python API) for multi-objective optimization, sklearn-genetic-opt87 for hyperparameter optimization 

for random forest, pymcdm88 for TOPSIS. Matplotlib89 and seaborn90 libraries were employed for 

visualization. SimaPro 9.4.0.263with impact assessment method ReCiPe2016 (H) was used to calculate 

the environmental impact of the supply chain of the feed classes. Rstudio (2022.02.2+485) was used 

to calculate the total impact of the classes per grid cell in the country of origin, using the following 

packages: Terra, sp, readxl and sf.  

Data and code availability 

The data used to generate the results reported in this study, i.e. predictions from NIR spectra and LCA 

data, will be available with the codes supporting the analysis in a public repository91. The raw NIR 

spectra data will be available upon request to the lead author with permission from NutriControl. 
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