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Abstract 14 

As policymakers increasingly focus on environmental justice, a key question is whether 

emissions reductions aimed at addressing air quality or climate change can also ameliorate 16 

persistent air pollution exposure disparities. We examine evidence from California’s aggressive 

vehicle emissions control policy from 2000-2019. We find a 65% reduction in modeled statewide 18 

average exposure to PM2.5 from on-road vehicles, yet for people of color and overburdened 

community residents, relative exposure disparities increased. Light-duty vehicle emissions are 20 

the main driver of the exposure and exposure disparity, although smaller contributions from 

heavy-duty vehicles especially impact some overburdened groups. Our findings suggest that a 22 

continued trend of emissions reductions will likely reduce concentrations and absolute disparity 
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but may not reduce relative disparities without greater attention to the systemic factors leading to 24 

this disparity. 

 26 

Introduction 

Despite decades of progress improving ambient air pollution in the United States (U.S.), 28 

people of color still bear a disparate burden of air pollution (1–12). Within California, research 

has quantified and characterized these exposure disparities using both measurements and models 30 

(13–18). Solutions to this persistent inequality are increasingly a focus for academic research and 

environmental policy at the federal, state, and local levels (9, 17–19). A growing body of 32 

research investigates how air quality policies might contribute to a “triple win” that 

simultaneously achieves meaningful benefits by reducing population-wide exposures; mitigating 34 

greenhouse gas emissions; and reducing exposure disparities and extreme exposures (20, 21). 

Here, we use a modeling framework to explore how multi-decade emission reductions shaped by 36 

air quality and climate policies have affected environmental justice (EJ) outcomes, using 

California’s aggressive on-road mobile source strategy as a case study. In this work, we focus on 38 

exposure disparities, which can be distinct from disparities in health outcomes (22–27). 

Recent research on how to reduce air pollution exposure disparities in the U.S. presents 40 

two conflicting approaches (9, 19–21, 28). The first approach starts from the recognition that 

many major emitting sectors lead to disparate exposures for people of color (2). Thus, focusing 42 

on emissions reductions for sectors that especially impact people of color could have EJ co-

benefits (21, 29–32). This approach mirrors the policy structure in the U.S. and elsewhere, where 44 

environmental regulations are targeted to individual economic sectors (e.g., vehicles, industries, 

power plants) and tailored to relevant technology and infrastructure. The second body of research 46 
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suggests that sector-oriented policies may not be effective in addressing relative disparities in air 

pollution. For example, optimization modeling found that aggressive nationwide emissions 48 

reductions targeting economic sectors with higher-than-average disparity impact would not 

eliminate racial-ethnic fine particulate matter (PM2.5) exposure disparities without nearly 50 

eliminating emissions (9). In contrast, a location-specific approach – i.e., emissions-reductions 

by location rather than by economic sector – rapidly eliminated disparities. Building upon this 52 

finding, two recent studies (20, 21) simulated climate policies with substantial abatement of 

PM2.5 and its precursors across most U.S. economic sectors and found modest potential 54 

reductions in disparities. They too reported that “location-specific” policies that target emissions 

reductions in all sectors within specific overburdened geographies may have high potential to 56 

address relative exposure disparities even with small emissions changes (9, 19). To complement 

prospective studies, which consider ways to reduce future exposure disparity, we examine the 58 

disparity impacts of historical emissions trajectories. We focus on the transportation sector, 

which is often highlighted as having high potential to reduce exposure disparities. Historically, 60 

racist urban planning and infrastructure decisions (e.g., redlining, freeway siting) have 

concentrated vehicle emissions in communities of color (2, 4, 7, 13, 29). Furthermore, people 62 

who are exposed to the highest levels of traffic-related air pollution often are not the 

communities who drive the most (30–32). As such, a recent study found that emissions controls 64 

for the transportation sector have the greatest potential to mitigate racial-ethnic inequality in U.S. 

air pollution (21). Simultaneously, the transportation sector is a priority area for regulatory 66 

agencies and EJ-oriented community groups; emissions reductions from these sources could 

potentially reduce exposure disparities, human health impacts, and greenhouse gas emissions 68 

(33). 
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For nearly 60 years, California led the U.S. in reducing on-road vehicle emissions. 70 

Because California’s motor vehicle emission regulation preceded the Clean Air Act of 1970, 

California is delegated the authority to set vehicle emissions standards more stringently than the 72 

federal equivalent (34–36). In the present analysis, we model exposure concentrations for the 

years 2000 through 2019, during which California’s regulatory agencies pursued an aggressive 74 

and interlinked suite of multi-pollutant policies to reduce emissions across the entire on-road 

vehicle fleet (36). Examples include requiring cleaner fuels and technological advancements 76 

(e.g., hybrid drivetrain, alternative fuel and propulsion technologies, advanced emissions 

controls) specific to light-duty, medium-duty, and heavy-duty vehicle classes (respectively: 78 

LDV, MDV, HDV). 

The suite of regulations that comprise California’s mobile source strategy has resulted in 80 

large aggregate reductions of emissions of multiple pollutants from diverse fleets that make up 

the state’s on- and off-road vehicles (37). Here, we examine how changes in on-road vehicle 82 

emissions from 2000 to 2019 have impacted exposure to PM2.5. Over this time period, on-road 

emissions have been shaped by several aggressive state regulations targeting specific vehicle 84 

fleets, including California Air Resources Board’s (CARB) Light-Duty Vehicle Emissions 

Standards, Advanced Clean Cars, and the Truck and Bus Regulation (38). Despite statewide and 86 

fleetwide on-road vehicle miles traveled increasing ~24% – from 292 billion (2000) to 364 

billion (2019) – emissions of the four species that principally drive population-weighted PM2.5 88 

exposures from on-road vehicles have decreased. Regulatory emissions data indicate reductions 

of ~70% for primary PM2.5, nitrogen oxides (NOx) and volatile organic compounds (VOC), 90 

while ammonia (NH3) decreased ~15% (Fig. S1) (38). Notably, non-exhaust primary PM2.5 

emissions (e.g., brake- and tire-wear) have increased by ~20% over this time period, causing the 92 

relative non-exhaust share of primary PM2.5 to increase substantially (14% to 50% from 2000-
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2019) (39). Diverse measurement and observational datasets (see SI) corroborate overall 94 

declining emissions of PM, NOx, VOC, NH3, and other key traffic-related air pollutants (TRAPs) 

(40–50). Considering all species that contribute to total PM2.5, California’s on-road emissions 96 

reductions outpaced the national aggregate, especially for NOx and VOC (51).  

On-road vehicle emissions are anticipated to continue to decline in California in response 98 

to major new regulations: Advanced Clean Cars II (starting in 2035, requires all new passenger 

cars, trucks, and SUVs sold in California to be zero-emission vehicles) and Advanced Clean 100 

Fleets (starting in 2045, all trucks that drive in California must use zero-emissions technology). 

A few recent studies have projected the air pollution and equity impacts of vehicle electrification 102 

in California and found limited equity benefit. In this paper, we build on a much smaller body of 

work (14, 52) to focus retrospectively on the equity impacts of past changes in vehicle emissions 104 

over two recent decades, with an eye to informing future policy.  

We investigate whether the combined impacts of the ensemble of mobile source 106 

strategies have contributed to a reduction in PM2.5 exposure disparities. Exposure disparities are 

multifaceted; we quantify them along several axes described below. Our analysis also considers 108 

two specific features (vehicle type; spatial scale) that are central to current regulatory design. We 

conclude with implications from this California-focused retrospective analysis for future EJ-110 

focused policy for the U.S.  

We developed and employed an open-source analysis method based on atmospheric 112 

simulations from the Intervention Model for Air Pollution (InMAP, see Methods) to model total 

PM2.5 concentrations resulting from emissions of PM2.5, NOx, VOC, NH3, and sulfur oxides 114 

(SOx) emitted by California’s on-road mobile source sector from 2000 to 2019. Estimates of on-

road mobile emissions are from CARB’s Emission FACtor regulatory model (EMFAC v2021 116 
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with MPOv11), which has been approved by the U.S. EPA (53). EMFAC represents CARB’s 

best estimate of on-road emissions; it incorporates detailed administrative and observational data 118 

pertaining to fleet composition, emissions performance, and spatiotemporal activity patterns 

(38). Variably sized gridded PM2.5 concentrations (1 km – 48 km, higher resolution in greater 120 

population density locations) are combined with tract-level 2010 Census population data to 

estimate exposure disparities among demographic groups (15). We disaggregate mobile source 122 

impacts into four vehicle types: LDV, MDV, HDV, and all other vehicles (e.g., buses, 

motorcycles, motorhomes; Table S1).  124 

In the U.S. and in California, air pollution exposure disparities tend to be larger by race-

ethnicity than by other socioeconomic and demographic indicators (e.g., income, education, 126 

urbanicity) due in large part to the historical racism and racist practices (e.g., housing 

discrimination, redlining, highway relocation) that segregated cities and placed high-pollution 128 

sources near communities of color (2–4, 10, 11, 54). Accordingly, we focus our analyses on 

racial-ethnic disparities. In addition, we consider two statutory geographic designations (AB617, 130 

SB535) of cumulative impacts that California uses for prioritizing EJ (Fig. S2) (55, 56). 

Although these geographies have only recently been established (and thus past policy may or 132 

may not have explicitly targeted these places), we focus on them here because they are an 

example of location-specific policies that target emissions reductions in overburdened 134 

communities. Through the Community Air Protection Program (AB617), California has 

designated specific communities (2.7 M people, year-2010; 8.1% of the state’s population) for 136 

priority in community-based air pollution monitoring and emissions reduction plans (55). A 

second policy, SB535 (10.2 M people, 30.0% of the state’s population), focuses on targeting 138 

financial investments towards people living in “disadvantaged communities”, identified using 
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several environmental, socioeconomic, and public health indicators for each US Census tract in 140 

California (56, 57).  

From here onwards, we use the term “overburdened communities” to refer specifically to 142 

the areas designated as AB617 or SB535 communities and refer to the people that live in these 

areas as “residents of overburdened communities.” The demographic makeup of residents of 144 

overburdened communities has a higher proportion of people of color (all groups except for non-

Hispanic white Californians) than the statewide population (Table S2; people of color: 92.9% in 146 

AB617 communities, 82.9% in SB535 communities). We also specifically consider exposure and 

disparities experienced by individual racial-ethnic groups (e.g., Hispanic Californians).   148 

Results and Discussion 

Statewide Trends in Overall Exposure and Relative Exposure Disparity  150 

California’s mobile-source policy has succeeded in its overall goal of reducing PM2.5 

exposures (Fig. 1A). We find that the modeled statewide population-weighted mean (PWM) 152 

PM2.5 exposure concentration attributable to on-road vehicles decreased from approximately 3.2 

to 1.1 μg/m3 from 2000 to 2019, a ~65% (i.e., nearly a factor-of-3) decrease in exposure on 154 

average for all Californians. This reduction in PM2.5 exposure from on-road vehicles outpaced 

the overall statewide improvement in ambient air quality (Fig. S3). For context, multiple 156 

independent estimates of total PWM PM2.5 from all sources in California show an approximate 

~40% decrease from 15 to 9 µg/m3 from 2000 to 2019 (58–60).  158 

We evaluate PWM PM2.5 exposure from on-road mobile sources for racial-ethnic groups 

and residents of overburdened communities (Fig. 1A). Our modeled estimate of PM2.5 declined 160 

for all groups, and the ordering of exposures by group is generally consistent over time. Among 

all racial-ethnic groups, Hispanic Californians experienced the highest exposure for all years, 162 
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with PWM exposure concentrations of approximately 3.5 and 1.3 μg/m3 PM2.5 in 2000 and 2019, 

respectively. Black Californians experienced the next highest PWM exposure concentration 164 

(respectively 3.5, 1.2 μg/m3 in 2000 and 2019), followed by Asian Californians (3.3, 1.2). Of the 

four racial-ethnic groups in Fig. 1A, white Californians were exposed to the lowest PWM 166 

concentrations: approximately 2.7 and 0.9 μg/m3 PM2.5 from 2000 and 2019, respectively. 

Residents of overburdened communities were exposed to substantially higher PWM 168 

concentrations of PM2.5 from on-road mobile sources (AB617 residents: 4.4, 1.6 μg/m3 in 2000 

and 2019; SB535 residents: 4.1, 1.5 μg/m3 in 2000 and 2019) than the PWM for any racial-ethnic 170 

group shown in Fig. 1A.  

For each demographic group, we compute exposure disparity as the absolute (µg/m3) and 172 

relative (percent) difference between the average modeled concentration experienced by a group 

versus the overall state population (Fig. 1B, see also Methods and Table S3). In this work, we 174 

discuss exposure disparities in both absolute and relative terms. Both metrics provide useful 

insights into exposure inequality. Because increases in PM2.5 concentration have a causal 176 

relationship with increases in adverse health outcomes, it is critical that absolute differences 

between groups of people are minimized to the extent possible. However, systemic inequality in 178 

terms of relative exposure disparity can persist even if the most overburdened areas receive the 

largest reductions in exposure in absolute terms, if those reductions are not also the largest in 180 

percentage terms. Crucially, our analyses focus exclusively on PM2.5 exposure disparities 

attributable to on-road vehicles. Most other major emitting sectors in California also disparately 182 

expose residents of overburdened communities and people of color to PM2.5 (2, 15). Likewise, 

exposures to other air pollutants are also unequally distributed (4, 7, 10). Accordingly, when we 184 

find that disparities persist, they persist in a larger story of environmental inequity in California. 
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Reflecting the nearly parallel exposure concentration traces over time evident in Fig. 1A, 186 

relative disparities in PM2.5 exposure from on-road mobile sources (Fig. 1B) were strikingly 

persistent, increasing slightly over this time period. The relative disparity in exposure to on-road 188 

mobile sources for Hispanic Californians increased slightly from 12.0% (year-2000) to 13.9% 

(year-2019) while the relative disparity in exposure for white Californians decreased slightly 190 

from -13.5% to -15.5%. Thus, the overall relative difference between the most and least exposed 

race-ethnicity increased from 30% to 35%. Given expected model uncertainties, these 192 

incremental changes may not necessarily represent evidence of a trend that is distinguishable 

from approximately constant relative disparity. Likewise, relative disparities for Black and Asian 194 

Californians also persisted (respectively 10.5-11.5% and 5.4-6.2% over this period). Exposure 

disparities by race-ethnicity are larger than by income (Fig. S4). Notably, we find persistent 196 

disparities in exposure to both primary and secondary PM2.5 from vehicle emissions. Relative 

disparities in exposure to primary PM2.5 components (18.6% for Hispanic Californians) were 198 

larger than disparities in exposure to secondary PM2.5 (11.1% for Hispanic Californians).  

Absolute and relative exposure disparities in overburdened communities are even larger. 200 

For example, the relative disparity in exposure (i.e., relative to the overall population average) 

for on-road mobile source PM2.5 is more than three times as large for AB617 communities as for 202 

the most-exposed racial-ethnic group, increasing somewhat from 40% (year-2000) to 45% (year-

2019). Stratifying by CalEnviroScreen score (which is used in part to identify SB535 204 

communities), we find even larger relative disparities (Fig. S4).  

Disparities in exposure for those living at the extreme ends of the concentration 206 

distribution are also relevant for understanding environmental injustice. We estimated 

population-weighted distributions of exposure by race-ethnicity for each individual vehicle class 208 

(Figs. S5-S6). In general, changes in exposure at the upper (i.e., 75th and 90th) percentiles are 
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consistent with changes in exposure at the PWM and consistent across time. Considering the 210 

disparity in exposure at the 75th and 90th percentiles relative to the statewide mean, we find large 

and increasing relative disparities (e.g., 90th percentile exposure for Hispanic Californians 212 

increasing from 104% to 118% higher than statewide PWM from 2000 to 2019).  

We also evaluated the degree to which the California populations who experience the 214 

highest overall exposure to PM2.5 from on-road vehicles are disproportionately comprised of 

people of color, and how this pattern has evolved over time. To do so, we binned the California 216 

population by decile of modeled exposure to PM2.5, and then compared the racial-ethnic 

composition of each decile in 2000 and 2019 (Fig. 2, midpoint result in Fig. S7). From 2000 to 218 

2019, Hispanic Californians are overrepresented at the highest exposure deciles. While the 

California state population is 37.6% Hispanic, the highest decile of exposure for emissions in 220 

2000 and 2019 consists of 47.9% and 50.8% Hispanic people, respectively. Similarly, white 

Californians, who comprise 40.1% of the population, are overrepresented among the populations 222 

with the lowest exposures (62.0% of the lowest-exposure deciles in 2000 and 2019) and are 

underrepresented in the highest-exposure decile (29.9% [2000], 27.7% [2019]). In Fig. S8, we 224 

examine the racial/ethnic composition of the population across the full distribution of absolute 

and percentage changes in PM2.5 exposure from on-road vehicles. While the grid cells with the 226 

largest absolute reduction in concentration consist of more people of color than the statewide 

average, there are only small demographic differences in the percentage change in exposure. 228 

This result arises in large part because the geographies with the largest absolute reductions in 

PM2.5 exposure from on-road mobile sources started out with the highest initial levels of 230 

exposure in 2000.  

Differences in Contributions to Exposure Disparity by Fleet Type 232 
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Because California’s vehicle emissions control policies generally differentiate by vehicle 

types, we disaggregate our analyses of emissions, exposures, and disparities by vehicle type 234 

based on the official EMFAC2021 documentation (Table S1) (38). We model the disparities and 

additive contributions of each vehicle fleet type at the state-level for the most exposed racial-236 

ethnic group, Hispanic Californians, to identify which vehicle types have an especially 

influential role on their exposures and disparities.  238 

At the statewide average, we find that that LDVs are the vehicle fleet with the largest 

aggregate impact on overall PWM PM2.5 exposures and absolute disparities. For example, 240 

considering Hispanic Californians, LDVs account for 65-70% of the 0.2-0.4 µg/m3 absolute 

disparity in PM2.5 exposure from on-road mobile sources (Figs. 3A and 3B). Contributions to the 242 

absolute disparity from HDVs (16-24%), MDVs (9-14%), and all other vehicles (<5%) are 

substantially smaller. Considering the PWM distribution of PM2.5 by vehicle fleet type and race 244 

ethnicity, we find broadly similar racial-ethnic distributions of exposure attributable to LDVs, 

HDVs, and MDVs, with Hispanic Californians receiving the highest exposures (Fig. S5). 246 

Between 2000-2019, the fractional contributions to absolute disparity from individual vehicle 

fleet types were stable, likely reflecting the roughly constant distribution of vehicle activity 248 

patterns by vehicle fleet.  

From here on, we focus our discussion on LDVs and HDVs, which in combination 250 

account for >80% of exposures and absolute disparities attributable to on-road sources (see Fig 

S7 for detailed results for other fleets). The dominant influence of LDVs on exposure holds 252 

across racial-ethnic groups and for residents of overburdened communities (Figs. S9-S10), but 

with different overall magnitudes of exposure for different subpopulations. This result likely 254 

arises for two reasons. First, LDVs dominate the overall emissions of PM2.5 and its precursors. 

Based on the CARB emissions inventories employed, LDVs contribute most of the NH3 and 256 
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VOC emissions (70-95% of NH3, > 80% of VOC) from vehicles, which account for ~44-56% of 

total PM2.5 exposure from vehicles. LDVs and HDVs contribute more similarly to primary PM2.5 258 

(23-45% LDV, 29-56% HDV) and NOx (35-48% LDV, 36-43% HDV) emissions, and these 

species contribute the remaining ~44-56% of total PM2.5 (Figs. S11-S14). Primary PM2.5 260 

emissions are more weighted towards non-exhaust emissions in recent years, especially for 

LDVs (Figs S11-S14). Second, LDV emissions are more concentrated near population centers 262 

than other vehicle fleets, so LDVs result in a substantially higher-than-average exposure impact 

(Fig. S15 metric: µg/m3 population-weighed exposure per ton of annual emissions; this metric is 264 

directly related to intake fraction, e.g., 61–63).   

While the high activity of LDVs causes a higher aggregate impact on disparity, HDVs 266 

stand out as the fleet type whose emissions cause the most disparate impact on Californians of 

color. As a complement to apportioning the overall absolute exposure disparity to emissions 268 

from individual vehicle types (i.e., largest aggregate impact), in Fig. 3C we also consider which 

vehicle fleet types have an especially disparate impact on specific racial-ethnic groups (largest 270 

relative impact regardless of magnitude of emissions) relative to the statewide population. For 

example, the relative disparity caused by HDVs for Hispanic Californians (range: 16 – 17%) was 272 

larger than the relative disparity caused by LDVs (range: 11 – 14%). This difference in impacts 

by fleet type is consistent with recent traffic equity modeling, which demonstrated that the 274 

majority of Californians of all race-ethnicity are exposed to high annual average daily traffic 

from LDVs, but Californians of color are disproportionately exposed to higher annual average 276 

daily traffic from HDVs (64). Another useful metric for discussing the especially disparate 

impact of HDVs is the exposure inequality, defined by Demetillo et al. (65) as the percent 278 

difference in exposure between the most- and least-exposed racial-ethnic groups. Based on our 

results the PM2.5 inequality for Hispanic Californians, relative to white Californians, increases 280 
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from 37% in 2000 to 41% in 2019. This finding complements recent work that shows the 

importance of HDV emission mitigation for reducing racial-ethnic disparity (23, 65). 282 

Substantial Heterogeneity in Fleet-wise Contributions at Community Scale 

We find that there is substantial spatial heterogeneity in how different vehicle fleet types 284 

contribute to PM2.5 exposures. We compare modeled contributions by vehicle type at four spatial 

scales (Fig. 4): (A) statewide, (B) regional, (C) within overburdened communities, and (D) 286 

community-scale. Whereas the previous section and Fig. 4C evaluate aggregate exposure and 

disparity across all AB617 overburdened communities, in Fig. 4D we compare contributions to 288 

exposure and disparity within individual overburdened communities. The primary goal of this 

analysis is to highlight the heterogeneity among diverse communities in how vehicle fleets 290 

contribute to PM2.5; our estimates are not meant to precisely capture community-scale pollution 

concentrations. As with any emissions inventory, modeled concentrations are much more precise 292 

with locally-validated, site-specific information that has been observationally verified (66). To 

complement our high-level approach to understanding the heterogeneity in source contributions, 294 

future community-specific analyses could employ higher spatial resolution modeling tools and 

local emissions data to better represent the lived experience of individual communities.  296 

On average, the Los Angeles area and its AB617 overburdened communities have high 

PWM exposures and high contributions from LDVs (> 60%). In the Central Valley, while the 298 

PWM exposures are lower, the contributions from HDVs are substantially higher (e.g., ~60% in 

Arvin/Lamont). The diversity in fleet contributions to individual communities showcases the 300 

importance of community-specific emissions reduction planning. While a community with a high 

share of LDVs, for example, might benefit more from policy actions that directly reduce those 302 

emissions (e.g., more electric bus routes, street conversion to bicycle paths), different strategies 
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may be more appropriate for a community dominated by HDVs (e.g., additional diesel fuel 304 

emissions limits, truck electrification, low emission zones). These differences likely arise from 

differences in spatial distributions of sources relative to residences and the magnitude and 306 

mixtures of vehicle activity that occur at the community scale. In sum, our results support the 

approach of enabling communities to identify and mitigate the largest contributors to local 308 

exposures and disparities. 

Validation, Limitations, and Implications for Future Research 310 

Multiple lines of evidence suggest that our core qualitative results align with available 

observational evidence. A relative strength of our modeling approach is that it allows us to model 312 

temporal changes at sufficiently high spatial resolution that we can estimate exposure disparities 

attributable to individual source categories. In contrast, a detailed longitudinal record of in-situ 314 

observations is not available at sufficient spatial resolution to permit rigorous assessment of how 

disparities in exposure to traffic-related PM2.5 have evolved. Nonetheless, CARB’s analyses of 316 

ambient monitoring data from 1990-2014 align qualitatively with our results. These analyses of 

monitoring data indicate declining concentrations of diesel PM, PM2.5, and NO2, but with 318 

persistent relative and absolute disparities for the relatively sparse network of sites located in 

overburdened communities (60). 320 

As additional points of comparison for our modeled results, we examined datasets of 

finely resolved satellite observations and empirical model predictions. These datasets afford the 322 

ability to consider changes in exposure and disparity for the entire state (see Supplementary 

Text) (58, 59). In Fig. S3, we compare our analyses with changes in total PM2.5 (only moderately 324 

influenced by vehicles) and NO2 (strongly influenced by vehicles). Considering PWM 

concentration changes from 2000-2019, our estimated PWM PM2.5 from on-road vehicles 326 

https://doi.org/10.26434/chemrxiv-2023-669ws-v2 ORCID: https://orcid.org/0000-0001-8339-927X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-669ws-v2
https://orcid.org/0000-0001-8339-927X
https://creativecommons.org/licenses/by/4.0/


 

15 
 

declined at a broadly similar rate (~65%) compared to the results from a high-resolution 

empirical model of PWM NO2 spatial patterns (~55%). Our estimates of the racial-ethnic 328 

ordering of vehicle-emitted PM2.5 exposures and disparities closely match that from the total 

PM2.5 and NO2 datasets. Crucially, our finding of temporally persistent relative disparities in 330 

exposure to PM2.5 from on-road sources (Fig. 1B) is consistent with highly stable patterns of 

relative disparity in total PM2.5 and NO2 for Californians of color (Fig. S3). Furthermore, we find 332 

that the magnitude of our estimate of traffic-related PWM PM2.5 is consistent with the on-road 

vehicle contribution from previous modeling and in-situ source apportionment studies in 334 

California (67–72). In combination, these supporting lines of evidence reinforce our key 

qualitative conclusion that exposures from mobile sources have decreased while relative 336 

disparities in exposure have persisted.  

It is worthwhile to consider possible uncertainties, biases, and limitations associated with 338 

our approach. Our modeling framework is built around the InMAP reduced-complexity model 

(73) and its associated InMAP source-receptor matrix (ISRM, 28). The computational efficiency 340 

of this model enabled us to interactively execute thousands of unique model runs representing 

distinct vehicle fleets for twenty individual years, while maintaining sufficiently fine scale (down 342 

to 1 km2) to capture spatially sharp exposure disparities (1, 3). However, our modeling 

approaches have notable limitations. First, as with any atmospheric modeling, our results rest on 344 

the validity of underlying emissions inventories, including how they represent patterns over time 

and space (e.g., 74), as discussed briefly below. Second, InMAP makes make simplifying 346 

assumptions that can lead to somewhat higher bias than traditional chemical transport models 

(CTMs), which model the underlying atmospheric chemistry and dynamics with higher fidelity. 348 

One such simplification in our model is a linear approximation of non-linear secondary aerosol 

chemistry. Third, temporal resolution of our results is limited to annual average conditions; we 350 
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do not quantify exposure disparities that occur on seasonal, diurnal, or shorter-than-annual time 

scales, which are also relevant (75). Additionally, our model does not capture sub-grid-scale 352 

exposure gradients near roads; those gradients can occur and are important for exposure 

disparities at scales finer than 1 km (76). InMAP results are generally considered more robust for 354 

spatial aggregations of many grid cells (e.g., air basins, groups of overburdened communities), 

and less so for individual pixels or neighborhoods (73). Finally, our core analyses assign 356 

exposures based on a fixed residential address (which can misclassify exposures, e.g., 77), and 

were estimated using a temporally static year-2010 US Census dataset (selected as the midpoint 358 

year of our study).  

Considering that our key results emphasize the persistence over time of disparities 360 

(especially relative disparities) – rather than absolute concentrations at specific locations – our 

overarching qualitative insights are likely to be robust. Relative disparities are principally 362 

determined by the interaction of fine-scale spatial patterns of demographics, roadways, and fleet 

activity, and are less sensitive to the magnitude of emissions or concentrations. In the 364 

supplementary materials (supplementary text section “Model Uncertainty and Sensitivity” and 

Figs. S16-S17), we explore how possible biases in emissions estimates and model performance 366 

could affect our results. We first review the literature to constrain our understanding of the 

uncertainty from the state regulatory model of on-road mobile source emissions estimates (50, 368 

74). From previous work validating EMFAC’s on-road mobile source emission factors and a 

similar model’s activity-based spatial surrogates, we believe our qualitative insight is unlikely to 370 

be affected by bias in the emissions inventory. We then perform four tests to evaluate the 

sensitivity of our analyses to potential biases in the emissions and model (Fig. S16). A key 372 

insight is that within the range of expected model biases for InMAP, we find that the magnitude 

and ordering of relative disparities is only minimally sensitive. This result arises in part because 374 
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relative disparities involve ratios of modeled concentration estimates. In addition, because we 

find meaningful disparities for each of the five modeled PM2.5 constituents, pollutant-specific 376 

model biases (representing, for example, a possible mischaracterization of the non-linear 

chemistry in InMAP) are unlikely to strongly skew our results (see Fig. S16). Likewise, this 378 

analysis implies that inventory biases that affect aggregate level of emissions are unlikely to 

affect our core insights. We show that our results are robust against spatial biases in the 380 

emissions inventory by repeating our analysis with emissions from two independently derived, 

peer-reviewed emissions inventories (78, 79) and coarser representations of our emissions 382 

inventory. Spatial emissions biases in the inventory could conceivably affect conclusions about 

relative disparities if they were much larger than what we explored in Fig. S16. However, we 384 

consider this implausible given how closely our results align with disparity insights from high-

resolution NO2 predictions (Fig. S3). Nonetheless, because neither EMFAC nor InMAP are 386 

meant to authoritatively describe emissions and concentrations in individual model pixels, we 

ascribe our greatest confidence to overall patterns in space and time, but caution against over-388 

interpreting results for specific communities or other small regions.  Finally, in a sensitivity 

analysis (Fig. S17), we repeated our analysis with 2000 Decennial Census data. These analyses 390 

indicate that our core qualitative finding of highly persistent relative disparity was generally not 

sensitive to the selection of census dataset. In particular, the choice of which demographic 392 

dataset is used minimally affected the PWM concentrations and relative disparities experienced 

by overburdened communities and individual racial-ethnic groups in California. However, future 394 

demographic shifts in the California population that substantially alter patterns of social 

segregation could meaningfully affect aggregate air pollution disparities at the state level. For 396 

example, if suburbs become more racially integrated and California’s population becomes 
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increasingly diverse, relative disparities could decrease as a function of demographic changes 398 

and not necessarily emissions mitigation.  

Future research beyond the scope of this assessment could further corroborate our 400 

findings and build on our results. First, CTM simulations could usefully validate our core results, 

especially as they concern the behavior of secondary PM2.5 from vehicle emissions. Second, it 402 

would be helpful to quantify the effect of decades of vehicle emissions controls on other air 

pollutants that are relevant to the health of overburdened communities, including nitrogen 404 

oxides, diesel PM, and air toxics. Third, although in-situ observations of TRAPs have 

historically not been available at sufficiently high spatial resolution to systematically 406 

characterize changes in disparity, careful analysis of data at particular locations may be able to 

complement our statewide insights. Moreover, as hyperlocal measurements of traffic-related air 408 

pollutants become more widespread, these types of observational studies may be more feasible in 

the future.  410 

Finally, because disparities in terms of health outcomes are also relevant to EJ and 

distinct from exposure disparities, analyses that quantify the complex interplay of emissions, 412 

exposures, and social, demographic, and epidemiological factors could explore the impact of 

vehicle emissions on environmental health disparities over time (22, 23, 25–27, 80–83). 414 

Disparities in health outcomes are strongly influenced by social determinants of health (e.g., age, 

obesity, access to health care, criminal justice) that have persisted over time and are independent 416 

of air pollution (80, 84). Several recent studies show that Black and Hispanic Americans in the 

US have higher susceptibility to air pollution than non-Hispanic white Americans (81–83, 85). 418 

Thus, a focus on disparities in exposure may underestimate or mischaracterize the ultimate 

disparities in health outcomes (22–27). While this study focused exclusively on exposure 420 

disparities, effective policies should address disparities in both exposure and health outcomes. 
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Policy Insights from California’s Historical Mobile Vehicle Control Policies 422 

We have demonstrated that while modeled PWM PM2.5 exposures and absolute exposure-

disparities attributable to on-road mobile sources have decreased over the past two decades 424 

across all population groups, relative disparities have remained at both the average and at the 

extreme ends of the exposure distribution for Californians of color and residents of overburdened 426 

communities. Emissions from LDVs and HDVs impact disparities in different ways. LDVs 

contribute the most to PM2.5 concentrations and absolute disparity, while emissions from HDVs 428 

most disproportionately expose people of color relative to other fleet types, thereby highlighting 

the importance of mitigating emissions from both vehicle types. Of the groups considered here, 430 

residents of AB617 communities in aggregate experience the highest levels of PM2.5 exposure 

from on-road vehicles, although PWM exposures for these residents has declined by over 60% 432 

since 2000. There is substantial heterogeneity among AB617 communities in terms of the total 

exposure concentration and the relative contribution from each vehicle type.  434 

Our finding of highly persistent relative disparities for Californians of color is 

disappointing but consistent with a growing body of literature on sectoral emissions policy. 436 

When policies reduce the overall emissions rate without substantially altering the pattern of 

where emissions occur, relative disparities in exposure can persist (9, 14, 21). In this vein, the 438 

findings from our retrospective analysis resonate with results of studies that have prospectively 

modeled the potential future equity impacts associated with specific vehicle policies (e.g., heavy-440 

duty truck electrification, zero-emission vehicle adoption). Consistently with those studies, we 

have found large absolute concentration changes in regions with the highest share of people of 442 

color, yet we nonetheless find minimal reduction in the relative disparity for PM2.5 exposure (14, 

23, 25, 52, 86). These results arise because the places with the largest concentration changes over 444 

time tend to be the places most impacted by vehicles (Fig. S8).  
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While the sustained inequity in PM2.5 exposure resulting from on-road mobile sources is 446 

problematic, California’s mobile source strategy has led to large aggregate reductions in 

emissions, exposure concentrations, and absolute disparities. Although relative disparity in 448 

exposure to PM2.5 from on-road mobile sources is effectively unchanged for Californians of 

color and residents of overburdened communities, the PWM PM2.5 exposures caused by these 450 

mobile sources reduced by approximately 64% for all demographic groups considered during our 

study. On-road mobile source controls have also reduced emissions from a broad suite of TRAPs 452 

(87) that are also of health concern. For example, statewide on-road emissions of carbon 

monoxide, nitrogen oxides, and diesel PM also decreased by ~ 75% (38, 39). Ambient 454 

concentrations of these pollutants have declined substantially in absolute terms, especially at 

sites in overburdened communities (60). These results speak to the value of both aggressive 456 

mobile source control and a multi-pollutant mitigation strategy that considers multiple TRAPs at 

once. Future mitigation efforts should continue this approach to avoid the risk of unintended 458 

consequences of single-pollutant control strategies (52). Despite this success, it is likely that 

relative disparities for other pollutants with similar spatial patterns of on-road emissions have 460 

persisted. Consider for example NOx, for which on-road sources contributed 57% of total 

statewide emissions in 2000. From 2000-2019, our assessment of high-resolution empirical 462 

model predictions shows a ~55% decrease in PWM NO2, but large and moderately increasing 

relative disparities by race-ethnicity (Fig. S3).  464 

It is useful to consider the implications of our retrospective assessment for California’s 

current policy efforts that focus heavily on eliminating exhaust emissions across the on-road fleet 466 

through a combination of electrification and – in the case of HDVs – hydrogen. For every year of 

the study, approximately 90% or more of the PWM PM2.5 exposure (and absolute exposure 468 

disparity) is attributable to exhaust emissions and approximately 80% or more is attributable to 
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secondary formation from precursor exhaust emissions (Fig. S11-S14). Because California’s 470 

policies contemplate eliminating exhaust emissions, this result implies that future vehicle 

electrification has potential to substantially reduce exposures and absolute disparity. 472 

Nonetheless, PWM exposure to non-exhaust primary PM2.5 emissions (i.e., brake- and tire-wear) 

increased somewhat from 2000-2019 (Fig. S18), while relative disparities from non-exhaust 474 

primary PM2.5 remained effectively constant. Non-exhaust emissions would not be fully 

eliminated through electrification and could conceivably be exacerbated by increases in vehicle 476 

mass (88). Thus, future low levels of exposure from non-exhaust emissions (e.g., brake- and tire-

wear) might still disparately affect people of color and residents of overburdened communities.  478 

Our results suggest that relative disparities in exposure will persist without a paradigm 

shift in transportation policy. Some policy approaches have the potential to not merely reduce 480 

aggregate levels of exposure, but also relative disparities. For example, creating low emissions 

zones or promoting mode shift away from private automobiles (e.g., dense public transit 482 

networks, bike lane infrastructure) could be more likely to reduce exposure disparities from the 

on-road vehicle fleet than statewide fleet-specific emissions controls, while also improving air 484 

pollution throughout the system (89). Without systemic changes to transportation infrastructure, 

it seems possible that these relative disparities could persist even in a future, lower emission 486 

scenario. Conversely: by strategically accelerating emission-reductions, such as vehicle 

electrification efforts, with deployment emphasizing overburdened areas, EJ communities could 488 

achieve substantial short-term reductions in relative exposure disparity.  

While we have focused on one sector within California, our findings contribute to an 490 

emerging body of EJ research indicating that to reduce relative disparities in exposure, policy 

must not merely continue a trend of emissions reduction, but also target the disparate 492 

geographical distribution of emissions in overburdened communities. While we focused on 
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California as a case study, it is possible that these general findings would apply across the United 494 

States, as most state and national approaches broadly have mirrored California’s, with a strong 

focus on emission rate reductions. Our work provides a compelling illustration of how a highly 496 

successful emissions reduction strategy does not necessarily reduce relative disparity in 

exposures (20, 21). More research is needed to identify the specific suite of strategies that can 498 

deliver a “triple win” for climate, health, and equity goals. We hypothesize that particularly 

effective strategies may go beyond aggregate emission rate reductions by ameliorating the 500 

inequitable spatial distribution of where activities and emissions take place. Thus, future work 

could explore the environmental equity impacts of potential policy actions and public 502 

investments that fundamentally change transportation infrastructure. 

Methods 504 

Emissions Estimates 

We obtained estimates of mobile emissions in California from CARB’s EMission FACtor 506 

(EMFAC) model (version EMFAC 2021 with MPOv11) for calendar years 2000 through 2019 

(38). The EMFAC model uses detailed California-specific data to estimate emissions by year and 508 

fleet and has been approved by the US EPA (53). Estimated emissions were spatially allocated to 

a 1 km by 1 km grid using surrogates developed by CARB and CARB’s Spatial and Temporal 510 

Allocator (ESTA) model. The ESTA model uses spatial surrogates that are derived from link-

level traffic measurement data combined with population estimates and spatial information about 512 

idling locations, rest stops, and distribution centers (90). The resulting dataset contained spatially 

resolved annual total exhaust, evaporative, brake wear, and tire wear emissions for primary PM2.5 514 

and four precursor species: NOx, VOC, NH3, and SOx. EMFAC2021 reports results for 54 

vehicle categories and five fuel types (gasoline, diesel, natural gas, plug-in hybrid, and electric). 516 

Emissions for this analysis were binned into three main vehicle groups: LDVs, MDVs, and 
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HDVs, with all other vehicle types (including motorcycles, motorhomes, and buses) grouped 518 

together as “Other” (Table S1). Fleet information is derived from detailed data from the 

California Department of Motor Vehicles, the California Highway Patrol, the International 520 

Registration Plan Clearinghouse, and the National Transit Database (38). EMFAC is therefore 

capable of providing a reasonable representation of distinct activity and emissions patterns for 522 

specific vehicle fleets.  

Estimates of Air Concentrations 524 

We modeled annual average PM2.5 concentrations attributable to vehicle emissions in 

California using the Intervention Model for Air Pollution (InMAP) Source-Receptor Matrix 526 

(ISRM)(15, 28, 73). The ISRM was developed from the United States InMAP, which used WRF-

Chem simulations and U.S. Environmental Protection Agency National Emissions Inventory 528 

(NEI) emissions estimates for 2014. The national version of InMAP was sampled on a 

population-weighted, variably-sized grid (n = 21,705; 1 km to 48 km) for the state of California 530 

(15). Approximately 74% of grid cells are the finest resolution, with a population-weighted grid 

size of 2.4 km (urban: 1.2 km, rural: 7.4 km). The gridding algorithm ensures that no cell larger 532 

than 1 km contains more than 20,000 people or a census block group with population density 

higher than 2,500 people/km. 534 

The ISRM relates, for the n = 21,705 grid cells in California, marginal changes in ground-

level concentration in every grid cell to marginal changes in emissions in every cell. Because this 536 

work only evaluates impacts from on-road mobile sources, all concentrations were estimated 

using the ground-level (i.e., 0 – 57 m above ground) layer. 538 

Open-Source Method: ECHO-AIR 

Air pollution modeling, even with reduced complexity modeling tools such as InMAP, can 540 

have major accessibility barriers for non-specialists. For the present analysis, we developed an 
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open-source Python-based pipeline that streamlines exposure concentration and health impact 542 

analyses. The resulting system, called Estimating Concentrations and Health Outcomes – 

Automated ISRM Resource (ECHO-AIR), aims to lower barriers of entry for rapid estimation of 544 

PM2.5 exposure and health assessments. 

Executing ECHO-AIR for analyses in California requires only estimates of emissions, 546 

which can be input as ArcGIS-compatible shapefiles or comma separated value files. ECHO-

AIR is modular, enabling users to employ any ISRM, population data, and health input data, so 548 

long as they are formatted correctly ECHO-AIR is managed through a public GitHub repository 

to ensure transparency, to maximize usability, and to perform routine model upgrades and 550 

maintenance (see Supplementary Text for details). 

Population Estimates 552 

We obtained population data for the years 2000 and 2010 from the decennial United States 

Census for California from the National Historic Geographic Information System (NHGIS) 554 

database version 16.0 (91). Population estimates were queried at the tract level by age, race, and 

Hispanic origin. Consistent with prior literature (4, 8, 9), racial-ethnic categories were estimated 556 

as follows: the population count for Hispanic Californians was defined as Californians of any 

race who were of Hispanic origin; Californians who are not of Hispanic origin and are Black or 558 

African American alone, Asian alone, or white alone were defined as Black, Asian, and white 

Californians, respectively; all other Californians were included in the other category. 560 

Exposure Assessment and Disparity Analysis 

We estimated statewide group-level exposures to annual average PM2.5 as population-562 

weighted mean (PWM) concentrations, consistent with the air pollution disparity literature (3, 8, 

9, 19). For the metrics below, we consider only on-road mobile source exposure (i.e., we neglect 564 

contributions from other source types unless explicitly stated otherwise). To estimate exposure to 
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PM2.5 for each year, we calculate geographic intersections between the 2010 Census tract 566 

boundaries and the gridded concentration estimates. Population is down-sampled based on area-

apportionment; concentration estimates are assumed to be constant throughout the grid cell. 568 

Exposure concentrations are calculated at the smallest geography possible (e.g., polygon 

intersection of Census tract and ISRM grid cell). 570 

The PWM exposure is estimated by multiplying the annual average PM2.5 concentration by 

the population of the demographic group of interest within that grid cell, summing across all grid 572 

cells, and dividing by the total population: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 = ∑ 𝑃𝑃𝑖𝑖,𝑘𝑘×𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑃𝑃𝑖𝑖,𝑘𝑘𝑛𝑛
𝑖𝑖=1

 574 

where PWMk is the population-weighted mean exposure concentration for group k across n 

grid cells, Pi,k is the population of group k in grid cell i, and Ci is the concentration of PM2.5 in 576 

grid cell i. Equity was assessed using the absolute and relative disparities at the population-

weighted mean. The absolute disparity (DA,k) is defined as a demographic group’s population-578 

weighted mean exposure (PWMk) subtracted by the statewide population-weighted mean 

exposure (PWMT): 580 

𝐷𝐷𝐴𝐴,𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 

Relative disparities (DR,k) are estimated as the absolute disparity divided by the statewide 582 

PWM exposure to mobile sources. 

𝐷𝐷𝑅𝑅,𝑘𝑘 =
(𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇)

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
=

𝐷𝐷𝐴𝐴,𝑘𝑘

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
 584 

Because the ISRM is a linear model and the absolute disparity is an arithmetic equity 

metric, absolute disparities can be apportioned to individual source categories to find a relative 586 

contribution to the absolute disparity. Thus, the fractional contribution of a source’s emissions to 

a group’s exposure is estimated as: 588 
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𝑓𝑓𝑗𝑗,𝑘𝑘 =
𝐷𝐷𝐴𝐴,𝑗𝑗,𝑘𝑘

𝐷𝐷𝐴𝐴,𝑡𝑡,𝑘𝑘
 

where fj,k is the fractional contribution from source j on the exposure and disparity for group k, 590 

DA,j,k is the absolute disparity from source j for group k, and DA,t,k is the absolute disparity for 

group k from all on-road mobile sources.  592 
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 946 

Fig. 1. On-road mobile-source PM2.5 exposure and relative disparity in exposure for each 
demographic group. Statewide population-weighted mean PM2.5 exposure concentrations (A) 948 
and relative disparity in exposure (B) attributable to on-road mobile sources for the four largest 
racial-ethnic groups and two policy-relevant environmental justice areas in California. In each 950 
year, relative exposure disparities (B) for each racial-ethnic group are computed in reference to 
statewide average PM2.5 concentration attributable to on-road mobile sources. Concentrations in 952 
overburdened communities designated under California’s Community Air Protection Program 
(AB617, ~10% of state population) and as SB535 Disadvantaged Communities (~25% of state 954 
population) substantially exceed those experienced on average for the most-exposed racial-ethnic 
group, Hispanic Californians. Crucially, despite greater than 50% reductions in mobile-source 956 
population-weighted mean PM2.5 for all groups (A), relative racial-ethnic disparities increased 
for Hispanic, Black, and Asian Californians, as well as residents of overburdened communities. 958 
Here and elsewhere, the “Hispanic” population reflects Californians of any racial group 
identifying on the US Census as Hispanic, while all other groupings exclude Californians 960 
identifying as Hispanic. 
  962 

https://doi.org/10.26434/chemrxiv-2023-669ws-v2 ORCID: https://orcid.org/0000-0001-8339-927X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-669ws-v2
https://orcid.org/0000-0001-8339-927X
https://creativecommons.org/licenses/by/4.0/


 

35 
 

 

Fig. 2. Racial-ethnic population distribution by exposure decile. Differences in racial-ethnic 964 
composition of the California population exposed to each decile of the distribution of PM2.5 
attributable to on-road mobile sources in (A) 2000 and (B) 2019. The statewide population is 966 
binned into ten groups of equal population of PM2.5 exposure attributable to the full vehicle fleet. 
At all years in our assessment, Hispanic Californians are strongly overrepresented among the 968 
highest PM2.5 exposure deciles (and under-represented in the lowest exposure deciles). The 
opposite pattern holds for white Californians. Data are plotted for individual vehicle types and 970 
the analysis midpoint year (2010) in the SI.  

 972 
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 974 

Fig. 3. Contributions to disparity in exposure to mobile-source PM2.5 for Hispanic 
Californians. Two methods of comparing contributions to disparity in PM2.5 exposures from on-976 
road vehicle fleet types shown for the most exposed racial-ethnic group, Hispanic Californians. 
First, we compare the absolute magnitude in contribution from each vehicle group (A, B); then, 978 
we compare the relative disparity in exposure to each vehicle group (C). (A) Absolute disparities 
in PM2.5 exposure from vehicles for Hispanic Californians relative to the overall statewide 980 
population declined between 2000 and 2019, consistent with the overall reduction in emissions 
(Fig. S1) and population-weighted mean PM2.5 concentrations (Fig. 1). (B) Fractional 982 
contributions to the overall disparity that are attributable to each fleet type are estimated by 
normalizing the absolute contribution to disparity attributable to a single fleet type to the total 984 
disparity attributable to all on-road mobile sources. In each year, light-duty vehicle (LDVs) 
emissions are the dominant contributor to the disparately high exposures experienced by 986 
Hispanic Californians. (C) Disparities attributable to emissions of individual vehicle fleet types 
relative to the statewide average PM2.5 exposure attributable to emissions of that individual 988 
vehicle fleet. Note that heavy-duty vehicles (HDVs) especially disparately impact Hispanic 
Californians, even though HDVs are not the dominant contributor to overall emissions (Fig. S1), 990 
PM2.5 concentrations (Fig. 1), or absolute disparities (C). 
  992 
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Fig. 4. Spatial heterogeneity in contributions by fleet to mobile-source PM2.5 exposure. 994 
Contribution to PM2.5 exposures from distinct vehicle fleets is shown at four spatial scales: (A) 
statewide, (B) three major regions, (C) residents of overburdened communities, and (D) for 19 996 
individual communities designated by the state of California through the Community Air 
Protection Program (AB617; see Fig. S2 for identification of each community). At each spatial 998 
scale, pie chart icons indicate the fractional contribution to exposure attributable to each vehicle 
fleet type, with icons scaled in proportion to the population-weighted mean PM2.5 concentration 1000 
from all vehicle types. Light-duty vehicles contribute especially to mobile-source PM2.5 
exposures in Southern California, while the relative contribution from MDVs and especially 1002 
HDVs are comparatively higher in the Central Valley and San Francisco Bay Area. There is 
considerable heterogeneity among AB617 communities in fleet contributions. 1004 
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