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ABSTRACT: We report the development of oxoammonium-catalyzed oxidation of N-substituted amines via a hydride transfer mech-
anism. Steric and electronic tuning of catalyst led to complementary sets of conditions that can oxidize a broad scope of carbamates, 
sulfonamides, ureas, and amides into the corresponding imides. The reaction was further demonstrated on a 100-g scale using a 
continuous flow setup.

The oxidation of N-substituted amines to their corresponding 
amides is a highly useful transformation.1–11 For example, it has 
been used to synthesize N-carbamoyl lactams, which are key 
intermediates in numerous total syntheses and pharmaceutical 
manufacturing processes (Scheme 1B).3–9 While related amine 
functionalizations have been developed to introduce a single ⍺-
substituent by means of transition-metal catalysis, photocata-
lytic hydrogen atom transfer (HAT),12–14 and Shono-type elec-
trolysis,15,16 methodologies for the direct oxidation of both gem-
inal ⍺-C–H bonds to a carbonyl remain scarce. In fact, a survey 
of pharmaceutical patents for the oxidation of carbamates, 
ureas, or amides revealed that over 80%17 of examples employ 
Ru catalysts in combination with NaIO4 or NaBrO3 (Scheme 
1A).1,2 The reliance on an expensive noble metal and the gener-
ation of highly toxic and volatile RuO4 as the active intermedi-
ate may reduce the safety, practicality, and scalability of this 
approach. Other methods using strong inorganic oxidants such 
as KMnO4 or CrO3 suffer from limited substrate generality and 
functional group compatibility. Recently, White et al. pioneered 
the use of non-heme Mn and Fe complexes for the late-stage 
hydroxylation of amine derivatives via metal-oxo-mediated 
HAT.18–20 While the carbonyl product could also be obtained in 
some cases, the method has been predominantly used for the 
functionalization of sulfonamides and amides and has not been 
demonstrated for amide with common N-protecting groups such 
as Boc, Cbz, and Fmoc.20 

In a seminal contribution, Stahl developed the electrochemi-
cal oxidation of cyclic carbamates mediated by 40–60 mol% 
ketoABNO (Scheme 1C).21 The aminoxyl radical is oxidized to 
the corresponding oxoammonium ion that serves as a potent hy-
dride acceptor, formally abstracting a H– from a hydridic ⍺-C–
H bond.22–28 The methodology was later further developed by 
Merck for the oxidation of an Orexin receptor agonist frag-
ment.29,30 However, this approach required high mediator load-
ings due to the formation of an inert aminoxyl-substrate adduct 
upon hydride abstraction 1. Further, it could not currently be 
extended to the oxidation of sulfonamides and amides. 

Scheme 1. Background and introduction. 
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amides) using a catalytic amount of aminoxyl. To achieve cata-
lytic turnover, we sought inspiration from the literature, which 
showed that alkoxyamines analogous to 1 can undergo oxida-
tion to ketones upon exposure to peracids (Scheme 1D).31–33 
This reaction proceeds first through O-atom transfer to the 
alkoxyamine to form an N-oxide followed by a Cope-type elim-
ination to forge the carbonyl group. We aimed to leverage this 
reactivity to activate the otherwise inert catalyst resting state 
(1). Indeed, adduct 3 prepared from N-tosylpyrrolidine and ke-
toABNO+SbF6

– rapidly reacted with meta-chloroperoxybenzoic 
acid (mCPBA), resulting in quantitative formation of product 4 
(Scheme 2A). This reactivity thus provides the missing piece of 
the envisioned catalytic cycle (Scheme 2B). The catalysis be-
gins with hydride transfer from substrate 2 to the oxoammo-
nium form of the catalyst (I), and the resultant hydroxylamine 
III and iminium ion II recombine to generate adduct IV. IV 
undergoes reaction with mCPBA followed by Cope elimination, 
which conveniently furnishes the desired amide product and re-
leases hydroxylamine III. This intermediate is oxidized to the 
oxoammonium ion to close the catalytic cycle.  
Scheme 2. Establishing catalytic turnover. 

 
Under this hypothesis, we found that using mCPBA as the 

terminal oxidant, the oxidation of pyrrolidine 2 readily took 
place in MeCN, providing N-protected amide 4 in up to 95% 
yield with only 5 mol% of ketoABNO (Scheme 2B). With the 
mechanistic basis for catalyst turnover established, we surveyed 
an initial scope of amine derivatives (Scheme 2C). While high 
yields were obtained for carbamate S2, substantially lower con-
version was observed for more electron-poor substrates includ-
ing sulfonamide S7, carbamate S10, and amide S12.  

To broaden the scope of this method, we first carried out ex-
perimental and computational studies to elucidate catalyst 
structural features that influence the rate of hydride abstraction. 
We assembled a library of known aminoxyl radicals (A1–A14) 
and analyzed the steric and electronic properties of their oxo-
ammonium ions (Figure 1B, compounds in black). The elec-
tronic property of the catalysts was reflected by their reduction 
potentials (Ered) determined using cyclic voltammetry (CV).34,35 
The reversibility of the voltammogram also allowed us to di-
rectly assess the stability of the oxoammonium ion, with a fully 
reversible peak indicating that the oxoammonium is stable on 
the voltammetry timescale (i.e., > 3 seconds). The steric acces-
sibility of the oxoammonium reactive site (O=N+) was assessed 
by the percent buried volume (%Vbur), quantifying the percent-
age of space occupied by the catalyst backbone within a sphere 
of radius 2.5 Å centered around the oxygen atom (Figure 
1A).36,37 With these two parameters, a stereoelectronic map was 
created for the collection of catalysts, revealing that there exist 
very few stable oxoammonium ions in the literature that are 
both highly oxidizing and unhindered (upper left corner).38–41 
To address this limitation, we designed and prepared eight new 
aminoxyl radicals (A15–A22, Figure 1A, compounds in blue).  
In particular, AzcF+ (oxidized form of A21) represents the most 
oxidizing stable oxoammonium ion reported to date.  

We then assembled a scope of 12 N-protected amines includ-
ing carbamates, sulfonamides, amides, and a urea, featuring 
various ring sizes and structures that are often encountered in 
bioactive molecules (S1–S12). Through high-throughput exper-
imentation using 384-well plates, we rapidly surveyed all cata-
lyst-substrate combinations in two different solvents, dichloro-
ethane and acetonitrile. Further, each system was investigated 
with and without an acid co-catalyst, HNTf2, which was found 
to improve catalyst turnover in a parallel project in our labora-
tory on the development of oxoammonium-catalyzed ether ox-
idations.42,43 

Analysis of the full dataset (1056 reactions) allowed us to 
categorize all catalysts into four regions on the stereoelectronic 
map based on the observed reactivity (Figure 1A). Region 1 en-
compasses highly oxidizing, unhindered catalysts, which al-
lowed for the activation of the most challenging substrates in-
cluding amides, which showed low conversion with any other 
catalysts. Region 2 includes unhindered catalysts with moderate 
reduction potentials (291–529 mV) and are optimal for the oxi-
dation of sulfonamides and carbamates with high yields and 
clean reaction profiles. Region 3 includes unhindered catalysts 
with low reduction potentials (≤ 204 mV), which selectively re-
acted with N-Boc pyrrolidines S2/S3 and urea S1 in moderate 
yields. Region 4 contains mostly sterically hindered aminoxyls, 
which are universally ineffective catalysts regardless of reduc-
tion potential, in addition to poorly oxidizing A8. While the ma-
jority of these aminoxyls display reversible CV behaviors, three 
species (A6, A15, A18) showed irreversible oxidation waves 
and did not provide catalytic reactivity. This reactivity map 
shows that both steric and electronic factors must be considered 
to predict the hydride accepting tendency of oxoammonium 
ions.

(A) Stoichiometric studies on the turnover of the catalyst-substrate adduct
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Figure 1. (A) Aminoxyl catalyst library and a stereoelectronic reactivity map based on reduction potential and percent buried volume 
(see SI for details). (B) Identification of three complementary sets of optimal reaction conditions via high-throughput screening (2.5 
µmol substrate, 0.05 M concentration, 16 h, r.t.).
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Wholistically, these experiments reveal intricate catalyst-
substrate dependencies with no singular system delivering sat-
isfactory yields for all substrates. Nevertheless, we identified 
three complementary sets of reaction conditions (Condition A–
C) (Figure 1B) that provided reactivity coverage of the entire 
screening panel, using a python script that ranked all ternary 
condition combinations based on the highest average yield 
when the best of three conditions is used for each substrate (see 
SI). Condition A uses commercially available ketoABNO cata-
lyst (A4) in MeCN solvent. Condition B employs TFAZADO 
(A22) with 2.5 mol% HNTf2 additive in DCE solvent. These 
two catalysts occupy a similar region on the stereoelectronic 
map and largely exhibit the same substrate coverage, providing 
reactivity for most carbamates and sulfonamides without 
strongly deactivating groups. In the HTE screening, we found 
that DCE is a superior solvent over MeCN,44 which allowed for 
more electron-deficient substrates such as N-nosylpyrrolidine 
S8 to be oxidized in good yield. However, ketoABNO is incom-
patible with DCE as it readily deactivates through the Baeyer-
Villiger reaction, and the use of TFAZADO is thus necessary in 
Condition B. 

Condition C uses highly oxidizing AzcF (A21) with 2.5 
mol% HNTf2 in DCE, which unlocks the oxidation of amides 
(S11, S12) and substrates bearing strong inductively withdraw-
ing substituents (e.g., S10). However, Condition C provided di-
minished yields for more electron-rich substrates (S1–S6). 
Hemiaminal side products were observed from addition of m-
chlorobenzoate (mCBA, byproduct formed from mCPBA) to 
the iminium intermediates. We attribute this undesired reactiv-
ity to the inefficient formation of the substrate-catalyst adduct 
(II + III → IV in Scheme 2) due to the poor nucleophilicity of 
AzcF-derived hydroxylamine and the comparatively low elec-
trophilicity of the iminium ions of electron-rich carbamates and 
ureas.  

Using the optimal conditions, we then explored the synthetic 
utility of the method (Scheme 3). We first performed further 
reaction optimization and sensitivity study at a 0.2-mmol pre-
parative scale, showing that the protocol is insensitive to the 
presence of air, moisture, and variations in reaction scale and 
concentration. For carbamates, sulfonamides, and ureas, both 
Conditions A and B were investigated, and results from the 

higher yielding condition are presented. The substrates that 
gave poor yields in the above experiments, in addition to the 
most challenging amide substrates, were subjected to Condition 
C. Various N-substituted pyrrolidines (5–10), piperidines (11–
14), azepanes (15, 16), fused bicycles (17–20), a morpholine 
(21), and an acyclic amine (22) were cleanly converted to their 
corresponding imides using Condition A. Notably, the α-C–H 
oxidation (with 5 mol% catalyst) outcompeted olefin epoxida-
tion in vinyl bromide 13 and allyl-β-homoproline 10, as well as 
Baeyer-Villiger oxidation of ketone 17. Condition B proved to 
be competent for the oxidation of Boc- and Fmoc- protected 
proline derivatives (23–26), a dipeptide (27), a nosyl-protected 
pyrrolidine (28), and fused and bridged biheterocycles (29– 31). 
Notably, we are able to obtain oxidized trans-L-3-hydroxypro-
line 25 in 70% yield, providing an alternative to the ruthenium-
mediated oxidation that has been applied in the total synthesis 
of (+)-Febrifugine,45 (-)-Securinine,46 (-)-Allosecurinine,47 and 
Teixobactin.48  

Finally, Condition C enabled the oxidation of gem-difluoro-
cyclopropyl-substituted carbamate 32 and Cbz-Fluoxetine 34, 
as well as the oxidative fragmentation of bridged bicycle 35. 
AzcF’s ability to activate amides (33, 36–41), a ubiquitous mo-
tif in pharmaceuticals and bioactive molecules, enabled the se-
lective oxidation of Asenapine (38) and Ibuprofen (39) deriva-
tives, as well as Noopet (40) and Levetiracetam (41). To address 
the competitive oxygenation of basic nitrogen-containing func-
tional groups by mCPBA, we employed trifluoroacetic acid to 
achieve transient protection,16 which allowed pyridine 42 to be 
obtained in 50% yield.49  

This hydride transfer-mediated method shows complemen-
tary selectivity to radical-based C–H functionalization reac-
tions. Indeed, various substrates studied herein contain weak 
benzylic (6, 11, 14, 34, 38–40), allylic (10, 13), and doubly ben-
zylic (Fmoc in 26) C–H bonds, which are susceptible to HAT,50 
underwent selective amine ⍺-oxidation. Further, functionalities 
that are sensitive to oxidation in Shono-type electrolysis21 and 
RuO4-mediated methods51 such as benzylic C–H bonds, elec-
tron-rich arenes, and olefins are tolerated. 
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Scheme 3. Substrate Scope  
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Figure 2. (A) Schematic of the continuous flow setup for preparative-scale synthesis. (B) Reaction optimization. (C) FT-IR reaction 
monitoring. 

Finally, we demonstrated the potential of this method as an 
alternative to the most frequently employed [Ru]/NaIO4 system 
in preparative-scale applications in process chemistry and total 
synthesis. We chose to investigate the scalability of the oxida-
tion of carbamate 43 using commercially available ketoABNO 
(≈ 6 $/g).52 First, process safety assessment was performed in a 
batch reactor (see SI). The reaction reached full conversion in 2 
h at 25 ˚C with quantitative yield. While the reaction was sub-
stantially faster at 40 ˚C (full conversion in ca. 25 min), a lower 
yield (87%) was obtained and a rapid temperature spike to 70 
˚C was recorded. Indeed, calorimetry measurement showed the 
reaction has a reaction enthalpy (ΔH) of 180 kcal/mol and an 
adiabatic temperature increase was estimated to be 107 ˚C. To 
maintain fast reaction rate while addressing selectivity and 
safety challenges encountered with the batch reactor, we further 
developed a continuous flow process using a Corning G1 glass 
chip type reactor together with a static mixing unit (Figure 2A). 
A two-stream system was constructed followed by a MeOH 
quenching line, which served to dissolve mCBA byproduct. 
Upon optimization, 100% conversion was achieved in a short 
residence time of 15 min at a temperature of 48 ˚C. Solution 
temperature at the exit was stable and matched that of the blank 
solvent. Real-time FT-IR monitoring at the exit showed that the 
conversion and yield were consistent over the course of reaction 
and the residue mCPBA remained minimum. Overall, a contin-
uous flow run of 544 min processed 93.8 g of amide 43 and 
produced desired 7 in average 94% assay yield.  

In summary, we developed an oxoammonium-catalyzed 
chemoselective oxidation of N-substituted amines, which ex-
hibits a broad substrate scope and can be readily scaled using 
continuous flow. This reaction undergoes a hydride transfer 
mechanism, which remains underexplored in C–H functionali-
zation but provides complementary reactivity and selectivity to 
widely established radical-based approaches. 
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