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ABSTRACT:	Fluorine	substitution	is	a	powerful	strategy	in	asymmetric	synthesis	to	tune	the	properties	of	chiral	catalysts,	
ligands,	and	auxiliaries.	Herein,	we	demonstrate	that	the	enhanced	electrophilicity	of	N-perfluorobutanesulfinamide	auxil-
iary-derived	imines	enables	a	highly	selective	decarboxylative	Mannich	reaction	under	mild	conditions.	The	molecular	sieves-
mediated	transformation	tolerates	a	broad	substrate	scope	and	produces	chiral	b-amino	thioesters	in	high	yield	and	stere-
oselectivity.	Additionally,	we	demonstrate	that	the	N-perfluoroalkyl	sulfinyl	group	can	function	as	a	phase	tag	for	fluorous	
purification,	thus	enabling	the	rapid	and	simple	isolation	of	the	chiral	amine	products	by	solid-phase	extraction.	The	synthetic	
utility	of	 this	method	 is	 illustrated	by	 the	synthesis	of	 the	bioactive	natural	product	negamycin,	and	 the	small	molecules	
sitagliptin	and	ruspolinone.

The	 introduction	of	 fluorine	atom(s)	 into	organic	mole-
cules	can	profoundly	influence	their	physical,	chemical,	and	
biological	properties.1	In	medicinal	chemistry,	fluorine	sub-
stitution	 has	 emerged	 as	 a	 powerful	 strategy	 to	 enhance	
metabolic	 stability,	 increase	bioavailability,	 and	boost	po-
tency.2	Fluorine’s	unique	properties,	such	as	 its	high	elec-
tronegativity,	small	size,	and	strong	bonding	with	carbon	at-
oms	has	also	been	exploited	in	asymmetric	synthesis.3,4	The	
incorporation	 of	 fluorine	 atom(s)	 into	 the	 carbon	 frame-
work	 of	 a	 chiral	 catalyst,	 ligand,	 or	 auxiliary	 can	 signifi-
cantly	 alter	 their	 conformational,	 steric,	 and	 electronic	
properties.	Gilmour	and	co-workers	demonstrated	that	the	
fluorine	 atom	 in	 the	 proline-derived	 organocatalyst	 1	
serves	as	a	chemically	inert	steering	group,	controlling	the	
catalyst’s	topology	through	the	stabilization	of	a	favorable	
gauche	 conformation	 (Figure	 1A).5,6	 The	 strong	 electron-
withdrawing	effect	of	perfluoroalkyl	groups	has	also	been	
exploited	to	increase	the	acidity	of	chiral	diol	ligands	(such	
as	 F8BINOL	2),7	 and	 to	 increase	 the	 reactivity	 of	N-alkyl-
sulfinamide	auxiliaries	(such	as	3).8,9		
In	addition	to	their	steric	and	electronic	properties,	per-

fluoroalkyl	chains	are	considerably	more	hydrophobic	than	
alkyl	chains	and	are	capable	of	self-association.10	Fluorous	
purification	harnesses	this	property	to	selectively	partition	
organic	compounds	containing	perfluoroalkyl	chains	onto	a	
fluorous	solid	phase.	As	a	result,	 compounds	containing	a	
fluorous	tag	can	be	readily	separated	from	non-fluorinated	
compounds	by	a	simple	filtration	process	known	as	fluorous	
solid-phase	extraction	(F-SPE).11	The	addition	of	perfluoro-
alkyl	chains	to	valuable	ligands	or	auxiliaries	(such	as	4),12	
or	excess	reactants	(such	as	5),13	allows	for	their	easy	re-
covery	or	removal	from	a	reaction	mixture	by	F-SPE	(Figure	
1A).	Alternatively,	fluorous	protecting	groups	(such	as	6)14	
can	be	 attached	 to	 substrates	as	protection	 for	 a	 reactive	
functional	group	and	as	a	phase	tag	for	fluorous	separation.	
This	strategy	has	been	used	as	an	alternative	to	solid	phase	
synthesis	in	the	creation	of	small	molecule	libraries,	and	in	
the	multi-step	synthesis	of	peptides	and	oligonucleotides.15	
In	this	work,	we	sought	to	combine	these	desirable	features	
by	harnessing	the	perfluorosulfinamide	auxiliary	3	as	both	

an	activated	chiral	auxiliary,	and	as	a	fluorous	phase	tag	in	
a	mild	decarboxylative	Mannich	reaction.	

	

Figure	 1.	 (A)	 Flourine	 in	 asymmetric	 catalysis	 (left)	 and	 in	
flourous	purification	(right).	(B)	The	addition	of	ester	enolates	
to	 N-alkylsulfinyl	 aldimines.	 (C)	 This	 work:	 the	 addition	 of	
MAHTs	to	N-perfluoroalkylsulfinyl	aldimines.		

The	 addition	 of	 nucleophiles	 to	 chiral	 N-alkylsulfinyl	
imines	is	a	widely	used	strategy	for	the	asymmetric	synthe-
sis	of	diverse	amine-containing	compounds.16	In	particular,	
the	addition	of	an	ester	enolate	into	an	enantiopure	N-tert-
butanesulfinyl	aldimine	is	a	powerful	method	to	generate	b-
amino	esters,	with	important	applications	in	the	synthesis	
of	 chiral	 amines,	 b-amino	 acids,	 and	 diverse	 N-
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heterocycles.17	In	this	widely	used	transformation,	the	ester	
enolates	are	prepared	by	transmetalation	of	a	lithium	eno-
late	with	ClTi(OiPr)3	at	low	temperature	(Figure	1B).18,19	An	
attractive	and	greener	strategy	to	generate	ester	enolates	is	
through	the	decarboxylation	of	malonic	acid	half	oxyesters	
(MAHOs).20	 In	 particular,	 malonic	 acid	 half	 thioesters	
(MAHTs)	have	become	popular	as	ester	enolate	equivalents,	
as	they	provide	access	to	the	thioester	enolate	under	mild	
reaction	conditions,	avoiding	the	use	of	either	strong	bases,	
Lewis	acids,	or	low	temperatures.21,22	Despite	the	growing	
application	of	MAHTs	in	asymmetric	C–C	bond	forming	re-
actions,23	their	use	as	enolate	equivalents	in	the	Mannich	re-
action	with	 chiral	N-alkylsulfinyl	 imines	 has	 not	 been	 re-
ported.24–26	 We	 hypothesized	 that	 N-alkylsulfinyl	 imines	
were	 not	 sufficiently	 electrophilic	 for	 this	 addition	 reac-
tion.27	And	indeed,	we	did	not	observe	any	reaction	during	
an	initial	exploration	of	the	addition	of	a	MAHT	to	a	N-tert-
butanesulfinyl	aldimine.		
Previously,	 Liu	 and	 co-workers	 demonstrated	 that	 N-

fluoroalkylsulfinyl	 imines	 formed	 by	 the	 condensation	 of	
perfluoroalkylsulfinamides	(such	as	3)	and	carbonyl	com-
pounds	displayed	enhanced	electrophilicity,	and	as	a	result	
could	undergo	a	range	of	addition	reactions	under	mild	con-
ditions.8,28,29	Subsequently,	the	Ellman	group	demonstrated	
that	the	higher	reactivity	of	the	N-fluoroalkylsulfinyl	imine	
was	 essential	 for	 achieving	 reactivity	 in	 a	 rhodium(III)-
catalyzed	C–H	addition	reaction.30	Inspired	by	this	work,	we	
hypothesized	that	the	higher	reactivity	of	the	N-fluoroalkyl-
sulfinyl	aldimine	might	enable	the	decarboxylative	Mannich	
reaction	with	MAHTs.	Furthermore,	we	proposed	that	the	
perfluoroalkyl	chain	of	3	could	serve	as	a	phase	tag	to	ena-
ble	 the	 efficient	 isolation	of	 the	 chiral	 amine	products	 by	
fluorous	purification	(Figure	1C).	
	

Table	1.	Optimization	of	Reaction	Conditionsa	

	
entry	 metal	 base	 add.	 9a	[%]b	 d.r.	
1	 Cu(II)	 5-OMe-BZI	 –	 >99	 68:32	
2	 –	 5-OMe-BZI	 –	 33	 90:10	
3	 –	 5-OMe-BZI	 4Å	MS	 >99	 91:9	
4	 –	 –	 4Å	MS	 >99	 91:9	
5c	 –	 –	 4Å	MS	 >99													 94:6	
		6c,d	 –	 –	 4Å	MS	 89	 >99:1	

aReaction	conditions:	7a	(1	equiv),	MAHT	8	(1.20	equiv)	in	THF	
(0.15	M)	at	23	°C.	bDetermined	by	1H	NMR	relative	to	ethylene	
carbonate	as	an	internal	standard.	c1,4-dioxane	(0.15	M).	dIso-
lated	 yield	 and	d.r	 after	 column	 chromatography.	 add.,	 addi-
tive;	5-OMe-BZI,	5-methoxybenzimidazole.	

 

We	 began	 our	 studies	 by	 investigating	 the	 addition	 of	
MAHT	8	to	N-perfluorosulfinyl	benzaldimine	7a	(Table	1).	
The	 N-fluoroalkylsulfinyl	 imines	 (e.g.	 7a)	 are	 readily	 ac-
cessed	by	condensation	of	the	corresponding	aldehyde	with	

N-perfluorobutanesulfinamide	 3	 at	 ambient	 temperature	
using	 titanium(IV)	 isopropoxide	 [Ti(OiPr)4]	 as	 the	 dehy-
drating	reagent	(see	supplementary	materials).	The	imines	
can	be	directly	used	in	the	subsequent	Mannich	reaction	af-
ter	filtration	through	a	plug	of	silica	followed	by	removal	of	
the	solvent.	The	Shair	lab	had	previously	reported	the	addi-
tion	 of	MAHTs	 to	 benzaldehyde	using	 a	 combination	 of	 a	
Cu(II)	 salt	 [Cu(2-ethylhexanoate)2]	 and	 a	 weak	 amine	
base.31	 Using	 these	 conditions,	 we	 observed	 quantitative	
conversion	to	the	desired	b-amino	thioester	product	9a,	alt-
hough	with	poor	diastereoselectivity	(entry	1).	A	screen	of	
metal	salts	did	not	noticeably	improve	the	reaction	outcome	
However,	removal	of	the	Cu(II)	salt	resulted	in	a	significant	
increase	in	diastereoselectivtiy	(90:10	d.r.),	although	with	a	
concomitant	 decrease	 in	 yield	 (entry	 2).	 4Å	 molecular	
sieves	(0.6	g/mmol)	were	subsequently	identified	as	an	im-
portant	additive,	resulting	in	quantitative	conversion	to	the	
desired	 product	 (entry	 3).	 Molecular	 sieves	 have	 been	
shown	to	play	an	important	role	in	many	asymmetric	trans-
formations,	in	particular	decarboxylative	reactions.32	Inter-
estingly,	a	control	reaction	revealed	that	removal	of	the	5-
methoxybenzimidazole	 had	 no	 impact	 on	 the	 outcome	 of	
the	 reaction	 (entry	 4),	 demonstrating	 that	 the	 molecular	
sieves	were	 sufficient	 to	 catalyze	 the	 transformation	 (see	
supplementary	materials).	Further	optimization	of	the	reac-
tion	 conditions	 identified	 1,4-dioxane	 as	 the	 optimal	 sol-
vent,	 leading	 to	 the	 formation	 of	 the	 b-amino	 thioester	
product	9	 in	quantitative	yield	and	high	selectivity	(entry	
5).	Chromatographic	purification	provided	9a	as	a	single	di-
astereomer	in	89%	yield	(entry	6).	
Having	established	that	the	activated	auxiliary	could	fa-

cilitate	 the	 decarboxylative	 Mannich	 reaction,	 we	 next	
sought	to	investigate	if	it	also	could	function	as	a	phase	tag	
for	fluorous	purification.	We	tested	this	using	two	different	
reusable	fluorous	solid	phases:	fluorous	silica	and	polytet-
rafluoroethylene	(PTFE)	beads.15,33,34	 In	both	cases,	a	two-
phase	 washing	 protocol	 was	 used;	 first	 removal	 of	 non-
fluorous	 impurities	 using	 a	 fluorophobic	 solvent	mixture	
(H2O:acetonitrile	or	H2O:acetone),	followed	by	recovery	of	
the	fluorous-tagged	product	using	a	fluorophilic	solvent	(ac-
etonitrile	 or	 ethylacetate).	 The	b-amino	 thioester	9a	 was	
isolated	in	89%	and	92%	respectively,	in	<10	minutes,	and	
using	minimal	solvent	(Figure	S1).		
With	 the	 optimal	 reaction	 conditions	 and	 purification	

method	 in	 hand	 we	 explored	 the	 scope	 of	 the	 transfor-
mation	 (Figure	1).	Aromatic	 imines	with	meta,	ortho,	 and	
para-substitution	 gave	 the	Mannich	 products	 in	 excellent	
yield	and	high	selectivity.	Various	functional	groups	such	as	
fluoride	(c),	chloride,	(d	&	l)	nitro	(e),	trifluoromethyl	(f	&	
o),	alkene	(k),	and	nitrile	(g)	were	all	tolerated.	The	mild-
ness	 of	 the	 reaction	 conditions	 as	 highlighted	 by	 the	 ab-
sence	of	any	exogenous	base	enables	the	reaction	to	tolerate	
sensitive	functionalities	such	as	an	ester	(m),	methylketone	
(n),	and	an	unprotected	hydroxyl	group	(p).	Oxygen,	nitro-
gen,	and	sulfur	containing	heteroaromatic	imines	(q,	r,	&	t),	
including	 the	Lewis	basic	pyridine	 imine	(s)	provided	 the	
Mannich	product	 in	high	yield	and	selectivity.	While	elec-
tron-rich	napthyl	(j),	alkyl-,	and	acetamide-substituted	aro-
matic	imines	(b	&	h)	were	quantitatively	converted	to	the	
desired	product,	 4-methoxybenzaldehyde	 (i)	 containing	 a	
strong	resonance	donating	group	was	unreactive	under	the	
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standard	reaction	conditions.	However,	as	no	side	product	
formation	occurred	during	the	reaction,	 the	reaction	tem-
perature	 could	 be	 increased	 to	 60	 °C	 to	 facilitate	 the	

addition	 of	 MAHT	 8	 to	 4-methoxybenzaldimine	 in	 76%	
yield	and	without	erosion	of	selectivity	(94:6	d.r.).	
		

 
Figure	1.	(A)	Substrate	scope	for	the	decarboxylative	Mannich	reaction.	Reactions	were	performed	on	a	0.15-mmol	scale	with	respect	
to	the	imine	in	1,4-dioxane	(0.15	M)	for	24-72	hours	at	23	°C	unless	otherwise	stated.	aReaction	at	60°C	using	2	equivalents	of	MAHT	
8.	bOn	a	1.0	mmol	scale.	Isolated	yields	and	d.r.	values	after	F-SPE	(fluorous	silica)	are	reported.	d.r.	values	were	determined	by	1H	
NMR	spectroscopy.	Red,	oxygen;	blue,	nitrogen;	gray,	carbon;	yellow,	sulfur;	green,	fluorine;	white,	hydrogen.	See	the	Supplementary	
Materials	for	experimental	details.	

The	method	is	also	compatible	with	typically	challenging	
enolizable	aliphatic	aldimines,	including	linear	imines	con-
taining	phenyl	(v),	alkyne	(w),	ester	(x),	bromide	(z),	and	
silyl	alcohol	(aa)	functional	groups.	Branched	(ab,	ac	&	ad)	
and	cyclic	imines	(ae	&	af)	were	also	converted	to	the	cor-
responding	b-amino	thioesters	in	high	yield	and	selectivity.	
Indeed,	the	reactivity	and	selectivity	of	the	transformation	
was	not	significantly	influenced	by	the	steric	encumbrance	
of	the	imine,	as	demonstrated	by	the	similar	reaction	out-
come	observed	for	the	simple	acetyl	imine	(u)	and	hindered	
branched	and	cyclic	aliphatic	imines	(ac	&	af).	Finally,	un-
saturated	imines	were	quantitatively	converted	to	the	de-
sired	 Mannich	 products	 (ag	 &	 ah),	 although	 the	 alkynyl	
product	9ah	was	obtained	with	poor	selectivity.	As	exem-
plified	 by	 9y,	 the	 reaction	 proceeds	 in	 high	 yield	 and	

selectivity	at	1	mmol	scale.	The	relative	and	absolute	stere-
ochemistry	of	the	major	Mannich	products	were	unambigu-
ously	assigned	by	crystal	structures	of	an	aromatic	(9l),	het-
eroaromatic	(9t),	and	aliphatic	(9af)	β-amino	thioester.	
The	 enantioenriched	 β-amino	 thiopropionate	 products	

are	synthetically	important	building	blocks	that	can	be	eas-
ily	 transformed	 into	 pharmaceutically	 active	 compounds.	
Thioester	 9ai	 was	 converted	 into	 N-sulfinyl-protected	
sitagliptin	 12	 through	 sequential	 1,3-dibromo-5,5-dime-
thylhydantoin	(DBDMH)-mediated	hydrolysis	and	coupling	
with	piperazine	10.	F-SPE	purification	of	amide	11	followed	
by	N-sulfinyl	deprotection	completed	an	expedient	synthe-
sis	of	 the	antidiabetic	drug	 (–)-(R)-sitagliptin	12	 (Scheme	
1A).35	 β-Amino	 thioesters	 also	 provide	 a	 powerful	 entry	
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point	to	chiral	β-amino	ketones	via	Pd-mediated	transfor-
mations	 with	 diverse	 coupling	 partners.36	 A	 Liebeskind–
Srogl	cross-coupling	of	thioester	9aj	with	boronic	acid	13	
yielded	β-amino	ketone	14	after	F-SPE.37	Finally,	a	one-pot	
N-sulfinyl	 deprotection	 and	 intramolecular	 SN2	 displace-
ment	under	basic	conditions	furnished	pyrrolidine	alkaloid	
(+)-ruspolinone	 15	 in	 four	 steps	 from	 4-chlorobutanal	
(Scheme	1B).	In	each	case,	 the	fluorous-tagged	intermedi-
ates	were	easily	separated	by	F-SPE,	thereby	avoiding	col-
umn	chromatography	over	multiple	steps.		
We	also	 sought	 to	demonstrate	 that	 the	b-amino	group	

can	be	selectively	derivatized	in	the	presence	of	the	thioe-
ster	or	other	labile	moieties	(Scheme	1C).	The	complex	β-
amino	acid	17	is	a	known	intermediate	in	the	synthesis	of	
the	natural	product	negamycin	(19),	a	broad	spectrum	an-
tibiotic	with	activity	against	antibiotic	resistant	Gram-neg-
ative	 organisms.38	 Our	 synthesis	 of	 this	 key	 intermediate	

began	with	aldehyde	16,	which	was	synthesized	from	com-
mercially	 available	 ethyl	 (R)-(+)-4-chloro-3-hydroxybuta-
noate	according	to	a	procedure	reported	by	Hayashi	and	co-
workers	(Scheme	S3).39	Ti-mediated	condensation	of	alde-
hyde	16	with	N-perfluorosulfinamide	3	followed	by	a	Man-
nich	reaction	of	the	resulting	N-sulfinyl	imine	with	MAHT	8	
provided	the	β-amino	thioester	9ak	in	high	yield	(90%)	and	
selectivity	 (96:4	 d.r.).	We	 have	 shown	 that	 the	N-sulfinyl	
group	can	be	selectively	removed	using	cesium	carbonate	
(Cs2CO3)		at	ambient	temperature	(Scheme	1A).	When	this	
reaction	is	performed	in	the	presence	of	a	suitable	electro-
phile	such	as	di-tert-butyl	decarbonate	(Boc2O),	the	direct	
in	situ	protecting	group	exchange	is	achieved	in	96%	yield.	
Hydrolysis	 of	 the	 thioester	 furnished	 the	 known	β-amino	
acid	17.	Coupling	of	the	acid	with	hydrazine	18	and	global	
deprotection	 using	 HCl	 completed	 the	 synthesis	 of	 (+)-
negamycin	19.		

	

Scheme	1.	(A)	Synthesis	of	(–)-(R)-sitagliptin	(12).	(B)	Synthesis	of	(+)-ruspolinone	(15).	(C)	Synthesis	of	(+)-negamycin	(19).	See	
the	Supplementary	Materials	for	experimental	details.

	
In	conclusion,	we	report	an	exceptionally	mild	decarbox-

ylative	Mannich	reaction	that	is	uniquely	enabled	by	the	ac-
tivated	N-perfluorobutanesulfinamide	 auxiliary.	 The	 reac-
tion	occurs	at	ambient	temperature	and	requires	molecular	
sieves	as	the	sole	catalyst.	The	transformation	is	robust	and	
produces	 the	 b-amino	 thioester	 products	 in	 consistently	
high	 yields	 and	 selectivity	 across	 a	 diverse	 range	 of	 sub-
strates.	Furthermore,	we	demonstrated	that	the	N-fluoroal-
kylsulfinyl	functionality	could	serve	as	a	phase	tag	for	fluor-
ous	purification.	This	enabled	the	efficient	synthesis	of	the	
small	molecules	sitagliptin	and	rusopilone	and	the	natural	
product	 negamycin.	 We	 anticipate	 that	 N-perfluorobu-
tanesulfinamide’s	 dual	 features	 as	 an	 activated	 auxiliary	
and	fluorous	phase	tag	will	be	valuable	in	the	multi-step	or	
combinatorial	 synthesis	 of	 chiral	 amine	 containing	mole-
cules.	
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