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Graphical Abstract 

 

Abstract 

Cheminformatics and Machine Learning (ML) have seen exponential progress in the last decade, 

in the field of chemical risk assessment, due to their efficiency, accuracy, and reliability. The 

constant evolution of New Approach Methodologies (NAM) has inspired researchers around the 
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globe to deviate from conventional approaches and adopt or develop new, “unconventional” 

methods. The classification Read-Across Structure-Activity Relationship (c-RASAR) is an 

unconventional approach that utilizes similarity and error-based information from the nearest 

neighboring compounds into a Machine Learning modeling framework, resulting in enhanced 

predictivity. Although this technique has so far been applied to molecular descriptors, we have 

applied this approach in the present study on molecular fingerprints along with conventional 

molecular descriptors for ML-based model development from a recently reported highly curated 

set of orally active nephrotoxic drugs. We initially developed ML models using nine different linear 

and non-linear algorithms separately on molecular descriptors and MACCS fingerprints, thus 

generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling 

descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, 

and the most discriminating RASAR descriptors were used to develop another set of 18 different 

ML c-RASAR models. All 36 models were cross-validated 20 times with a 5-fold cross-validation 

strategy, and their predictivity was checked on the test set data. A multi-criteria decision-making 

strategy – the Sum of Ranking Differences (SRD) approach - was adopted to identify the best-

performing model based on robustness and external validation parameters. This statistical analysis 

suggested that the c-RASAR models had an overall good performance, while the best-performing 

model was also a c-RASAR model. This model was used to screen a true external set data prepared 

from the known nephrotoxic compounds of DrugBankDB. These results also showed that our 

model efficiently identifies nephrotoxic compounds. The t-SNE analyses on the descriptors, 

fingerprints, and the RASAR descriptor spaces inferred that the RASAR descriptors efficiently 

encode the chemical information, as evident from the tight and distinct clustering of the data points. 

Additionally, the molecular descriptors and the corresponding RASAR descriptors were used to 

identify potential activity cliffs using the ARKA framework. 

Keywords: c-RASAR, Machine Learning, Sum of Ranking Differences (SRD), Nephrotoxicity, 

ARKA, t-SNE   

Introduction 

Kidneys, one of the most vital organs of the human body, are two bean-shaped organs responsible 

for filtering out toxic substances and metabolites from the blood, thus helping to excrete them from 

the body, resulting in detoxification. However, their efficiency is significantly reduced when 
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certain external or internal factors prevent their proper functioning. Drug-Induced Kidney Injury 

(DIKI) has been a significant contributor to this issue since various drugs result in kidney damage 

either directly or indirectly [1]. It has been observed that out of every five drugs reaching Phase 

III of the clinical trial, one drug has been withdrawn due to its associated nephrotoxic effects [2]. 

Typically, antihypertensive classes of drugs like Diuretics, angiotensin receptor blockers, 

angiotensin-converting enzyme inhibitors, calcium channel blockers, and painkillers belonging to 

the class of cyclooxygenase inhibitors work by disrupting the renal hemodynamics and the 

glomerular filtration pressure [3].  Additionally, drugs like zalcitabine, cisplatin, and amphotericin 

B, among others, are responsible for the damage of renal mitochondrial constituents, thus aiding 

in the disruption of cellular energy production [4]. Other drugs like Tacrolimus, Acyclovir, and 

Puromycin are responsible for the decreased oxidative phosphorylation, crystal deposition in the 

glomerulus or the renal tubule, and formation of abnormal proteins resulting in stress to the 

endoplasmic reticulum, respectively. Therefore, it is essential to determine the nephrotoxic 

potential of drugs and drug-like molecules at an early stage of the drug discovery pipeline for a 

better future and to avoid the colossal expenses of developing unsuccessful drug candidates. 

Essentially, it takes a lot of time, labor, and cost to experimentally determine the nephrotoxic 

potential of drugs, and this results in the shift in paradigm towards adopting computational 

approaches that are fast, reliable, more efficient, and less expensive. 

In silico approach is one of the go-to methods to generate fast and reliable predictions of a 

particular endpoint, for any query compound. With the development of the Quantitative Structure-

Activity Relationship (QSAR) studies, scientists have successfully been able to correlate a 

molecule's structural and physicochemical features with the target endpoint [5]. Typically, this 

consists of a mathematical model where the structural and physicochemical features are considered 

a linear function of the target response. However, modern QSARs have considerably deviated from 

this simplicity and have started to consider non-linear relationships of the features with the target 

response. This is where various Machine Learning (ML) and Deep Learning (DL) algorithms have 

now been successfully integrated into the QSAR paradigm [6]. ML concepts are used not only in 

the context of model development but also for the proper and judicious identification of the 

essential features that have some relationship with the response values. In terms of modeling data 

points, the availability of various ML approaches is essentially required as they capture different 

linear and non-linear relationships in different data structures. With the advent of neural networks 
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and DL, the modern world has been presented with various highly precise tools that effectively 

encode various hidden patterns among data.  However, from a statistical point of view, we find 

that traditional QSAR models are not often reliable when modeling small datasets. This is because 

small dataset modeling warrants a considerable amount of feature space that leads to considering 

a larger pool of modeling descriptors, thus reducing the degree of freedom of the developed model 

[7]. Adherence to non-statistical approaches like Read-Across is common nowadays, especially 

for dealing with small datasets [8-9]. In its simplest form, Read-Across identifies close congeners 

of a particular query compound, and its property prediction is obtained using the experimentally 

known data of the close source neighbors [10]. Although this is a popular tool in predictive 

toxicology, its only limitation is that, in most cases, one cannot directly understand the relative 

contribution of the features quantitatively. To compile the advantages of both the QSAR and Read-

Across approaches, Roy’s group developed the quantitative Read-Across Structure-Activity 

Relationship (q-RASAR) approach that inducts the concepts of Read-Across into a mathematical 

modeling framework, using the Read-Across-derived similarity and error-based measures as 

descriptors [11-12]. Although the term q-RASAR is applied to modeling quantitative endpoint 

data, this concept has been further extended to the field of classification modeling, where the 

classification RASAR models are termed c-RASAR [13]. This novel chemometric technique has 

been shown to enhance predictivity compared to the conventional QSAR models in various 

previous studies, although utilizing the same amount of chemical space [14-18]. As evident from 

the previous studies [19-21], another important property of q-RASAR and c-RASAR models is 

that they can generate models using a lower number of descriptors with enhanced predictivity 

compared with the corresponding QSAR models. What differentiates the RASAR descriptors from 

the conventional QSAR descriptors of a compound is that the latter describes the property of that 

particular compound, while the former represents the information of its close source neighbors 

[22]. Moreover, the computation of the RASAR descriptors involves the standard concepts of 

Machine Learning (ML), where we optimize the Read-Across hyperparameters and accordingly 

use that setting to compute the RASAR descriptors. Therefore, even in a linear q-RASAR or c-

RASAR model, the used RASAR descriptors have originally been derived through a nonlinear 

function, which paves the path to a novel idea where it is possible to encode non-linear 

relationships into a linear modeling framework [14].  
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A few computational modeling studies of the nephrotoxicity of chemicals and drugs have been 

reported previously [23-25]. However, these studies involved data sets that included organic 

chemicals (non-drugs), herbal medicines, and responses with conflicting reports. This means that 

those modeling sets did not represent highly curated data for the nephrotoxicity of drugs. Recently, 

Connor et al. [26] published a highly curated set of nephrotoxicity of orally active drugs which we 

have used here for c-RASAR model development. So far, most of the studies on applying q-

RASAR and c-RASAR models have centered on using descriptors, and its application on chemical 

space defined by fingerprints has remained an unexplored area. Therefore, we have developed 

QSAR models in this study using the standard 0-2D descriptor matrix and the MACCS fingerprint. 

Consequently, the standard QSAR descriptors and the MACCS fingerprints defined two different 

molecular structure representations. After that, we developed c-RASAR models based on the two 

different feature matrices. We have applied various machine learning modeling algorithms to the 

QSAR and RASAR descriptors. The best models and the employed modeling algorithms were 

determined using the Sum of Ranking Differences (SRD) approach [27]. Using the best model, we 

have additionally screened a true external set of data and determined the generalizability of our 

model. Additional analyses involving the development of t-SNE plots on the four different feature 

spaces inferred that the RASAR descriptors more efficiently encoded the complete chemical 

information. Additionally, various activity cliffs were identified using the novel supervised 

dimensionality reduction framework – ARKA [7], and their nature has been explained using the 

information of their closest congeners. 

Materials and Methods 

Collection of the Nephrotoxicity data 

A list of 317 orally active nephrotoxic drugs was assembled from the works of Connor et al. [26] 

and has been provided in Supplementary Materials SI-1. The motive of the work of Connor et 

al. was to create a complete, comprehensible, and curated dataset that can be used for new approach 

methodologies (NAMs). This study identified different orally administered drugs and their 

nephrotoxicity data from different literature sources. To generate a comprehensive nephrotoxicity 

dataset, they verified the listed nephrotoxicity data from various literature sources, including 

external sources like the FDA and DrugBankDB. This careful curation performed as per the 

strategy described in [28] was essential as it was observed that different literature sources often 
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had contrasting nephrotoxicity data for a particular drug molecule. Additionally, some 

nephrotoxicity data had contrasting inferences when verified with the data from different sources 

like the FDA and DrugBankDB. As per the OECD principle 1 (“A defined endpoint”), the authors 

believe that Connor et al. did a fantastic job that can prevent the model development process from 

being misled in the presence of erroneous observed data.  

Structural representation and chemical curation   

The SMILES notations were used to draw the structures in MarvinSketch 

(https://chemaxon.com/marvin). The structures were manually curated to remove mixtures and 

inorganic components. Further curation steps involved adding explicit hydrogens and converting 

the ring systems to their aromatic form. The curated compounds were then saved in a single .sdf 

file to calculate descriptors and fingerprints. 

Calculation of descriptors and fingerprints 

The descriptors and fingerprints were calculated using the alvaDesc software [29]. Simple 0-2D 

descriptors from the classes of constitutional indices, ring descriptors, molecular properties, 

functional group counts, atom-centered fragments, atom-type E-state indices, 2D atom pairs, 

connectivity indices, and extended topochemical atom (ETA) indices were calculated. 

Additionally, MACCS-166-bit fingerprints were calculated for all the molecules. The descriptor 

matrix and fingerprint matrices were saved in two different Excel files.  

 

Data Pre-treatment 

Among the large number of computed descriptors and MACCS fingerprints, there were a lot of 

features that possess significant inter-correlation, noise and some missing values that are 

considered as “string” entities. Since these are impeding factors for the development of a 

statistically meaningful model, such descriptors and fingerprints were removed using the Java-

based Data Pre-Treatment tool available from https://teqip.jdvu.ac.in/QSAR_Tools/.  

Dataset splitting 
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The standard practice in developing QSAR models is to assess their performance on the training 

data and check how the developed models generalize with the unseen data. Following this, we split 

the dataset into training and test sets, where the training set was used to develop models while the 

test set was used to evaluate the predictive performance on unseen data.  

At first, we separated the actives and inactives of our dataset. Considering the active compounds 

only, a t-distributed Stochastic neighbor embedding (t-SNE) plot [30] was developed using the 

pre-treated 0-2D descriptor matrix. The t-SNE values (t-SNE1 and t-SNE2), thus obtained, were 

temporarily considered as a descriptor matrix to encode non-linear relationships in our data 

division process. Using this temporary descriptor matrix (consisting only of t-SNE1 and t-SNE2), 

we have applied the Euclidean distance-based division algorithm to divide the active dataset into 

training and test sets, employing the Dataset division tool available from 

https://teqip.jdvu.ac.in/QSAR_Tools/. Next, we considered the inactive compounds only and 

performed the same algorithm using t-SNE to have another set of training and test sets. Finally, 

the training set of the actives and inactives were merged to obtain a complete training set. Similarly, 

the test set of the actives and inactives were merged to obtain a complete test set. It is to be noted 

that the finally obtained training and test sets were composed of the pre-treated 0-2D descriptor 

matrix. For the MACCS dataset, we have maintained the same training and test set data 

composition as obtained using the process as mentioned earlier. 

 

Feature selection of the molecular descriptors 

Among the different descriptors computed, it was essential to identify the features most likely to 

affect the target outcome. For this, we have employed the most discriminating feature selection 

technique, a.k.a. molecular spectrum analysis [31], to identify the essential features. This technique 

computes the absolute mean difference of the normalized values of a particular descriptor in the 

active and inactive classes. The descriptors that have higher absolute mean difference values in the 

training set are considered as important descriptors. It is to be noted that this feature selection 

technique is “model independent”, i.e., we have not employed any modeling algorithm to screen 

out the essential features, which might not work well for other modeling techniques.  

Development of Machine Learning QSAR models 
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For the development of models, we adopted an array of linear and non-linear Machine Learning 

(ML) modeling algorithms. We employed nine different ML models on the feature spaces defined 

by the molecular descriptors and MACCS fingerprints, generating 18 different ML QSAR models. 

The modeling techniques employed were Linear Discriminant Analysis (LDA) [32], Support 

Vector Machine (SVM) [33], Random Forest (RF) [34], Logistic Regression (LR) [35], Quadratic 

Discriminant Analysis (QDA) [36], Multilayer Perceptron (MLP) [37], Gaussian Naïve Bayes 

(NB) [38], Gradient Boosting (GB) [39] and Adaboost [40]. It is to be noted that the descriptor and 

the fingerprint matrices were standardized before the development of the ML models. The 

hyperparameters were optimized using GridSearchCV, adhering to a 5-fold cross-validation 

technique, taking accuracy as the objective function. Additionally, 20 times 5-fold cross-validation 

[41] of all the developed ML-based QSAR models was performed to check their robustness and 

identify overfitting. The developed models underwent rigorous internal and external validation to 

check the robustness and external predictivity on the test set (unseen) data.      

Optimization of the Read-Across hyperparameters and computation of the RASAR 

descriptors 

Once we developed the ML QSAR models using molecular descriptors and fingerprints, we used 

the same feature spaces to compute the similarity and error-based RASAR descriptors. However, 

the basic pre-requisite is to identify the optimized hyperparameter setting using Read-Across. This 

was done by dividing the training set into sub-training and validation sets, and Read-Across 

predictions for the validation set were generated using the tool Read-Across-v4.2.2 available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. Different combinations of 

hyperparameter settings were explored, and the selection of the optimized setting was based on the 

prediction performance of the validation set. The selected hyperparameter settings were used to 

compute the RASAR descriptors for the training and test sets using RASAR-Desc-Calc-v3.0.3, 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. It is to be 

noted that this Read-Across optimization and computation of the RASAR descriptors using the 

optimized setting was done twice, first using the selected molecular descriptors and second using 

the MACCS fingerprints. The complete list of RASAR descriptors that was computed using the 

RASAR descriptor calculator tool has been listed in Table S1 of the Supplementary Materials 

SI-2.  
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Feature selection of the RASAR descriptors 

Like the QSAR analysis, feature selection was performed on the RASAR descriptor matrix to 

identify the most discriminating features. However, before this, we have deliberately removed the 

RASAR descriptors SD_Activity, SE, and CVact, which stands for the weighted standard deviation 

of the activity values of the close congeners, the corresponding standard error, and the coefficient 

of variation. Since we were developing classification-based models with either 0 or 1 response 

values, these three descriptors should be omitted [22]. We employed the same feature selection 

algorithm, i.e., identifying the most discriminating features, as used for the QSAR analysis which 

aimed towards an unbiased feature selection due to its modeling algorithm-independent nature. 

This procedure was carried out on the RASAR descriptor matrices generated from the molecular 

and fingerprint descriptor spaces.  

Development of ML-based c-RASAR models 

Similar to the QSAR analysis, we have employed nine different linear and non-linear ML modeling 

algorithms on each of the selected RASAR descriptor matrices. These modeling algorithms include 

Linear Discriminant Analysis, Support Vector Machine, Random Forest, Logistic Regression, 

Quadratic Discriminant Analysis, Multilayer Perceptron, Gaussian Naïve Bayes, Gradient 

Boosting and Adaboost classifiers. A total set of 18 different ML-based c-RASAR models were 

developed (9 models for the descriptor-based RASAR and 9 models for the fingerprint-based 

RASAR). It should be noted that the selected RASAR descriptor matrices were standardized 

before the development of the ML c-RASAR models. The hyperparameters were optimized using 

GridSearchCV, adhering to a 5-fold cross-validation technique, taking accuracy as the objective 

function. Additionally, 20 times 5-fold cross-validation of all the developed ML-based c-RASAR 

models was performed to check their robustness and identify overfitting. The developed models 

underwent rigorous internal and external validation to check the robustness and external 

predictivity on the test set (unseen) data. 

Performance evaluation of the different ML models using the Sum of Ranking Differences 

(SRD) approach  

This is an important aspect where judging the best-performing model is important. Among all the 

36 different ML models (18 QSAR models and 18 c-RASAR models), we must identify the best 
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model and the better modeling strategy among QSAR and c-RASAR. This was achieved by 

adopting the Sum of Ranking Differences (SRD) approach [27], which is a form of Multi-Criteria 

Decision Making (MCDM) strategy, where the best model was identified based on different 

external and internal validation metrics. External validation metrics like Accuracy, Balanced 

Accuracy, Precision, Recall, F1_score, Matthews Correlation Coefficient (MCC), Cohen’s kappa 

(Ckappa), and AUC, while 20 times 5-fold cross-validated internal validation metrics like 

AccuracyCV, Balanced AccuracyCV, PrecisionCV and RecallCV were considered. Additionally, 

as parameters for robustness, the absolute differences of the training set Accuracy, Balanced 

Accuracy, Precision, and Recall, with the AccuracyCV, Balanced AccuracyCV, PrecisionCV, and 

RecallCV, respectively, were considered. These robustness parameters ideally equate to the lower 

the absolute difference, the better the model. In contrast, the other parameters are the opposites; 

the exact robustness parameter we considered is 1-ABS(Metric-MetricCV). All 16 different 

metrics formed our “Multi-Criteria,” which was subjected to SRD analysis to identify the best-

performing model. The SRD analysis was carried out using a software named CRRN_DNA 

(downloaded from http://knight.kit.bme.hu/CRRN). 

Generalization of the best-performing model – Analysis of a true external set data 

Screening of a true external set is essential for the proper estimation of the model’s predictive 

performance. In this regard, we collected the list of approved drugs showing nephrotoxicity from 

the DrugBank Database (https://go.drugbank.com/categories/DBCAT003959 ). From this list, we 

have eliminated the drug molecules that were already a part of our training set, as well as the drugs 

that are organometallic in nature. The structures of the final list of 112 nephrotoxic drugs were 

drawn, curated and the relevant RASAR descriptors were computed. This was the true external set 

used for the prediction with the best-performing model. 

A detailed workflow has been presented in Figure 1. 
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Figure 1. Detailed workflow of the model development procedure 

Results and Discussion 

Analysis of the chemical diversity of the dataset 

This initial level of analysis aimed to explore the structural diversity of the compounds constituting 

the dataset. Figure 2 represents a chemical diversity plot where the compounds are located 

according to their similarity. This plot was generated using DataWarrior 

(https://openmolecules.org/datawarrior/), using structural similarity information based on 

substructure fragment dictionary-based binary FragFp. Taking a well-known nephrotoxic 

compound Ibuprofen as the reference, it is evident from this plot that the dataset is highly diverse, 

offering a significant challenge for developing reliable mathematical models.  

https://doi.org/10.26434/chemrxiv-2024-57klw ORCID: https://orcid.org/0000-0003-4486-8074 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://openmolecules.org/datawarrior/
https://doi.org/10.26434/chemrxiv-2024-57klw
https://orcid.org/0000-0003-4486-8074
https://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint Version dated 22 August 2024 
Not peer reviewed 
 

13 
 

 

Figure 2. Chemical diversity analysis shows that the dataset compounds are highly dissimilar, 

taking Ibuprofen as the reference standard.  

Selection of the important molecular descriptors for QSAR analysis 

For the efficient selection of essential features, we identified the descriptors that have high 

discriminating power between the positive and the negative classes, using the most discriminating 

feature selection algorithm [31]. The reason for adopting this feature selection technique is that it 

is independent of any particular modeling algorithm, thus enabling a fair comparison between the 

developed ML models. We used a Java-based tool MDF_Identifier-v1.0, available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home to identify the most 

discriminating features. We selected those features that have absolute mean difference values > 

0.05. A list of 21 descriptors falls under this category and has been presented in Supplementary 

Materials SI-1.    

Selection of the important RASAR descriptors for c-RASAR analysis 

The selection of the essential RASAR descriptors follows the same algorithm as the selection of 

the essential molecular descriptors for QSAR analysis. The RASAR descriptors with an absolute 
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mean difference of >0.11 were selected for modeling analysis. In the case of RASAR descriptors 

computed from the selected molecular descriptors, five fall under this category, while six RASAR 

descriptors calculated from the MACCS fingerprints fall under this category. The computed 

RASAR descriptors used to develop c-RASAR models are presented in Supplementary 

Materials SI-1.  

Results of the ML-based QSAR and c-RASAR models 

The quality metrics of all the developed QSAR models (nine using molecular descriptors and nine 

using MACCS fingerprints) and c-RASAR models (nine using the RASAR descriptors derived 

from the molecular features and nine using the RASAR descriptors derived from MACCS 

fingerprints) have been reported in Tables 1 and 2, respectively. An array of different linear and 

non-linear ML modeling algorithms was adopted to generate classification-based QSAR models. 

The hyperparameters associated with the various models were optimized using GridSearchCV, 

adhering to a 5-fold cross-validation strategy. The models' quality was assessed using various 

classification-based validation metrics, and the best models were judged based on a “multi-criteria 

decision-making” strategy (to be discussed later in the manuscript).  

Table 1. Results of the different QSAR and c-RASAR models developed from 0-2D molecular 

descriptors 

Set Models Acc. BA Precision Recall F1 

score 

MCC Cohen’s 

kappa 

AUC 

QSAR (using 0-2D molecular descriptors) 

Train LDA  0.686 0.687 0.721 0.682 0.701 0.372 0.371 0.74 

SVM  0.686 0.637 0.714 0.698 0.706 0.370 0.370 0.75 

RF 0.812 0.808 0.804 0.860 0.831 0.621 0.619 0.9 

LR 0.682 0.681 0.709 0.698 0.703 0.361 0.361 0.75 

QDA 0.665 0.669 0.721 0.620 0.667 0.338 0.334 0.69 

MLP 0.879 0.876 0.868 0.915 0.891 0.756 0.755 0.95 
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NB 0.644 0.654 0.734 0.535 0.619 0.314 0.301 0.71 

GB 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 

AB 0.958 0.958 0.961 0.961 0.961 0.916 0.916 0.99 

Test LDA  0.59 0.585 0.614 0.643 0.628 0.172 0.171 0.63 

SVM  0.641 0.685 0.659 0.690 0.674 0.275 0.275 0.65 

RF 0.628 0.627 0.659 0.643 0.651 0.254 0.253 0.67 

LR 0.577 0.571 0.600 0.643 0.621 0.144 0.144 0.64 

QDA 0.667 0.665 0.690 0.690 0.690 0.329 0.329 0.66 

MLP 0.641 0.637 0.659 0.690 0.674 0.275 0.275 0.68 

NB 0.615 0.623 0.688 0.524 0.595 0.249 0.241 0.65 

GB 0.513 0.516 0.556 0.476 0.513 0.032 0.031 0.59 

AB  0.603 0.601 0.634 0.619 0.627 0.202 0.202 0.61 

c-RASAR (from 0-2D molecular descriptors) 

Train LDA  0.615 0.615 0.650 0.620 0.635 0.229 0.228 0.66 

SVM  0.900 0.894 0.862 0.969 0.912 0.803 0.796 0.93 

RF 0.941 0.938 0.914 0.984 0.948 0.884 0.881 0.99 

LR 0.623 0.626 0.670 0.597 0.631 0.251 0.249 0.66 

QDA 0.603 0.608 0.660 0.543 0.596 0.216 0.212 0.65 

MLP 0.720 0.724 0.777 0.674 0.722 0.447 0.442 0.81 

NB 0.603 0.608 0.660 0.543 0.596 0.216 0.212 0.65 

GB 0.874 0.869 0.846 0.938 0.890 0.750 0.745 0.96 

AB 0.724 0.723 0.748 0.736 0.742 0.445 0.445 0.77 
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Test LDA  0.718 0.714 0.727 0.762 0.744 0.431 0.430 0.71 

SVM  0.603 0.593 0.612 0.714 0.659 0.192 0.189 0.56 

RF 0.628 0.617 0.627 0.762 0.688 0.245 0.238 0.63 

LR 0.718 0.716 0.738 0.738 0.738 0.433 0.433 0.71 

QDA 0.679 0.683 0.730 0.643 0.684 0.364 0.361 0.7 

MLP 0.615 0.617 0.658 0.595 0.625 0.234 0.232 0.59 

NB 0.679 0.683 0.730 0.643 0.684 0.364 0.361 0.71 

GB 0.603 0.591 0.608 0.738 0.667 0.191 0.186 0.64 

AB 0.615 0.615 0.650 0.619 0.634 0.230 0.230 0.69 

Acc.: Accuracy, BA: Balanced Accuracy 

Table 2. Results of the different QSAR and c-RASAR models developed from MACCS 

fingerprints 

Set Models Acc. BA Precision Recall F1 

score 

MCC Cohen’s 

kappa 

AUC 

QSAR (using MACCS fingerprints) 

Train LDA  0.745 0.742 0.758 0.775 0.766 0.485 0.485 0.84 

SVM  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 

RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 

LR 0.745 0.734 0.718 0.868 0.786 0.490 0.477 0.79 

QDA 0.987 0.987 0.985 0.992 0.988 0.975 0.975 1.00 

MLP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 

NB 0.623 0.625 0.667 0.605 0.634 0.249 0.248 0.69 
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GB 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00 

AB 0.715 0.718 0.761 0.690 0.724 0.434 0.432 0.79 

Test LDA  0.615 0.621 0.676 0.548 0.605 0.243 0.238 0.66 

SVM  0.641 0.639 0.667 0.667 0.667 0.278 0.278 0.68 

RF 0.628 0.623 0.644 0.690 0.667 0.248 0.248 0.69 

LR 0.577 0.571 0.600 0.643 0.621 0.144 0.144 0.6 

QDA 0.692 0.696 0.750 0.643 0.692 0.393 0.388 0.69 

MLP 0.679 0.685 0.743 0.619 0.675 0.370 0.364 0.7 

NB 0.603 0.607 0.657 0.548 0.597 0.215 0.211 0.62 

GB 0.641 0.639 0.667 0.667 0.667 0.278 0.278 0.68 

AB  0.577 0.577 0.615 0.571 0.593 0.154 0.154 0.57 

c-RASAR (from MACCS fingerprints) 

Train LDA  0.674 0.670 0.689 0.721 0.705 0.341 0.340 0.69 

SVM  0.707 0.701 0.709 0.775 0.741 0.408 0.406 0.77 

RF 0.782 0.774 0.755 0.884 0.814 0.566 0.556 0.85 

LR 0.653 0.650 0.677 0.682 0.680 0.301 0.301 0.68 

QDA 0.653 0.650 0.677 0.682 0.680 0.301 0.301 0.7 

MLP 0.665 0.653 0.654 0.806 0.722 0.323 0.312 0.72 

NB 0.653 0.650 0.677 0.682 0.680 0.301 0.301 0.68 

GB 0.774 0.767 0.755 0.860 0.804 0.546 0.540 0.86 

AB 0.678 0.679 0.717 0.667 0.691 0.356 0.355 0.72 

Test LDA  0.628 0.629 0.667 0.619 0.642 0.257 0.256 0.64 
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SVM  0.590 0.583 0.609 0.667 0.636 0.169 0.168 0.59 

RF 0.641 0.641 0.675 0.643 0.659 0.281 0.281 0.65 

LR 0.628 0.629 0.667 0.619 0.642 0.257 0.256 0.66 

QDA 0.628 0.629 0.667 0.619 0.642 0.257 0.256 0.67 

MLP 0.615 0.609 0.630 0.690 0.659 0.221 0.220 0.68 

NB 0.628 0.629 0.667 0.619 0.642 0.257 0.256 0.66 

GB 0.667 0.669 0.711 0.643 0.675 0.336 0.335 0.71 

AB 0.667 0.675 0.750 0.571 0.649 0.354 0.342 0.69 

Acc.: Accuracy, BA: Balanced Accuracy 

Results for the cross-validation of all the developed models 

Cross-validation is an integral aspect to judge the robustness and stability of a model and to ensure 

that the overall quality of models is not dependent on a certain limited number of compounds only. 

The purpose of cross-validation is to check whether the performance of a model is stable even with 

the removal of certain data points from the training set. In the present investigation, we have cross-

validated all our developed QSAR and c-RASAR models to check their robustness. We have 

performed rigorous cross-validation by adopting 20 times 5-fold cross-validation strategy using 

Accuracy, Balanced Accuracy, Precision, and Recall as the objective functions. The results of 

cross-validation have been presented in Table 3. From this table, it can be observed that there has 

been an increase in robustness (indicated by the marginal decrease in the cross-validated objective 

functions) of the c-RASAR models as compared to the conventional QSAR models, indicating that 

the models are not overfitted. Moreover, the significantly reduced number of modeling descriptors 

in the c-RASAR models provides greater compliance to the statistical considerations. Figure 3 

presents a heat map of the absolute difference between the individual metric values and their cross-

validated values. It can be clearly observed that the overall robustness of the MACCS QSAR 

models are lower, while the MACCS c-RASAR models are the most robust.  
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Table 3. 20 times 5-fold cross-validation statistics of the developed models (Acc: Accuracy, BA: 

Balanced Accuracy, Prec: Precision, Rec: Recall) 

Model Acc. BA 

 

Prec. 

 

Rec 

 

Acc. 

CV 

BA. 

CV 

 

Prec. 

CV 

 

Rec. 

CV 

 

20 times 5-fold CV results of QSAR models (using molecular descriptors) 

LDA_QSAR 0.686 0.687 0.721 0.682 0.611 0.616 0.656 0.603 

SVM_QSAR 0.686 0.637 0.714 0.698 0.578 0.583 0.623 0.577 

RF_QSAR 0.812 0.808 0.804 0.860 0.599 0.598 0.622 0.682 

LR_QSAR 0.682 0.681 0.709 0.698 0.610 0.613 0.646 0.631 

QDA_QSAR 0.665 0.669 0.721 0.620 0.612 0.617 0.660 0.587 

MLP_QSAR 0.879 0.876 0.868 0.915 0.603 0.602 0.633 0.645 

NB_QSAR 0.644 0.654 0.734 0.535 0.611 0.618 0.685 0.516 

GB_QSAR 1.000 1.000 1.000 1.000 0.592 0.592 0.624 0.618 

AB_QSAR 0.958 0.958 0.961 0.961 0.600 0.599 0.633 0.630 

20 times 5-fold CV results of c-RASAR models (developed from molecular 

descriptors) 

LDA_c-RASAR 0.615 0.615 0.650 0.620 0.599 0.602 0.638 0.595 

SVM_c-RASAR 0.900 0.894 0.862 0.969 0.664 0.658 0.674 0.730 

RF_ c-RASAR 0.941 0.938 0.914 0.984 0.609 0.608 0.636 0.656 

LR_ c-RASAR 0.623 0.626 0.670 0.597 0.594 0.599 0.641 0.564 

QDA_ c-RASAR 0.603 0.608 0.660 0.543 0.596 0.602 0.650 0.546 

MLP_ c-RASAR 0.720 0.724 0.777 0.674 0.625 0.617 0.634 0.732 
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NB_ c-RASAR 0.603 0.608 0.660 0.543 0.590 0.594 0.638 0.553 

GB_ c-RASAR 0.874 0.869 0.846 0.938 0.621 0.618 0.642 0.681 

AB_ c-RASAR 0.724 0.723 0.748 0.736 0.588 0.586 0.612 0.693 

20 times 5-fold CV results of QSAR models (using MACCS fingerprints) 

LDA_MACCS_QSAR 0.745 0.742 0.758 0.775 0.579 0.579 0.611 0.624 

SVM_MACCS_QSAR 1.000 1.000 1.000 1.000 0.633 0.635 0.664 0.668 

RF_MACCS _QSAR 1.000 1.000 1.000 1.000 0.620 0.619 0.641 0.701 

LR_MACCS _QSAR 0.745 0.734 0.718 0.868 0.587 0.586 0.605 0.742 

QDA_MACCS_QSAR 0.987 0.987 0.985 0.992 0.638 0.637 0.658 0.704 

MLP_MACCS_QSAR 1.000 1.000 1.000 1.000 0.632 0.632 0.656 0.684 

NB_MACCS_QSAR 0.623 0.625 0.667 0.605 0.535 0.537 0.575 0.533 

GB_MACCS_QSAR 1.000 1.000 1.000 1.000 0.611 0.611 0.638 0.658 

AB_MACCS_QSAR 0.715 0.718 0.761 0.690 0.606 0.611 0.646 0.623 

20 times 5-fold CV results of c-RASAR models (developed from MACCS 

fingerprints) 

LDA_MACCS_c-RASAR 0.674 0.670 0.689 0.721 0.654 0.653 0.674 0.699 

SVM_MACCS_c-RASAR 0.707 0.701 0.709 0.775 0.640 0.638 0.659 0.701 

RF_MACCS _c-RASAR 0.782 0.774 0.755 0.884 0.665 0.657 0.667 0.755 

LR_MACCS _c-RASAR 0.653 0.650 0.677 0.682 0.643 0.644 0.659 0.728 

QDA_MACCS_c-RASAR 0.653 0.650 0.677 0.682 0.640 0.640 0.669 0.663 

MLP_MACCS_c-RASAR 0.665 0.653 0.654 0.806 0.642 0.638 0.654 0.724 

NB_MACCS_c-RASAR 0.653 0.650 0.677 0.682 0.653 0.651 0.676 0.681 
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GB_MACCS_c-RASAR 0.774 0.767 0.755 0.860 0.673 0.666 0.672 0.772 

AB_MACCS_c-RASAR 0.678 0.679 0.717 0.667 0.665 0.661 0.674 0.745 
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Figure 3. A heat map that pictorially demonstrates the robustness of the developed models after 

20 times 5-fold cross-validation. It is observed that MACCS c-RASAR models are highly robust. 
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(DiffAcc= Absolute difference between Accuracy and AccuracyCV, DiffBA= Absolute difference 

between Balanced Accuracy and Balanced AccuracyCV, DiffPrec= Absolute difference between 

Precision and PrecisionCV, DiffRec= Absolute difference between Recall and RecallCV) 

Identification of the best-performing model – An application of the Sum of Ranking 

Difference (SRD) approach 

Since we have developed many mathematical models using different combinations of modeling 

descriptors, it is critical to identify the best-performing model directly. This is because this 

judgment should ideally encompass factors like robustness and predictivity. Therefore, we have 

adopted a multi-criteria decision-making strategy to judge the best-performing models using many 

objective functions. The Sum of Ranking Differences (SRD) is a well-known method to estimate 

the best-performing model based on multiple criteria [27]. In this approach, the data should be 

arranged in a matrix with the metric values in the column and models in the rows. The metric 

values should be scaled (for example, scaled to unit length) column-wise, and then the scaled 

matrix may be transposed so the comparison models appear column-wise.  Then, the absolute 

difference between the standard reference (which may be the maximum value row-wise) and 

individual method ranks is deduced and summed for each technique. In this manner, the sum of 

ranking difference (SRD) values is calculated for each method. An SRD value closer to zero (i.e., 

the closer the ranking is to the reference value) signifies that the model is better. Concerning 

external predictivity, we have considered metrics like Accuracy, Balanced Accuracy, Precision, 

Recall, F1_score, MCC, Ckappa, and AUC that define the predictive performance on the test set. 

Additionally, metrics like AccuracyCV, Balanced AccuracyCV, PrecisionCV, and RecallCV were 

considered for encoding information relating to robustness. Since the difference between a metric 

and its cross-validated value is a measure of robustness, we have additionally considered the 

absolute differences in the training set Accuracy, Balanced Accuracy, Precision, and Recall, with 

the AccuracyCV, Balanced AccuracyCV, PrecisionCV, and RecallCV, respectively. These 16 

different parameters, representing robustness and predictivity of models, were considered for SRD 

analysis. We have validated the method using leave-one-seventh-out cross-validation. The scaled 

SRD values between 0 and 100 were calculated using the software named CRRN_DNA 

(downloaded from http://knight.kit.bme.hu/CRRN). The results were graphically analyzed by 

plotting the % SRD data (Fig. X) for each modeling technique in a random environment, i.e., 
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random ranking given to each data input for each model to generate all possible random sum of 

ranking differences. The SRD plot represents different modeling techniques placed in ascending 

order of their SRD values. The critical threshold XX1 indicates the region of randomness with p 

< 0.05 (i.e., probability of randomness less than 5%), Med means 50% randomness, and XX19 

signifies 95% randomness. 

Three different sets of analyses were performed. First, we intended to identify the best-performing 

ML models developed from molecular descriptors and their corresponding ML c-RASAR models. 

In the second case, we analyzed the ML models developed from the MACCS fingerprints and their 

corresponding ML c-RASAR models. Lastly, we took all the developed models and performed an 

overall comparison. As evident from Figures 4a and 5a, where the analysis is between the 

descriptor-based ML QSAR models and their corresponding ML c-RASAR models, it can be 

observed that the overall performance of the ML c-RASAR models is better than the ML QSAR 

models. Additionally, the best-performing model appeared to be the LDA c-RASAR model. On 

the other hand, Figures 4b and 5b represent the analysis between the fingerprint-based ML QSAR 

models and their corresponding ML c-RASAR models. Again, the c-RASAR models performed 

better than the corresponding QSAR models. The best-performing model in this comparison 

appeared to be the Adaboost MACCS c-RASAR model. The SRD analysis of all the developed 

models (36 models) has been presented in Figures 4c and 5c. From this analysis comparing all the 

developed models, the LDA c-RASAR model appeared to be the best-performing model. This is 

quite significant where a linear model performs better than many other non-linear ML models, 

using different types of descriptors and fingerprints, thus demonstrating the potential of c-RASAR 

models fortifying previous similar observations [12, 13, 17, 42]. The models are represented in the 

following codes: Q1-Q9 = LDA, SVM, RF, LR, QDA, MLP, NB, GB, and AB QSAR models 

developed from molecular descriptors, M1-M9 = LDA, SVM, RF, LR, QDA, MLP, NB, GB, and 

AB QSAR models developed from MACCS fingerprints, Q1R-Q9R =  LDA, SVM, RF, LR, QDA, 

MLP, NB, GB and AB c-RASAR models developed from molecular descriptors and M1R-M9R = 

LDA, SVM, RF, LR, QDA, MLP, NB, GB and AB c-RASAR models developed from MACCS 

fingerprints.  
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Figure 4. SRD analysis of a) the descriptor-based QSAR and c-RASAR models, b) the fingerprint-

based QSAR and c-RASAR models, and c) all the developed models. The X-axis and left Y-axis 

represent the normalized SRD values, whose small values indicate better models. The right Y-axis 

represents the cumulative relative frequencies corresponding to the randomization test. (CRRN: 

Comparison of Ranks with Ranking Numbers) 
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Figure 5. Leave-1/7th-out cross-validated SRD results showing the LDA q-RASAR model (Q1R) 

is the best model. 

Interpretation of the RASAR descriptors used to develop the LDA c-RASAR model 

One of the essential purposes of any modeling analysis is to interpret the modeled features and 

provide an idea of their contribution toward the endpoint of interest. After selecting the best-

performing model (LDA c-RASAR) by statistical evaluation using the SRD approach, we used the 

LDA coefficients to identify the contribution of the RASAR descriptors toward the model. Since 

the c-RASAR models are developed using similarity and error-based RASAR descriptors, it is 

essential to note that the interpretation is relative, and it considers the structural characteristics of 

the close source congeners. The descriptor RA function is a read-across-derived function, which 

is a compact representation of the entire structural and physicochemical descriptor space into a 

single variable [43]. Since it encodes all chemical information, this descriptor contributes 

positively to the response. This can be observed in the case of Dabrafenib (283), which has a high 

value of RA function and is nephrotoxic. Similarly, Ribavirin (265) has a very low value of RA 

function and is observed to be non-nephrotoxic. The descriptor CVsim demonstrates the coefficient 

of variation of the similarity values of close source congeners for a particular target compound, 

and this descriptor contributes positively towards the response. This indicates the high dispersion 
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of the similarity values of the close congeners, inferring that the dataset is highly diverse, as also 

previously demonstrated in Figure 2. This can be exemplified by Irbesartan (197), that have a high 

value of CVsim and is an active compound, while inactive compounds like Chlorzoxazone (50) 

have a lower CVsim value. The descriptor MaxNeg is the similarity value to the closest 

negative/inactive source compound for an individual query compound, and this descriptor 

contributes negatively to the response. A query compound having a higher value of MaxNeg 

justifies that it shares a high similarity to an inactive/negative compound, which increases the 

propensity of the query compound to be inactive. On the other hand, a compound having a lower 

maximum similarity to a negative compound is most likely to become an active compound. This 

can be exemplified with the inactive compound Theophylline (261), which has a high value of 

MaxNeg, while active compounds like Cefpodoxime (167) have a lower value of MaxNeg. This is 

shown pictorially in Figure 6 where we also analyze the structures of the close source compounds. 

It is observed that the nearest inactive neighbor of Theophylline (an inactive compound) is 

Caffeine, which is highly similar in structure. However, the nearest inactive neighbor of 

Cefpodoxime (an active compound) is Terazosin, with a very low level of similarity. This proves 

that the highly similar compounds of Cefpodoxime are active, explaining why the MaxNeg 

expresses a negative contribution. The descriptor sm
1, a.k.a. the Banerjee-Roy similarity 

coefficient, is a novel concordance measure that helps identify activity cliffs [13]. However, from 

a modeling point of view, this descriptor makes a positive contribution. As evident from the 

formula mentioned in the work of Banerjee and Roy [13], a positive contribution is expected since 

a higher value of MaxPos than MaxNeg signifies that the query compound has a propensity to 

become active. This can be exemplified with active compounds like Valsartan (11), which has a 

high value of sm
1. Similarly, inactive compounds like Labetalol (142) have lower values of sm

1. 

The descriptor gm_class is a modified version of the Banerjee-Roy concordance coefficient, and 

this descriptor contributes positively to the response. The main property of this descriptor is that it 

is binary (values are either 0 or 1), and can potentially identify the propensity of a particular 

compound to be active or inactive. This can be observed in active compounds like Rabeprazole 

(102) that has a high value of gm_class, while inactive compounds like Riboflavin (152) have a 

lower value of gm_class.     
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Figure 6. Analysis of the nearest negative/inactive compounds for active and inactive query 

compounds 

Predictions of the true external set data using the LDA c-RASAR model 

This is an essential aspect that further justifies the generalizability of the developed model. We 

identified 112 compounds labeled as nephrotoxic from the DrugBankDB. It should be noted that 

these 112 compounds were exclusively the compounds not present in the training set and are not 

organometallic. However, on analyzing the predictive performance, it was observed that out of the 

112 data points, 74 compounds were correctly identified as nephrotoxic, which corresponds to a 

sensitivity value of 0.661. Thus, it can be concluded that the LDA c-RASAR model also 
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generalizes well with true external data and efficiently identifies nephrotoxic compounds. The 

prediction results are presented in Supplementary Materials SI-1.  

t-SNE analysis of the descriptor and fingerprint spaces 

This analysis reflects not only the diversity of the dataset but also how the individual descriptor 

and fingerprint spaces encode the chemical information. This is analyzed by adopting non-linear 

dimensionality reduction techniques like the t-SNE [30]. We have subjected our different training 

and test sets individually encoded by different feature matrices to generate the t-SNE plots using 

the DataWarrior software (https://openmolecules.org/datawarrior/). Figure 7 represents the t-SNE 

plots derived from the molecular descriptors of the training and test sets that were used for QSAR 

modeling (Figures 7(A) and 7(B)) and the corresponding similarity and error-based RASAR 

descriptors that were used for c-RASAR modeling (Figures 7(C) and 7(D)). From the visual 

representation, one can easily understand how well the RASAR descriptors encode chemical 

information, reflected in the tight clustering of the data points in Figures 7(C) and 7(D). This 

highlights the underlying reasons why most of the c-RASAR models had a superior ranking in the 

SRD analysis, which is a reflection of the robustness and external predictivity of the models. 
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Figure 7. t-SNE plots of the (A) Training set data using the selected molecular descriptors, (B) 

Test set data using the selected molecular descriptors, (C) Training set data using the corresponding 

RASAR descriptors developed from descriptor-based feature space, and (D) Test set data using the 

corresponding RASAR descriptors developed from descriptor-based feature space. These plots 

highlight how well the RASAR descriptors encapsulate the complete chemical information, as 

evident from the tight clustering. 

 

On the other hand, Figure 8 represents the t-SNE plots of the training and test sets of the MACCS 

fingerprints that were used for QSAR modeling (Figures 8(A) and 8(B)) and the corresponding 

similarity and error-based RASAR descriptors that were used for c-RASAR modeling (Figures 

8(C) and 8(D)). Similar to the previous case, the c-RASAR descriptors computed from MACCS 

fingerprints were observed to encode chemical information very efficiently, and one can observe 
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from Figure 8(C) how it produces a near-ideal level of clustering of data points in the training set. 

This is also justified since, in Figure 3, it is observed that the MACCS c-RASAR models are the 

most robust among all the other approaches. Additionally, better clustering is observed in the test 

set constituting the RASAR descriptors compared to the MACCS fingerprints. Another important 

point to note is that in all the cases in this current study, the c-RASAR models are developed using 

only a few modeling descriptors that further justify their potential and statistical reliability.  

 

Figure 8. t-SNE plots of the (A) Training set data using the MACCS fingerprints, (B) Test set data 

using the MACCS fingerprints, (C) Training set data using the corresponding RASAR descriptors 

developed from fingerprint-based feature space, and (D) Test set data using the corresponding 

RASAR descriptors developed from fingerprint-based feature space. Like Figure X, these plots 

also highlight how well the RASAR descriptors encapsulate the complete chemical information, 

as evident from the tight clustering.  
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Analysis of the activity cliffs using a supervised algorithm for dimensionality reduction 

We discussed above how the RASAR descriptors efficiently encode the chemical information 

through t-SNE analysis. However, one typical drawback of this approach is its unsupervised 

nature, which does not allow for the identification of potential activity cliffs. Therefore, we have 

adopted a supervised dimensionality reduction technique – the ARKA framework for identifying 

activity cliffs [7]. For this purpose, we have computed the ARKA descriptors, using the tool 

ARKAdesc-v2.0 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/arithmetic-residuals-in-k-groups-analysis-arka, for the training set that has been defined 

using the selected 21 molecular descriptors employed for QSAR analysis. Many less confident 

data points (points in the first and third quadrants) and two distinct activity cliffs (both in the fourth 

quadrant) were identified. More significant activity cliffs may be determined based on their 

distance from the origin (which is equivalent to the square root of the sum of the ARKA  

descriptors), provided positive compounds are located in the fourth quadrant, and negative 

compounds are located in the second quadrant. Additionally, many data points were in the less 

modelable region (the central rectangle surrounding the origin) and the borderline zone (±0.5 on 

either side of the axes). The corresponding ARKA_2 vs ARKA_1 plot has been shown in Figure 

9.    
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Figure 9. ARKA_2 vs ARKA_1 plot for the training set defined by molecular descriptors. Activity 

cliffs like Glipizide and Darunavir were identified. 

The compound Glipizide, identified as an activity cliff, was reported as non-nephrotoxic. Let's 

analyze the Gaussian Kernel similarity of this compound with some of its close source congeners 

(as identified by the Read-Across algorithm of the RASAR descriptor calculator tool). All the 

similarity levels are very low. Moreover, out of the ten closest source neighbors of Glipizide, eight 

were in the nephrotoxic class, and only two were in the non-nephrotoxic class, suggesting that this 

compound has more structural similarity with the nephrotoxic compounds. This explains why 

Glipizide has been identified as an activity cliff.  Darunavir, an antiretroviral drug, has also been 

identified as an activity cliff from the ARKA analysis. This drug was also labeled as a non-

nephrotoxic compound, but all its closest ten nearest neighbors belong to the nephrotoxic class of 

drugs, which again suggests that this drug has more structural similarity to a nephrotoxic 

compound. If we observe the predictions from the QDA QSAR model (the best performing QSAR 
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model developed from molecular descriptors), both the compounds have been mispredicted as 

nephrotoxic compounds, thus implying their activity cliff nature.    

So far, the analysis and identification of the activity cliffs have centered on the molecular 

descriptors employed in QSAR modeling. However, as previously stated in the manuscript and 

also in [44, 45], the RASAR descriptors encode the chemical information more efficiently, 

ultimately reducing the number of modeling descriptors. We have computed the ARKA descriptors 

on the selected 5 RASAR descriptors used to develop the c-RASAR models to explore and identify 

additional activity cliffs, which the standard molecular descriptors could not identify. It can be 

observed from the ARKA_2 vs ARKA_1 plot of the training set (Figure 10) that a lower number 

of data points existed inside the central rectangular zone (as compared to Figure 9) ultimately 

infers that the modelability of the dataset has been increased on the application of the RASAR 

descriptors. Additionally, this plot identifies many activity cliffs (including the previously 

identified Glipizide and Darunavir) that belong to both the active/positive and inactive/negative 

classes. The regions enclosed by the two ellipses demonstrate the location of these activity cliffs.  
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Figure 10. ARKA_2 vs ARKA_1 plot for the training set defined by the RASAR descriptors. The 

ellipses represent the location of the multiple activity cliffs. It is to be noted that a minimal number 

of compounds exist in the central rectangular region, inferring the enhancement of the modelability 

of the application of the RASAR descriptors.  

 

In this case, we analyzed the two most significant activity cliffs from each positive and negative 

class. Initially, we have identified the compounds in the opposite quadrant (i.e., positive 

compounds in the second quadrant and negative compounds in the fourth quadrant). Among these 

compounds, we have computed the Euclidean Distance from the origin using the formula 

mentioned in Equation 1. We have identified four compounds (two each) with the highest 

Euclidean Distance values from the positive and negative classes, justifying that these compounds 

are “most confident activity cliffs”. Additionally, we have explored the five nearest neighbors from 

our RASAR analysis and observed that most of these close congeners are from the opposite class 

of activity. This is pictorially represented in Figure 11, where we analyze the activity cliffs from 

the training and test sets.    

𝐸𝐷 = √𝑋2 + 𝑌2                                                                                                                   (1) 

ED is the Euclidean Distance, X is the value of ARKA_1, and Y is the value of ARKA_2. The 

confidence in the activity cliff nature of a compound should increase with its location from the 

origin, i.e., with an increase in the value of ED, provided it is located in the wrong quadrant, as 

mentioned above.  
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Figure 11. Activity cliffs from the positive and negative classes and their five closest neighbors. 

The green color indicates active/positive compounds, while the red indicates inactive/negative 

compounds.  

 

Activity cliffs like Terbinafine (Positive), Thalidomide (Positive), Folic acid (Negative), and 

Venlafaxine (Positive) have all of their five closest neighbors in the opposite class. This infers that 

these compounds have structural similarities towards their opposite class, which eventually hinders 

the modelability of the dataset. If we consider the predictions of these compounds by our LDA c-

RASAR model, it can be observed that all these compounds have been mispredicted into their 

opposite class. In the case of compounds like Propafenone (Positive) and Methyclothiazide 

(Negative), although compounds of the same class exist in the list of closest congeners, it can be 

observed that a higher fraction of the closest congeners belongs to the opposite class. If we consider 

https://doi.org/10.26434/chemrxiv-2024-57klw ORCID: https://orcid.org/0000-0003-4486-8074 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-57klw
https://orcid.org/0000-0003-4486-8074
https://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint Version dated 22 August 2024 
Not peer reviewed 
 

37 
 

their predictions, it was observed that Propafenone was mispredicted as inactive, while 

Methyclothiazide was mispredicted as active. However, in the cases of Lamivudine (Negative) and 

Domperidone (Negative), although a higher fraction of the closest source congeners belongs to the 

same class, it can be observed that the similarity levels to the closest neighbor are high but 

drastically decreases afterward. This infers that only one compound is close to the target 

compounds (Lamivudine and Domperidone). In contrast, the other close congeners are located 

quite far away in terms of their similarities. Therefore, the closest neighbor is the one that describes 

the propensity of the target compounds towards being active or inactive. If we analyze the closest 

neighbors of Lamivudine, it has a high similarity value of 0.971 with Emtricitabine, while the 

similarity level with its second closest compound (Thiamine) is 0.00002. A similar observation 

was obtained from Domperidone with a similarity level of 0.069 with the closest neighbor 

Etravirine, while the similarity level with the second closest compound (Alosetron) is only 0.001. 

As both Emtricitabine (Positive) and Etravirine (Positive) belong to the opposite class of 

Lamivudine and Domperidone, respectively, it can be concluded that this leads to the mis-

prediction of both the compounds by our LDA c-RASAR model.        

 

Comparison with the previous works 

Gong et al. [23] and Shi et al. [24] developed multiple machine-learning models to predict the 

nephrotoxicity of compounds. However, the works of Connor et al. [26] involved compilation of 

the data from the two sources and curation adhering to the strategy proposed by Tropsha’s group 

[28]. These authors mapped the molecules to the DrugBank database to identify the drug molecules 

and further verified with the Anatomical, Therapeutic and Chemical (ATC) index [46, 47] to 

identify “orally administered drugs” with nephrotoxicity data. These nephrotoxicity data from the 

two literature sources were cross-checked with sources like the FDA and DrugBankDB to obtain 

a final list of experimental data. This particular step was crucial since it can be observed from the 

works of Connor et al. that many molecules had contrasting nephrotoxicity labels in the two 

different sources (Gong et al. and Shi et al.). In this regard, our model stands out since we have 

used the fully curated dataset presented by Connor et al. to develop Machine Learning models. 

This increased reliability of the modeling data used, ultimately increasing the acceptability of our 

model and its predictions. A detailed comparison report of our work with the works of Gong et al. 
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and Shi et al. has been presented in Table 4, which justifies how this present study is better. Sun 

et al. [25] also predicted the nephrotoxicity of natural products and drugs. Although not specific 

for orally active drugs, the poor external validation results showing MCC values of 0.000 and 

0.089 of the ANN and SVM models respectively justify that the models did not generalize well 

with the test set data. This is not the case of our LDA c-RASAR model, as its external predictivity 

is quite good where MCC value is 0.431. Therefore, we can infer that our LDA c-RASAR model 

is superior in terms of reliability and prediction quality to predict the nephrotoxicity of orally 

administered drugs.  

Table 4. Comparison of our work with the works of Gong et al. and Shi et al.  

Parameters Gong et al. [23] Shi et al. [24] Our work 

Dataset strictly focusing on drug 

molecules (more specifically, 

orally active drug molecules) 

No No Yes 

True external set prediction Yes No Yes 

Size of the true external set Lower (n=71) - Higher (n=112) 

Activity cliffs analysis No No Yes 

Statistical tests (using multi-

criteria decision-making 

approaches) for the identification 

of best models 

No No Yes (by using the 

Sum of Ranking 

Differences 

approach) 

The presence of conflicting data 

labels for the same compounds 

reduces the reliability of the 

models 

Yes (e.g., Aspirin has 

been labelled as 

Nephrotoxic) 

Yes (e.g., Aspirin has 

been labelled as 

Non-nephrotoxic) 

No, since we 

developed models 

on the curated 

dataset presented 

by Connor et al. 

Rigorous cross-validation Yes Yes Yes 
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Conclusion 

Drug-induced nephrotoxicity is an area of concern since our kidneys are associated with the 

removal of toxic substances and metabolites from the blood. A lot of drugs that we take orally for 

treating specific ailments are often silently associated with producing nephrotoxicity. Since 

experimental identification is tedious and involves ethical complications, we have developed 

Machine Learning (ML) models to easily screen drugs, identifying their potential nephrotoxicity 

when administered orally. We have used a highly curated data set of orally active drugs for the 

reliability of the developed models.  Simple and interpretable 0-2D molecular descriptors and 

MACCS fingerprints were used to develop ML models. We have also developed ML c-RASAR 

models on the feature spaces encoded by the selected 0-2D descriptors and MACCS fingerprints 

to incorporate similarity-based considerations. This resulted in the enhancement of robustness and 

predictivity of the c-RASAR models, justifying the more efficient and concise use of the chemical 

information of the close source neighbors. All the developed QSAR and c-RASAR models were 

subjected to statistical comparison using the Sum of Ranking Differences (SRD) approach, 

considering factors associated with robustness and external predictivity. This analysis suggested 

that the LDA c-RASAR model, developed from the feature space of the molecular descriptors, was 

the best-performing model among 36 different linear and non-linear ML models. Once again, this 

infers the successful incorporation of the non-linear information into a linear modeling framework 

by the RASAR descriptors, which results in linear models having enhanced performance than non-

linear models. To assess the model performance on true external set data, we have used the LDA 

c-RASAR model to predict the nephrotoxicity of the approved drugs from the DrugBankDB. The 

successful results on the true external set justify the reliability of our simple model. This LDA c-

RASAR model can thus be used for quick and efficient prediction of nephrotoxicity for orally 

active drugs. The efficient identification of activity cliffs by the ARKA analysis and the tight and 

distinct clustering observed in the t-SNE plots exactly points out the true potential of the c-RASAR 

approach in not only optimizing the utilization of the feature space but also in the identification of 

activity and prediction cliffs.       
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