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Abstract 

TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein 

kinase. It plays a crucial role in various cellular processes, including the innate immune response 

to viruses, cell proliferation, apoptosis, autophagy, and anti-tumor immunity. Dysregulation of 

TBK1 activity can lead to autoimmune diseases, neurodegenerative disorders, and cancer. Due 

to its central role in these critical pathways, TBK1 is a significant focus of research for therapeutic 

drug development.  

 In this paper, we explore data from the CAS Content Collection regarding TBK1 and its 

implication in a large assortment of diseases and disorders.  With the demand for developing 

efficient TBK1 inhibitors been outlined, we focus on utilizing machine learning approach for 

developing predictive models for TBK1 inhibition, derived from the fragment-functional analysis 

descriptors. Using the extensive CAS Content Collection we assembled a training set of TBK1 

inhibitors with experimentally measured IC50 values. We explored several machine learning 

techniques combined with various molecular descriptors to derive and select the best TBK1 

inhibitor QSAR models. Certain significant structural alerts that potentially contribute to inhibition 

of TBK1 are outlined and discussed. The merit of the article stem from identifying the most 

adequate TBK1 QSAR models and subsequent successful development of advanced positive 

training data to facilitate and enhance drug discovery for an important therapeutic target such as 

TBK1 inhibitors, based on extensive, wide-ranging set of scientific information provided by the 

CAS Content Collection.   
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Introduction 

Kinases are enzymes that catalyze the transfer of a phosphate group from a high-energy 

molecule, such as adenosine triphosphate (ATP), to a specific substrate molecule, typically a 

protein, lipid, or carbohydrate.1 This process is known as phosphorylation and plays a crucial 

role in cellular signaling pathways, regulating various cellular functions including metabolism, 

growth, differentiation, and cell death.2 Kinases are essential for transmitting signals within cells 

and coordinating cellular responses to extracellular stimuli. They are involved in a wide range of 

physiological processes and are often targets for drug development in treating diseases such as 

cancer and inflammatory disorders.3  Tank-binding kinase 1 (TBK1) is one such enzyme with 

kinase activity. Encoded by the TBK1 gene in humans, it is a pivotal serine/threonine kinase that 

orchestrates a variety of critical cellular processes, including innate immunity, inflammation, 

autophagy, and cell survival/proliferation. 4-12   

Since its discovery, TBK1 has emerged as a central node in the signaling pathways that 

underpin the defense mechanisms of the body against pathogens and maintain cellular 

homeostasis. Its ability to phosphorylate and activate key transcription factors, such as 

interferon regulatory factors (IRFs) and nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), underscores its essential role in immune responses. 13-15 

The involvement of TBK1 in immune signaling begins with its activation by pattern recognition 

receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs). 16-18  Upon activation, TBK1 phosphorylates 

downstream effectors to induce the expression of type I interferons and pro-inflammatory 

cytokines, which are crucial for antiviral defense and the modulation of inflammatory responses. 

Furthermore, TBK1 is integral to the autophagy pathway, where it regulates the selective 

degradation of ubiquitinated proteins and damaged organelles, thereby contributing to cellular 

quality control and stress responses. 19-21 

The significance of TBK1 extends beyond normal physiological functions; its dysregulation is 

implicated in a range of pathological conditions. Mutations and altered expression of TBK1 have 

been associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) 

and frontotemporal dementia (FTD), highlighting its role in neuronal homeostasis. Additionally, 

TBK1's involvement in oncogenic pathways links it to cancer progression and survival, making it 

a potential target for therapeutic intervention. 22, 23 

Given its central role in multiple signaling pathways, TBK1 represents a critical juncture in the 

regulation of immune responses, inflammation, and cell survival. This paper aims to provide a 

comprehensive overview of TBK1's structural features, its regulatory mechanisms, and its 

diverse functional roles in health and disease. By elucidating the molecular intricacies of TBK1, 

we can better understand its contributions to cellular homeostasis and its potential as a 

therapeutic target in various disease contexts.  Its intricate functions make it an intriguing target 

for further research and therapeutic interventions. 22, 24-27 

The objective of this article is to utilize machine learning approach for developing 

valuable predictive models for TBK1 inhibition – a topic of utmost importance as an attractive 
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target for drug development.  We explored data from the CAS Content Collection 28, the world’s 

largest human expert-curated collection of scientific data, regarding TBK1 and its implication in 

a large assortment of diseases and disorders.  With the demand for developing efficient TBK1 

inhibitors outlined, we further focused on developing predictive analytics for TBK1 inhibition, 

derived from the fragment-functional analysis descriptors.  For such fragment-based 

methodology, the molecular descriptors are the structural alerts obtained by splitting the 

chemical structures of the training set into all possible sub-fragments. Based on data from the 

CAS Content Collection, we assembled a training set known TBK1 inhibitors whose IC50 values 

have been determined experimentally. We explored several machine learning techniques 

combined with various molecular descriptors to derive and select the best TBK1 QSAR models. 

We also considered various aspects of TBK1 structure and potential inhibitors. Certain 

significant structural alerts potentially important for TBK1 inhibition have been outlined and 

discussed.  The novelty and merit of the article stem from identifying the most adequate TBK1 

QSAR models and subsequent successful development of advanced positive training data to 

facilitate and enhance drug discovery for an important therapeutic target such as TBK1 

inhibitors, based on extensive, wide-ranging set of scientific information provided by the CAS 

Content Collection. 

  

TBK1 overview and landscape of research progress 

 

Importance of TBK1 in cellular processes 

TBK1, or TANK-binding kinase 1, is a multifunctional protein kinase that plays a crucial role in 
various cellular processes. 14, 29-32 

− TBK1 is a key regulator of the innate immune response to viral and bacterial infections.  It 
is activated upon detection of viral nucleic acids by pattern recognition receptors (PRRs) in the 
cytoplasm. Activated TBK1 phosphorylates the transcription factor IRF3 (interferon regulatory 
factor 3), leading to its dimerization and translocation to the nucleus. IRF3 induces the expression 
of type I interferons and other antiviral genes, which help to limit viral replication and spread. 33, 34  

− TBK1 is involved in the regulation of inflammatory responses. 7, 8 It can activate the 
transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) by 
phosphorylating IκBα (inhibitor of NF-κB alpha), leading to its degradation and the subsequent 
release of NF-κB.  NF-κB translocates to the nucleus and induces the expression of pro-
inflammatory cytokines, chemokines, and other inflammatory mediators. 

− TBK1 plays a role in the regulation of autophagy, a cellular process involved in the 
degradation and recycling of damaged organelles and proteins. 9, 10 TBK1 phosphorylates 
autophagy-related proteins such as ULK1 (Unc-51 like autophagy activating kinase 1) and OPTN 
(optineurin), promoting autophagosome formation and maturation. 

− TBK1 signaling contributes to cell survival and proliferation in various contexts.  It can 
activate the AKT (protein kinase B) pathway, which promotes cell survival and growth, and it 
regulates the expression of anti-apoptotic genes. 35, 36  
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− TBK1 is involved in the regulation of metabolic processes, including glucose metabolism 
and lipid homeostasis. 37-39 It can modulate insulin signaling pathways and influence the 
expression of genes involved in metabolism. 

− TBK1 has been implicated in the cellular response to DNA damage. 27, 40 It can 
phosphorylate and activate the DNA repair protein BRCA1 (breast cancer type 1 susceptibility 
protein), contributing to the repair of DNA double-strand breaks. 

 

TBK 1 structure 

 TBK1 is a non-canonical IKK kinase, which phosphorylates the nuclear factor kB. 

Consisting of 729 amino acids, TBK1 includes four main domains: an N-terminal kinase domain 

(KD; 1-307), a ubiquitin-like domain (ULD; 308-384), and two coiled-coil domains (CCD1; 407-

657 and CCD2; 659-713).41   

The KD is responsible for the catalytic activity of TBK1. It adopts a typical protein kinase 

fold and contains the active site for phosphorylation reactions.  The ULD, located adjacent to the 

KD, plays a role in regulating TBK1 activity and interactions.  The CCD1, also referred to as 

scaffold dimerization domain (SDD), harbors a leucine zipper domain (LZ; 499-527) and a helix-

loop-helix domain (HLH; 591-632), both of which mediate dimerization of TBK1 molecules. It forms 

extensive interactions with both the KD and ULD, contributing to the overall stability of the TBK1 

structure. 42 The CCD2 at the C-terminus holds an adaptor-binding motif which assists the 

interaction of TBK1 with adaptor proteins, such as TANK, NAK–associated protein, TBKBP1, or 

optineurin. 42-46  TBK1 forms an intimate dimer through extensive interactions between the SDDs, 

KDs, and ULDs of two TBK1 molecules. This dimerization is crucial for TBK1 function and 

regulation. 30, 41, 43, 47-49 

   The various domains of TBK1 allow it to participate in multiple cellular processes, 

including: (i) immune response: TBK1 phosphorylates and activates IRF3 and IRF7, leading to 

the production of type I interferons in response to viral infection; (ii) NF-κB pathway: TBK1 can 

activate the NF-κB pathway, promoting the expression of pro-inflammatory cytokines; (iii) 

autophagy: by phosphorylating autophagy-related proteins, TBK1 regulates the degradation of 

cellular components, which is important for cellular homeostasis and defense against pathogens; 

(iv) cell proliferation and survival: TBK1 is involved in pathways that control cell growth and 

survival, linking it to cancer biology. 41, 43, 48, 49 

Journal publications related to TBK1 have grown rapidly and consistently over the last two 

decades, nearly doubling between 2020 and 2023 as seen from data leveraged from the CAS 

Content Collection 28. This active and rapid increase is indicative of interest in TBK1 from the 

scientific community. Growth in patent publications on the other hand has been slow, speaking to 

potential difficulties in targeting TBK1 (elaborated briefly in later sections). The journal-to-patent 

ratio was >12X for the year 2023 (Figure 1).  
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Figure 1. Publications related to TBK1 from the CAS Content Collection for the period 2003-2023. 

 

Patenting activity is dominated by corporate players as compared to academics (Figure 

2). Merck, MetaProteomics, and Arvinas have the highest number of patent applications among 

commercial entities, while Max-Planck Institute, the Korea Institute of Science and Technology 

(KIST), and Purdue University are the leaders among the academic organizations. 

 

 

Figure 2. Leading patent assignees in the field of TBK1-related research based on data from CAS Content 
Collection for the period 2003-2023. Patent assignees have been separated into two categories – 
commercial (left panel) and non-commercial (right panel). 

 

Using data from CAS Content Collection, we determined co-occurrences of TBK1 with 
other protein targets as well as diseases (shown in the Sankey graph in Figure 3). Below we 
discuss briefly the role of TBK1 in diseases it co-occurs with in our data. 
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Implication of TBK1 in diseases 

Due to its role in immune regulation, inflammation, autophagy, and cellular stress responses, 
dysregulation or dysfunction of TBK1 is implicated in various diseases. 

− TBK1 has been associated with autoimmune diseases such as systemic lupus 
erythematosus (SLE), where dysregulated immune responses contribute to tissue damage and 
inflammation. TBK1 may play a role in the activation of immune cells and the production of 
inflammatory cytokines in autoimmune conditions. 31, 50, 51 TBK1 is also responsible for regulating 
the immune response in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and 
psoriasis among others 

− There is growing evidence linking TBK1 dysfunction to neurodegenerative disorders 
such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in the 
TBK1 gene have been identified in individuals with ALS-FTD spectrum disorders, suggesting a 
potential role for TBK1 in the pathogenesis of these diseases. 15, 52 

− TBK1 is involved in the host immune response to viral infections by inducing the 
production of type I interferons and other antiviral proteins. Dysregulation of TBK1 signaling 
pathways may impact the ability of the immune system to control viral infections, leading to 
increased susceptibility to viral diseases. 53-55 

− TBK1 has been implicated in cancer development and progression in various ways. It can 
promote tumor growth, survival, and metastasis by enhancing cell proliferation, inhibiting 
apoptosis, and modulating the tumor microenvironment. Dysregulated TBK1 signaling has been 
observed in several types of cancer, including lung cancer, breast cancer, and melanoma. 34, 56, 57  
For instance, TBK1 has been shown to activate the NF-κB pathway, which is generally involved 
in inflammation, cell proliferation, and resistance to apoptosis in cells. This can eventually lead to 
tumor growth and proliferation. TBK1 phosphorylates STING, which in turn recruits IRF3 for 
phosphorylation by TBK1. Phosphorylated IRF3 dimerizes and then enters the nucleus, where it 
functions with NF-kB to turn on the expression of type I interferons and other immunomodulatory 
molecules. TBK1 activates several signaling pathways such as AKT-mTOR and MYC that are 
responsible for tumor cell survival. TBK1 also plays an important role in the IRF3 pathway that is 
important in generating an antiviral response, any disruption in these pathways is linked to 
tumorigenesis. In addition, TBK1 is also known to activate transcription factors responsible for 
epithelial-mesenchymal transition (EMT) which can lead to cancer metastasis. It can also 
influence the tumor microenvironment by modulating immune cell activity and causing cytokine 
release which can cause tumor progression. It is also implicated in resistance to different cancer 
therapies as it can inhibit apoptosis and promote cancer cell survival. TBK1 is also involved in 
crosstalk between other cancer-linked pathways in the cell such as KRAS, PI3K, and EGFR 
pathway. Due to all these factors any mutation inTBK1 gene can be linked to cancer. 

− TBK1 may also play a role in metabolic regulation and energy homeostasis. Dysregulation 
of TBK1 activity has been linked to metabolic disorders such as obesity and insulin resistance, 
although the precise mechanisms remain to be fully elucidated. 38, 39, 58 
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Figure 3. Sankey graph showing co-occurrences of TBK1 with other proteins (left column) and diseases 
(right column) based on CAS indexing. Data includes patent and journal publications from the CAS Content 
Collection for the period 2003-2023. 

 

The need of TBK1 inhibitors 

Because of its implication in a large assortment of diseases and disorders, TBK1 is a 
promising therapeutic target for the development of drugs aimed at modulating immune 
responses and treating various diseases. 59-61 TBK1 inhibitors are compounds that can selectively 
block the activity of TBK1, potentially offering therapeutic benefits in various diseases where TBK1 
is dysregulated or overactive. Research into TBK1 inhibitors has gained considerable attention 
due to the role of TBK1 in immunity, inflammation, and other cellular processes, as well as its 
implication in diseases such as cancer, autoimmune disorders, and neurodegenerative 
conditions. 14, 15, 34  Several small molecule inhibitors targeting TBK1 have been developed and 
studied in preclinical and early clinical research. These inhibitors typically work by binding to 
specific regions of TBK1 and interfering with its kinase activity, thus preventing its downstream 
signaling and biological effects. 25, 26, 59, 62, 63 

One of the primary motivations for developing TBK1 inhibitors is their potential as anti-cancer 
agents. TBK1 has been implicated in promoting tumor growth and progression in certain types of 
cancer by enhancing cell survival, proliferation, and metastasis. Inhibiting TBK1 activity could 
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potentially suppress these cancer-promoting effects and enhance the efficacy of other anti-cancer 
treatments. 29, 34, 60 

Furthermore, TBK1 inhibitors are also being investigated for their potential in treating 
autoimmune disorders and inflammatory conditions. Since TBK1 plays a role in the regulation of 
immune responses and inflammation, inhibiting its activity could help modulate aberrant immune 
activation and reduce inflammation associated with autoimmune diseases. 31, 50, 64 

Despite promising preclinical results, the development of TBK1 inhibitors faces several 
challenges, including achieving sufficient selectivity to minimize off-target effects, optimizing 
pharmacokinetic properties for effective delivery and distribution in the body, and ensuring safety 
and tolerability in clinical settings.  Overall, while TBK1 inhibitors represent a promising avenue 
for therapeutic intervention in various diseases, further research and development efforts are 
needed to fully realize their clinical potential and address the challenges associated with their 
development. 

 
Why there are no successful TBK1 inhibitors on the market 

Our search failed to identify any current FDA-approved TBK1 inhibitors available on the 
market.  The immunomodulatory drug Amlexanox which was approved by FDA for the treatment 
of aphthous ulcers in 2004 65, was later discontinued in 2014 due to the associated undesired 
adverse reactions of the formulation. 66 Amlexanox-loaded nanoliposome formulation are being 
currently developed as a potential alternative for the localized oromucosal delivery of the drug. 66 

The lack of FDA-approved TBK1 inhibitors at present can be attributed to several factors: 

(i) TBK1 is involved in multiple cellular processes, including immune regulation, 
inflammation, autophagy, and stress responses. The complexity of TBK1 signaling complicates 
the progress in TBK1 inhibitors.  Developing inhibitors that selectively target TBK1's pathological 
functions while sparing its essential physiological roles is challenging. 

(ii) Achieving sufficient selectivity is crucial when developing kinase inhibitors to minimize off-
target effects and potential toxicities. Designing compounds that specifically inhibit TBK1 without 
interfering with other kinases or cellular pathways can be difficult. 

(iii) The process of drug development, from discovery to approval, is lengthy and resource 
intensive. Developing TBK1 inhibitors with desirable pharmacokinetic properties, efficacy, and 
safety profiles requires substantial investment in preclinical research, clinical trials, and regulatory 
approval processes. 

(iv) Even if promising TBK1 inhibitors are identified in preclinical studies, their clinical efficacy 
and safety must be rigorously evaluated in human clinical trials. Negative results or unforeseen 
complications in clinical trials can delay or halt the development of candidate inhibitors. 

(v) The prioritization of research and funding allocation in the pharmaceutical industry and 
academic institutions also influences the pace of drug development. While TBK1 inhibitors hold 
promise for therapeutic intervention in various diseases, competing priorities and resource 
constraints may impact the rate of progress in this area. 

Despite these mitigating factors, a few key players that are involved in research related to TBK1 
are shown in Figure 2 and include well-known companies such as Merck, Novartis, Gilead 
Sciences and Bayer. Other key players include the PROTAC-focused biotechnology company 
Arvinas 67, the Drug Discovery CRO Domainex 68, Asuragen 69 which appears to be centered 
around molecular diagnostics in oncology and other fields as well as the China-based drug 
development company Shenzhen Chipscreen Biosciences 70. Examples of patents by these 
organizations mostly consist of exploring various scaffolds including pyrimidine- (WO2019079375 
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71; US8962609 72) and heteroarylbenzimidazole-based (WO2017207534 73) with the aim of 
developing small molecule inhibitors (WO2017106556 74). Other examples include development 
of proteolysis targeting chimeras (PROTACs) against TBK1 by Arvinas (WO2016197114 75).  
 

 

How IC50 values work for inhibitors 

The IC50 (half-maximal inhibitory concentration) value is a measure used in pharmacology 
and biochemistry to quantify the potency of an inhibitor, particularly in enzyme inhibition studies. 
It represents the concentration of an inhibitor required to inhibit 50% of the activity of a biological 
or biochemical target, such as an enzyme or a cellular process.  It represents the most widely 
used and informative measure of a drug's efficacy. 76, 77   

In a typical experimental setup to determine the IC50 value of an inhibitor, varying 
concentrations of the inhibitor are tested against a fixed concentration of the target enzyme or 
biological process. The activity of the target is measured in the presence of each inhibitor 
concentration.  The data obtained from the experiment is used to plot a dose-response curve, 
where the concentration of the inhibitor is plotted on the x-axis, and the remaining activity of the 
target (expressed as a percentage of the uninhibited activity) is plotted on the y-axis. As the 
concentration of the inhibitor increases, the activity of the target decreases.  The IC50 value is 
determined by finding the concentration of the inhibitor that corresponds to 50% inhibition of the 
target activity on the dose-response curve. This concentration is the IC50 value. It represents the 
potency of the inhibitor—the lower the IC50 value, the more potent the inhibitor, as it achieves 
significant inhibition at lower concentrations.  A low IC50 value indicates that the inhibitor is 
effective at lower concentrations, meaning it can achieve significant inhibition of the target with 
relatively low doses. Conversely, a high IC50 value indicates that higher concentrations of the 
inhibitor are needed to achieve the same level of inhibition, suggesting lower potency.  IC50 
values can be used to compare the potency of different inhibitors targeting the same biological 
target. The inhibitor with the lower IC50 value is generally considered more potent and may be 
more suitable for further development as a therapeutic agent or research tool. 

In brief, the IC50 value is a quantitative measure of the potency of an inhibitor, 
representing the concentration required to inhibit 50% of the activity of a biological target. It is an 
essential parameter in drug discovery and enzyme inhibition studies, helping researchers 
evaluate and compare the effectiveness of different inhibitors. 

 
 

QSAR modeling of TBK1 inhibitors  

Computer modeling of kinase inhibitors and computer-aided drug design 

Computer modeling plays a significant role in the design of kinase inhibitors, which are crucial 
in drug discovery and development. 78, 79 In computer-aided drug design, predicting the IC50 
values of potential drug candidates is crucial for assessing their potency in inhibiting the target 
enzyme or protein.  

Quantitative structure-activity relationship (QSAR) models relate the chemical structure of 
compounds to their biological activity, including IC50 values. By analyzing a dataset of known 
inhibitors with experimental IC50 values, QSAR models can be used to predict the IC50 values 
of new compounds.  Molecular descriptors such as molecular weight, lipophilicity, hydrogen 

https://doi.org/10.26434/chemrxiv-2024-d2n98 ORCID: https://orcid.org/0000-0003-4698-6832 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-d2n98
https://orcid.org/0000-0003-4698-6832
https://creativecommons.org/licenses/by/4.0/


10 
 

bonding capacity, and electronic properties are used to characterize the compounds and correlate 
them with their IC50 values. 80, 81 

In structure-based drug design molecular docking simulations predict the binding mode and 
affinity of small molecules to the target protein's active site. 82-84 Compounds with favorable 
docking scores are more likely to have lower IC50 values.  Molecular dynamics simulations can 
further refine the binding poses and assess the stability of the protein-ligand complex, providing 
insights into the dynamic behavior that may influence IC50 values.  In ligand-based drug design 
pharmacophore modeling identifies the essential structural features required for binding to the 
target protein. 85, 86 Compounds that match the pharmacophore features are likely to exhibit 
activity, including potency measured by IC50 values.  Similarity searching compares the chemical 
features of potential drug candidates to known active compounds with known IC50 values, 
enabling the prediction of potency based on structural similarity. 

Machine learning algorithms, such as support vector machines (SVM), random forest, or 
neural networks, can be trained on large datasets of compounds and their corresponding IC50 
values to predict the potency of new compounds.  Deep learning approaches, including 
convolutional neural networks (CNN) and recurrent neural networks (RNN), can capture complex 
relationships between chemical structures and biological activity, improving the accuracy of IC50 
predictions. 87-90 

 

QSAR modeling of TBK1 inhibitors based on available IC50 experimental data. 

Our main goals in this study were to develop the best possible predictive models for TBK1 
inhibitors that could be used by research scientists in their quest to discover effective drugs 
against wide range of diseases such as cancer, viral infections, and inflammatory disorders. We 
also made a conscious effort to explain why the models work based on the top molecular 
descriptors that appear in the models which may provide an invaluable insight into the mechanism 
of the TBK1 inhibition. To accomplish this, we used CAS Content Collection to extract all available 
data associated with target protein TBK1 including IC50 and pIC50 values of inhibitors.. After 
removing all duplicate structures, records without structural information, salts, and mixtures we 
arrived at our final training set with 1,183 compounds, all single organic chemicals.  Upon close 
examination of the data, the IC50 values of more than half of the structures have been entered 
as active (IC50 < 0.1uM or IC50 < 0.001uM) or as inactive (IC50 > 10uM) (Figure S1). The data 
distribution of pIC50 of the training set is outlined in Figure 4. These specifics of the data entry 
prompted us to pursue 3 distinctive types of predictive models.  For the continuous distribution 
Figure 4. (a) regression models, for the binary distribution Figure 4. (b) – binary models, and for 
the 3-category distribution Figure 4. (c) – multiclassification models. 

As already mentioned above, only a fraction of the data is presented with their exactly 
measured concentration. For the development of the regression models, we only used the 475 
structures with the exact experimental measurement of IC50 and omit any data entered as 
active/inactive as they introduce a significant penalty for the accuracy of the regression models. 
For the classification models we used the entire set of 1,183 chemicals with 349/834 distribution 
of active/inactive and a breakpoint at pIC50=7 for the binary models and 349/446/388 of 
active/marginal/inactive and breakpoints at pIC50=7 and 8 for the 3-category models. 
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Figure 4. Distributions of pIC50 of the training set data for the three predictive QSAR models 
developed – (A) regression model, (B) binary model and (C) 3-category distribution. 

 

We explored several different sets of molecular descriptors, as it is not known beforehand 
what features best correlate with the inhibition of TBK1. In this investigation we used our 
proprietary CAS fingerprint 91, the fragments generated by the Structure-Functional Analysis 92, 
and the available molecular descriptors in RdKit 93. A brief summary of all molecular descriptors 
is given in Table 1. 

 

Table 1. Molecular descriptors were used in the study. 

Molecular descriptors  Short summary 

CAS fingerprint 91  CAS proprietary fingerprint consists of over 7k molecular features 

CAS structure-functionality 92 CAS proprietary structure-functionality analysis 

Morgan fingerprint 94 
RdKit - The hashed Morgan fingerprint for a molecule (radius = 3; 
length =2048) 

MACCS keys 95 RdKit - 166 public MACCS keys 

Atom Pairs 96 RdKit - The atom-pair fingerprint for a molecule 

Topological Torsion 97 fingerprints RdKit - The hashed topological-torsion fingerprint for a molecule 
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Crippen LogP, and MR 98 RdKit - The Wildman-Crippen logp, mr 

MQNs 99 RdKit - The Molecular Quantum Numbers 

PEOE_VSA, SMR_VSA, 
SlogP_VSA 100 RdKit - Atoms van der Waals surface area (VSA) descriptors 

BCUT2D 101 
RdKit - Diagonal elements: atomic mass, Gasteiger charge, Crippen 
logP, Crippen MR 

FractionCSP3 93 RdKit - The fraction of C atoms that are SP3 hybridized 

Topological descriptors 93 RdKit - Various topological descriptors 

 

An automated machine learning platform, DataRobot (https://www.datarobot.com/), was 

used to train and evaluate performance of more than 70 different machine learning algorithms. 

DataRobot is also employed to build informative features selected from molecular descriptors. To 

counter the overfitting, a well-known problem in machine learning, and to estimate the statistical 

performance of the models, a common fivefold cross-validation procedure has been utilized for 

all models in this study.  

The model building procedures is as follow: first the initial set of structures is split into two 

sub-sets with 80% of the structures utilized as model building set and the remainder 20% utilized 

as a holdout test set. The holdout test set is kept aside and is not used in the development of 

QSAR models. Instead, it is utilized as control set to assess the accuracy of the models as the 

chemicals in the holdout set are external with respect to the model building procedure. The model 

building set is subject to a fivefold cross-validation procedure for internal validations. In each of 

the five iterations of this approach, 80% of the model building set is used to build a model, and 

20% is held as a test set. Across the entire process, then, every record is held out as validation 

in one part of the process, yet all records are made available to the model. Grid search was used 

as the default method for hyperparameter optimization.   

As already mentioned, we pursued 3 types of models to predict the TBK1 inhibition: binary 

classifiers, three category classifiers, and regression models. Number of common matrices were 

used to evaluate the statistical performance of the predictors. 

 

Binary classifiers: 

 Area Under the ROC Curve (AUC) – measures the ability to distinguish ones from zeros. 

 Sensitivity/Recall – measures the probability of a positive test result. 

Sensitivity = TP / (TP + FN)                                                      (f1) 

Specificity – measures the probability of a negative test result. 

Specificity = TP / (TN + FP)                                                      (f2) 

 Precision - fraction of relevant instances among the retrieved instances. 

Precision = TP / (TP + FP)                                                        (f3) 

Accuracy – fraction of the correctly classified samples. 

Accuracy = (TP + TN) / (TP + TN + FP + FN)                                            (f4) 
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 F1_score – measures the predictive skill of a model by elaborating on its class-wise. It 

combines two competing metrics- precision and recall scores of a model. 

F1_score = TP / (TP + 0.5(FP + FN))                                                           (f5) 

where: TP - true positives, TN - true negatives, FP – false positives, FN - false negatives. 
 
 
Three category classifiers: 

 Logarithmic loss – measures the inaccuracy of the predicted probabilities. 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 =  −(𝑦 log(𝑝) + (1 − 𝑦) log (1 − 𝑝))                                               (f6) 

where: y-Actual output, p-probability predicted by the logistic regression. 

 Accuracy – fraction of the correctly classified samples (f4) for each class. 

 Balanced Accuracy – average of Sensitivity (f1) per target class. 

Area Under the ROC Curve (AUC) – measures the ability to distinguish ones from zeros. 

 

Regression models: 

 R Squared - measures the proportion of total variation of outcomes explained by the model 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖

                                                                              (F7) 

Root Mean Square Error (RMSE) – measures the inaccuracy of the predicted mean 

values. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖

𝑛
                                                                             (f8) 

Mean Absolute Error (MAE) - measures the inaccuracy of predicted median values. 

𝑀𝐴𝐸 =
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖

𝑛
                                                                                      (f9) 

where: 𝑦̂𝑖 is a predicted value, 𝑦𝑖 is a real value, 𝑦̅𝑖 is a mean value, over all samples, and 𝑛 is the 

number of samples. 

 In addition to the common internal and external QSAR validations, the models were also 

evaluated by making predictions against a completely independent external validation set of 21 

TBK1 inhibitors with experimental IC50 data, found in recent publications  26, 102 that are not part 

of the initial data set of 1,183 structures. 
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Results and discussions 

To derive the best predictive models, we first computed all molecular descriptors. For CAS 

fingerprint 91 and Fragment-functional analysis 92 we employed our own proprietary software. For 

Fragment-functional analysis 92 over 66,000 single fragments were generated after splitting the 

chemical structures of the training set into sub-fragments. The RdKit 93 molecular descriptors were 

computed utilizing the python implementation of RdKit and the SMILES 103 strings of the chemicals 

in the training set. As scientists and regulatory agencies around the world may have diverse needs 

for how the predictions are presented as well as the particulars of the input data (as explained in 

section “Data distribution” above) we probed 3 distinct types of predictive models:  Regression, 

Binary, and 3-Category models. 

Considering both the performance of the common statistical matrices and the predictions 
of the holdout test set and the independent external set, the best overall predictive models were 
derived from the fragment-functional analysis descriptors 92. Graphical representation of the 
statistical performance of these models is outlined in Figure 5.  

To assess the predictive abilities of our models we used internal and external validation 
tests. 104-106 For the regression model we obtained R2

holdout = 0.822 (Figure 5. a.) and R2
cros-validation 

= 0.796 (Figure 5. b.) for the external and internal validations, respectively. The difference R2
holdout 

- R2
cros-validation of 0.026 clearly indicates that there are low overfitting ramifications with the 

regression model. The same holds true for the classification models, where we consider AUCholdout 
and AUCcros-validation. We achieved AUC differences of 0.0015 and 0.0212 for the binary (Figure 5. 
c. & d.) and 3-category (Figure 5. e. & f.) models respectively. 

We also utilized Tropsha’s statistical characteristics 104 to assess the external predictability 
of the regression model. We computed (as described in 104) k, k’, R2

0, and R’20, the slopes and 
correlation coefficients between predicted vs observed (and vice versa: observed vs predicted) 
activities of the structures in the holdout test set.  

A QSAR model is acceptable if the following conditions are met 104: 

1. R2
cross-validation > 0.5 

2. R2
test set > 0.6 

3. | (R2
test set - R2

0)/ R2
test set | < 0.1 or | (R2

test set – R’20)/ R2
test set | < 0.1 

4. 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15 

For the regression model we have: 

R2
cross-validation = 0.796 (which is > 0.5) 

R2
holdout = 0.822 (which is > 0.6) 

R2
0 = 0.8879 and R’20 = 0.9518 -> | (0.822 - 0.8879)/0.822 | = 0.08 (which is < 0.1) 

k = 1.0547 and k’ = 0.9502 - both are in the range of 0.85 – 1.15. 

Thus, satisfying all the above conditions. 

https://doi.org/10.26434/chemrxiv-2024-d2n98 ORCID: https://orcid.org/0000-0003-4698-6832 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-d2n98
https://orcid.org/0000-0003-4698-6832
https://creativecommons.org/licenses/by/4.0/


15 
 

 

Figure 5. Statistical performance of the models derived by the Fragments-functional descriptors. 
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Y-scrambling validation is a widely used technique 107-109 to evaluate the robustness of 

QSAR models and to ensure that the developed models are not derived due to chance. In this 

test, the dependent variable (observed activity) randomly shuffles while keeping the 

independent variables (molecular descriptors) unchanged, and a new model is derived. This 

process is repeated several times and the values of R2
test, and R2

cross-validation are recorded. The 

values of R2
test and R2

cross-validation are expected to be low, ensuring the developed QSAR is robust 

and not derived due to chance. For the current study we run 10 Y-scrambling tests, and the 

results are presented on Table 2. All values of R2 
test and R2

cross-validation are below 0.1 thus 

confirming that the regression model is not derived due to chance.  

Table 2. Y-scrambling test results. 

# 
R2

cross-

validation R2 
test 

1 0.0205 0.00084 

2 0.0119 0.00877 

3 0.0072 0.00356 

4 0.0187 0.00442 

5 0.0013 0.00919 

6 0.0101 0.0118 

7 0.0200 0.0347 

8 0.0200 0.00222 

9 0.0227 0.00625 

10 0.0225 0.00062 

 

The results for the predictions of the external test chemicals are presented in Table 3. The 
results obtained from all molecular descriptor sets and models in this investigation are available 
in the Supplementary information material (Figures S4-S24, and Tables 2-4). 

A quick glance at the results in Table 3 reveals that while the statistical criteria used to 
validate the models meet or exceed the common standards for good predictors, R2 of 0.69 for the 
predictions of the independent external set with the regression model, although acceptable, is 
noticeable lower than the R2 of the holdout test set (0.822). The lower value of R2 for the external 
set can be attributed to the fact that these structures are external in the true sense of the word. 
While the chemicals in the holdout test set are external for the model building procedure, they are 
not entirely external for the model building data with respect to structural similarity. While most of 
the chemicals in the initial training set originate from different studies, however, a single study 
often has series of chemical compounds that may bear some structural similarities. In contrast, 
the TBK1 inhibitors in our independent external test set are not part of the initial set and any 
similarities that might exist can be attributed to chance. With much more chemical diversity for 
the classification models where the initial set is 1,183 chemicals strong, both the binary and 3-
category predictors perform well in the validation of the holdout set as well as the predictions of 
the independent external set. 
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Table 3. Predictions for the independent external set of 21 compounds. 

# CAS RN 
pIC50-

observed 

Binary-

observed 

Breakpoint 

at pIC50=7 

3-

Category-

observed* 

pIC50-

predicted 
Binary-

predicted 
3-Category-

predicted* 

1 68301-99-5 4.26 0 1 5.36 0 1 

2 2116443-03-7 4.62 0 1 4.67 0 1 

3 2116445-80-6 5.54 0 1 6.22 0 1 

4 2116445-76-0 4.00 0 1 5.67 0 1 

5 2116445-77-1 4.44 0 1 5.34 0 1 

6 2116445-78-2 4.14 0 1 5.33 0 1 

7 unknown** 5.35 0 1 5.67 0 1 

8 2116445-85-1 4.48 0 1 4.73 0 1 

9 70529-18-9 6.40 0 1 5.89 0 1 

10 2116445-81-7 5.54 0 1 5.54 0 1 

11 2116445-82-8 4.00 0 1 5.80 0 1 

12 1056634-68-4 7.24 1 2 7.16 1 3 

13 2116443-62-8 6.70 0 1 5.75 0 1 

14 2243281-75-4 8.05 1 3 7.80 1 2 

15 2243281-77-6 7.70 1 2 7.80 1 2 

16 2322365-47-7 8.30 1 3 8.07 0 3 

17 81267-65-4 6.02 0 1 5.92 0 1 

18 1835675-67-6 8.55 1 3 8.45 0 1 

19 2101906-58-3 7.86 1 2 7.76† 1 2 

20 1903773-70-5 7.70 1 2 6.61† 0 1 

21 2020003-22-7 6.89 0 1 5.21 0 1 

          R2 = 0.69 Accuracy=0.86 Accuracy=0.81 

*Category 1 (pIC50<7); Category 2 (pIC50<8); Category 3 (pIC50>=8). 

**SMILES: CC(C)C1C=CC(=C2C=1)OC3N=C(N)C(C(=O)OCCN(C)C)=CC=3C2=O 

†Warning: The prediction might be incorrect as the chemical lies otside of the applicability domain 

 

 One particularly important aspect of QSAR modeling is defining the applicability domain  
105, 107-111 of the predictors. Or in other words to determine the chemical space where the models 

are suitable to make quality predictions and avoid a potential misuse of the results. Thus, the 

predictions for new molecules obtained from a QSAR model are acceptable only if the new 

molecules fall inside the applicability domain of that model. The applicability domain is the 

chemical space defined by all molecular descriptors used to build the QSAR model. For a 

fragment-based methodology the molecular descriptors are the structural alerts obtained by 

splitting the chemical structures of the training set into all possible sub-fragments. In the current 
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study our algorithm generated over 66K unique fragments from the compounds in the training set 

which define the domain of applicability for our TBK1 predictive models.  

There are several ways to graphically illustrate the applicability domain of QSAR models. 

In the current study we utilized the Williams plot which is commonly used 107-111 and represents 

the applicability domain as a plot of Leverage (h) vs Standardized Residuals (σ). 

Leverage of a given chemical structure hi is defined as:   

ℎ𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖       (F10) 

Where:  

xi is the descriptor vector of the i-th structure 

X is the descriptor matrix of the training set used to build the model 

The warning leverage h* is defined as: 

ℎ∗ = 3(𝑝 + 1)/𝑛       (F11) 

Where: 

 p is the number of descriptors in the model 

 n is the number of chemicals in the training set 

Test chemicals with xi < h* are considered reliably predicted. 

On Figure 6. is shown the Williams plot for the regression model, where the applicability domain 

is defined within ±3σ and a leverage threshold h* = 0.25. From the plot is apparent that all 

compounds of the training set are within the applicability domain except 3 with leverage values 

greater than the warning h*. These 3 chemicals could influence the performance of the model, 

however, like 108 their standard residuals are well within the established limits and thus, not 

model outliers to be considered for removal from the training set. There are also 2 structures 

from the external test set with h > h* marked (with †) on Table 3 as warning predictions. There 

are also 3 external set compounds outside of the established limits of the standard residuals, 

which explains the lower R2 of the independent external set. 
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Figure 6. Williams plot of the applicability domain. 

 

In our study we did not try to define upfront what structural alerts are statistically 

significant/important. Instead, we let the machine learning algorithms decide the importance of 

the molecular descriptors. In Table 4. are listed some of the most significant structural alerts.  In 

fragment-based drug design, structural alerts serve as critical tools for identifying promising 

fragment scaffolds with potential to bind to a target protein. By recognizing specific molecular 

features associated with desired or undesired properties, these alerts enable early prediction of 

a fragment's suitability for progression into lead optimization. This knowledge helps focus drug 

discovery efforts on compounds with higher likelihood of success while minimizing the risk of 

developing molecules with liabilities such as toxicity or poor pharmacokinetics.  
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Table 4. Structural alerts for the Fragments binary model. 

Structural alert Average pIC50 # of Actives # of Inactives 
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As has been described briefly in the introduction, TBK1 is composed of four domains – kinase 

domain, ubiquitin-like domain, scaffold/dimerization domain and TANK-binding domain. The 

structure of TBK1 has been determined with several structures from across different 

methodologies (X-ray, cryo-EM) and species and are available in the Protein Data Bank (PDB). 

Many of the reported structures of TBK1 are in the presence of an inhibitor such as the withdrawn 

drug amlexanox (CAS RN: 68302-57-8) 102 and a highly selective small molecule inhibitor in 

development, BAY-985 (CAS RN: 2409479-29-2) 112. Both inhibitors appear to be competitive in 

nature, binding around the same area as ATP would.  

 

A few key features emerge: 

1. The binding site itself appears to consist of a mixture of charged residues and polar 

residues (Glu87, Arg25, Thr156, Cys89) as well as hydrophobic residues (Leu15, Val23, 

Ala33, Gly92). 

2. Ability to H bond with Cys89 appears to be important. 

3. Besides this, H bond interactions with other residues such as Glu87 and Thr156 also 

appear to be crucial for the inhibitory effect. 
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4. There also appears to be a size limit to the binding site wherein addition of bulk beyond a 

certain point is not tolerated and leads to a sharp decline in inhibitory activity. 

5. Pushing the gatekeeper residue, Met86, resulted in increased potency. 

 

Based on the available information, it appears that the ability to H bond may be crucial for 

inhibitory effect at TBK1. Consequently, structural features capable of H bonding (donors and 

acceptors) are likely important. Also, inhibitors having variations of the purine moiety are likely to 

be effective since inhibitors have to compete with ATP for the binding site. Structural elements 

capable of engaging in Van der Waals interactions with hydrophobic residues likely help boost 

inhibitory potency. Finally, structural elements that aid in pushing the gatekeeper residue Met 86, 

such as bulky substituents (5 or 6 membered rings) are likely to also increase inhibitory potency.  

 

Conclusions 

TBK1 is a serine/threonine kinase involved in various signaling pathways, particularly those 

regulating immune responses, which pinpoints it as an important player in innate immunity, 

particularly in the regulation of type I interferon responses. Understanding its key molecular 

fragments and their interactions with receptors can help in the development of inhibitors or 

modulators for therapeutic purposes. In the last two decades, there has been a steady increase 

in interest in TBK1 from the scientific community, especially evident after 2019. Despite this 

continued and sustained interest and TBK1’s obvious involvement in a wide variety of diseases, 

targeting TBK1 effectively has been challenging. Notwithstanding the challenges, the pursuit of a 

TBK1 selective inhibitor is of interest to the scientific community and pharmaceutical entities.   

In this study we developed a few machine learning models capable of predicting IC50 of 

small molecules inhibiting TBK1, a promising therapeutic target for the development of drugs 

modulating immune responses and treating wide range of diseases. We used the CAS Content 

Collection to assemble a training set of 1,183 chemical structures with experimentally measured 

IC50 toward TBK1. We explored several machine learning techniques combined with various 

molecular descriptors to derive and select the best TBK1 inhibitor QSAR models. Several 

structural alerts responsible for the mechanism of inhibition of TBK1 are also outlined and 

discussed. In the context of fragment-based drug design, such structural alerts can help identify 

promising fragments and predict potential liabilities, in order to guide lead optimization in drug 

discovery.  
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