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We explore charge regulation (CR) of spherical nanoparticles immersed in an asymmetric electrolyte of a
specified pH. Using a recently developed reactive canonical Monte Carlo (MC) simulation method, titration
isotherms are obtained for suspensions containing monovalent, divalent, and trivalent coions. A theory based
on the modified Poisson-Boltzmann (PB) approximation, which incorporates the electrostatic ion solvation
free energy and discrete surface charge effects, is used to compare with the simulation results. A remarkably
good agreement is found without any fitting parameters, both for the ion distributions and titration curves,
suggesting that ionic correlations between coions and hydronium ions at the nanoparticle surface play only
a minor role in determining the association equilibrium between hydroniums and the functional sites on the
nanoparticle surface. On the other hand, if suspension contains multivalent counterions, we observe large
deviation between theory and simulations, showing that the electrostatic correlations between counterions
and hydronium ions at the nanoparticle surface are very significant and must be properly taken into account
to correctly describe CR for such solutions.

I. INTRODUCTION

Coulomb interactions are known to be the main driving force governing a wide range of important phenomena
in physics1,2, physical chemistry3–6, biophysics1,5,7–10 and material science11,12. Examples are abundant, ranging
from the formation of macroscopic aggregates of suspended nanoparticles13–16 to the cell functionality8,17, DNA
assembly and encapsulation in viruses18–22, conformation of polyeletrolytes9,23–25 and proteins26–29, electric storage
devices30–32, sedimentation of charged colloids33–39, etc. Controlling these interactions and understanding the role
that they play in different phenomena is a mandatory step towards the development of new materials and advances
in key applications in medicine, nanotechnology and biology40. The buildup of local charges that gives rise to such
interactions is controlled by the local electrochemical equilibrium1. Typical examples are the formation of double-layer
structures around charged surfaces, ion exchange through membranes, ion dissociation in polar media, and formation
of covalent bonds between protons and acidic/basic groups on surfaces immersed in solvents.

Ion dissociation is a mechanism of entropic-electrostatic nature that occurs when neutral molecules are dissolved
in a polar medium. The break up of ionic bond results in entropy gain from a counterion released into solution. In
apolar medium, the entropic gain is not sufficient to compensate for the electrostatic penalty of exposing charge to a
low dielectric environment41,42. On the other hand, in a strongly polar medium, such as water, the entropic gain can
compensate the electrostatic self-energy penalty, resulting from breaking of ionic bonds1,4,43,44. Dissolving salt into
an aqueous solution provides an efficient way of controlling electrostatic forces between charged surfaces, as the local
electrochemical equilibrium results in partial screening of these interactions via formation of ion neutralizing clouds45.
On the other hand, the charging mechanism of surfaces with weak acidic/basic groups also involves – in addition to
entropic and electrostatic contributions – covalent bonding between protons and active surface groups46,47. For surfaces
with acidic groups, considered in the present paper, proton exchange between donor and receptor molecules results in
either charging (deprotonation) or neutralization (protonation) 48 of macromolecules. The important characteristic of
this process is that the charge of a nanoparticle or a surface decorated with acid/base groups can be controlled by the
amount of the acid/base added to the solution, i. e. the system’s pH. Such controlling mechanism is generally referred
to as the Charge Regulation (CR) mechanism49–56. The possibility of tuning the charge of nanoparticles by varying pH
– alongside with the adjustment of the effective strength and range of Coulomb interactions by added salt – represents
a convenient way of controlling the effective interactions between nanoparticles and surfaces in general57–61. As an
example, the irreversible aggregation of particles such as charged colloidal suspensions subject to the gravitational
field can be controlled by changing system’s pH and the amount of added electrolyte62–64.

Attempts to quantitatively describe the CR mechanism date back to the early 70’s, with the pioneering work
of Ninham and Parsegian (NP)55. The NP theory is based on the Poisson-Boltzmann (PB) mean-field description
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of electrostatic interactions, with the adsorption of protons from solution controlled by the bulk acid dissociation
constant65. NP theory does not account for the interfacial effects, as its formulation relies on the bulk equilibrium
constant55. However, the equilibrium dissociation constants of acid can be quite different, depending if the residue is
free in the bulk or bound to the surface61,66–68. Furthermore, it also ignores the electrostatic discrete surface charge
effects69, which have been shown to play a very important role for CR61,68,70,71. The more recent theoretical models
are based on the chemical equilibrium between free hydronium ions and acid functional groups regularly arranged
on a 2D substrate, following the reaction HA −−⇀↽−− H+ + A– , corresponding to protonation/deprotonation of surface
sites. The equilibrium number of deprotonated sites determines the surface charge, which depends on the electrostatic
potential, solution pH61,68, and intrinsic pKa of surface groups. The titration curves can be obtained by varying the
amount of acid/base added to the system.

The theoretical descriptions based on the mean-field PB theory are limited in scope to systems in the, so-called,
weak coupling limit1 (e. g., weak electrostatic correlations), and are also unable to address the general case of
polyelectrolytes or polyampholytes for which the conformation of a molecule is strongly coupled to the state of
protonation of its acid/base groups72–74. For such complicated systems, we are forced to rely on computer simulations,
which must account for the protonation/deprotonation reactions of polymer’s monomers75–77.

Differently from simulations of simple fluids, implementation of computer simulations for Coulomb systems re-
quires use of advanced techniques to circumvent the problems associated with the long-range nature of the Coulomb
force78–82, which prevents application of the minimal-image periodic boundary condition. Instead, an infinite number
of replicas of the system must be considered, alongside with the long-range Coulomb interaction between the ions in
these replicas. Ewald summation method can then be used to efficiently perform the sum over the replicas. Nev-
ertheless, a large computational cost is required to simulate dense charged systems, when compared to short-range
interacting systems83,84. The overall energy of the replicated system depends on the choice of the boundary condition
for the resulting crystal of the periodic replicas (tin-foil, vacuum, slab), and care must be taken to choose the bound-
ary condition appropriate to the physical situation at hand. Moreover, it is sometimes convenient (if not necessary)
to study systems that lack charge neutrality, in which case a proper regularization of the Coulomb interaction must
be perform to avoid infinite energies79. The presence of acid/base groups poses additional challenges47,85–87. When
performing MC simulations, the possibility of a reaction between a proton and an adsorption site must be taken into
account, in addition to the standard MC moves. This defines a reactive Monte Carlo (rMC) simulation, in which
equilibrium is established considering MC moves that account for the protonation/deprotonation reactions, in a way
that satisfies the detailed balance condition47,88–90. Furthermore, in a canonical simulation, “potential of hydrogen”
defined as pH = − log10 (aH) — where the proton activity is aH = cH

c	 e−βµex , cH is the average concentration of
free hydroniums inside the simulation at equilibrium, c	 = 1 M is the standard concentration, µex is the excess
electrochemical potential of a hydronium ion, and β = 1/kBT is the inverse thermal energy — is not known a priori
and must be calculated separately after the equilibrium has been achieved. In principle, aH can be obtained via the
traditional Widom insertion method91. In practice, however, the calculation becomes inaccurate due to the typically
small number of hydronium ions inside the simulation cell for intermediate and large pH values. Moreover, insertion
of a hydronium ion results in a charge non-neutral periodic system, requiring special techniques to avoid divergence
of the excess chemical potential. A recently proposed alternative simulation method, designed to circumvent these
difficulties, relies on the surface Widom insertion algorithm with a special technique for computing the change in the
Coulomb energy when a virtual proton is inserted into the system77,91,92.

The goal of the present work is to use the canonical rMC simulations to explore the role of electrostatic correlations
in CR in suspensions containing multivalent ions. We will demonstrate that a modified mean-field theory is able to
correctly account for the CR in suspensions containing multivalent coions – showing that electrostatic correlations
are only marginally important in such systems. On the other hand, for systems with multivalent counterions, the
mean-field theory fails dramatically, demonstrating that electrostatic correlations are of fundamental importance for
CR in suspensions with multivalent counterions.

The outline of this work is as follows. In Section II, the setup of the system under consideration is briefly described.
The canonical rMC simulations with multivalent anions are reviewed in Section III. Next, the theoretical approach of
canonical CR is discussed in Section IV. Results are shown and discussed in Section V, followed by the closing remarks
and perspective of new developments in Section VI. Finally, the detailed calculations of the electrostatic correlations
contributions to the free energy, which are included in the modified PB equation, are provided in the Appendix A.

II. SYSTEM

In this work, we will consider two different cell models: a spherical hard cell of radius Rc with hard boundary
(SHC), and a cubic cell of volume L3 with periodic boundary conditions in all three directions (PC).

We consider a spherical nanoparticle of radius a, placed at the center of the cell. In the case of a SHC, the cell
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radius Rc is related to the volume fraction, η, of the nanoparticles inside the suspension,
Rc
a

= η−1/3, as sketched in

Fig. 1 a. In the case of a PC, η = 4πa3/3L3. At the start of the simulation a nanoparticle contains Z fully ionized
acidic groups, each of acid dissociation constant Ka, uniformly distributed over its surface. The cell also contains
fully ionized 1:z− electrolyte of concentration cs, resulting in a total of Ns anions of valence z− and N+ = z−Ns
monovalent cations. In addition, Z of hydronium ions are added to preserve the overall charge neutrality. All ions
are free to move within the cell volume. For simplicity, we assume that all ions are equal-sized, of radius ri = 2 Å.
Water is treated implicitly as a uniform dielectric medium of Bjerrum length λB = q2/kBTε = 7.2 Å. The equilibrium
charge of the nanoparticle is −Zeffq, where Zeff is the average number of deprotonated surface groups after the

surface reaction H+ +A– −−⇀↽−− HA reaches equilibrium. Note that a priori we do not know either the concentration or
activity of free protons inside the system. These can only be calculated after the simulation is fully equilibrated. To
change the pH inside the system we can add a base, such as NaOH. Since the dissociation of water is so weak, addition
of a base molecule will result in the reaction between a hydronium ion and a base molecule, resulting in formation of
a water molecule and release of Na+. In the present implicit water model, the net effect will be the replacement of a
hydronium ion by a sodium ion, H3O

+ → Na+. We can then rerun the simulation with Z − 1 hydroniums and one
extra Na+ to obtain the new charge of the nanoparticle. The new equilibrium pH can then be calculated using the
algorithm described later on in this paper93. Repeating this procedure – i.e. adding more base molecules – we can
explore the full pH range, obtaining the complete titration curve for a suspension of nanoparticles.

For the SHC, the electrostatic energy is given by the usual Coulomb law:

E =

N−1∑
i=1

N∑
j=i+1

qiqj
ε|rrri − rrrj |

, (1)

where the sum is performed over all charged species (both ions and sites), and ε is the water permittivity. On the
other hand, for PC the electrostatic energy of the system is obtained using the Ewald summation technique:

E =
1

2

∑′

ij

∑
nnn

qiqjerfc(κe|rrri − rrrj − Lnnn|)
ε|rrri − rrrj − Lnnn|

+
∑
k 6=0

2πexp(−kkk2/4κe)

εV kkk2 (A(kkk)2 +B(kkk)2)

−
∑
i

q2
i κe
ε
√
π
− Q2

t

2εV κ2
e

, (2)

where

A(kkk) =
∑
i

qi cos (kkk · rrri) , (3)

B(kkk) =
∑
i

qi sin (kkk · rrri) ,

nnn = (n1, n2, n3) are integers, and kkk = ( 2π
L n1,

2π
L n2,

2π
L n3) are the reciprocal lattice vectors for the cubic simulation

box of side length L and volume V = L3, and κe is an arbitrary damping parameter. The expression (2) is also valid
for systems with an excess charge Qt =

∑
i qi and the corresponding uniform neutralizing background77,93. The prime

on the sum indicates that the term i = j is excluded from the summation for nnn = 0. We set κe = 5/L, so that only
nnn = 0 needs to be considered for the short range – sum over erfc terms – contribution to the electrostatic energy.
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FIG. 1: a) A two dimensional representation of the system under investigation. A spherical nanoparticle of radius a
is placed at the center of a spherical cell of radius Rc (SHC). The particle surface contains Z acid groups regularly
arranged over its surface. Each site can be in either protonated (white circles) or deprotonated (red circles) state.
The cell also contains hydronium ions (dark blue circles), as well as multivalent anions (red circles) and monovalent
Na+ ions (light blue circles) from dissolved salt of concentration cs and from the added base. b) 3D representation of
the same system inside a periodically replicated cubic cell (PC).

For a cell model with only one colloidal particle located at its center, we expect that the specific boundary condition
– hard wall or periodic – should not make a significant difference for thermodynamics. In Fig. 2, we show a comparison
of the density profiles of positive and negative ions inside a SHC and PC containing 100 mM of 1:1 or 1:3 electrolyte,
for a nanoparticle of Z = 600 non-reacting surface groups, obtained using a standard canonical MC. As can be seen,
the density profiles for both cases are almost identical. This is very convenient, allowing us to use SHC to construct
the mean-field theory of CR. The spherical symmetry of the SHC, makes solution of the nonlinear PB equation much
simpler, since it can be transformed into a one dimensional integral equation. On the other hand, PC would require
us to solve the full three dimensional non-linear differential equation, which is significantly more involved.
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FIG. 2: Comparison of ionic density profiles for a nanoparticle of fixed charge −600q. In all cases the concentration
of electrolyte is 100mM. The cation density profiles are practically indistinguishable between SHC and PC.

III. REACTIVE CANONICAL MONTE CARLO SIMULATIONS

In a canonical simulation, one does not have a direct access to the chemical potential of hydronium ions necessary to
determine pH of the system. This makes canonical titration simulations complicated90, since pH must be determined
separately after equilibrium has been established. Furthermore, a very small number of free hydronium ions present
inside the cell makes the usual methods to obtain chemical potential, necessary to calculate pH, very inaccurate. To
remedy these problems, we use the recently developed method for canonical titration simulations introduced in the
Ref. [93]. Although in the present paper we only consider a PC model with one colloidal particle, the simulation
method is completely general and can be applied to a system with an arbitrary number of nanoparticles inside the
simulation cell with periodic boundary condition.

For a canonical reactive MC, the simulation approach involves two distinct types of moves: bulk moves, for which ion
positions undergo random change with the acceptance probabilities determined by the standard Metropolis algorithm,
and reaction protonation/deprotonation, HA −−⇀↽−− H+ + A– , moves. When a proton moves from the bulk and reacts
with an active site on the surface, both electrostatic and chemical energies of the system change. The chemical
energy associated with transferring a proton from the bulk to the surface is kBT ln Ka

c	 , where Ka is the surface
acid dissociation constant. The change in electrostatic energy of the system can be calculated using Eq. (2). The
acceptance probability for a protonation move is then given by90,93:

Pp = min

[
1,

NH

V NAKa
e−β∆E

]
, (4)

while for a deprotonation it is:

Pd = min

[
1,
V NAKa

NH + 1
e−β∆E

]
, (5)

where NA is the Avogadro number, NH is the number of free hydronium ions, and ∆E is the change in electrostatic
energy after the protonation/deprotonation move, calculated using Eq. (2). Once the system is fully equilibrated and
the average number of protonated surface groups Np is obtained, we can use the surface Widom insertion algorithm
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to calculate the pH of the suspension93:

pH = − log10

(
Np + 1

Z

)
+ pKa + log10

(〈
e−β(∆E+qφB)

〉
0

)
, (6)

where φB is the Bethe potential of the periodically replicated system, φB = − 2π
3εwV

∑
i qirrri

2 . The surface Widom
method involves introduction of a virtual proton into the system, which then reacts with one of the surface sites. If
the randomly chosen site is already protonated, this results in ∆E =∞, otherwise the energy of the virtual protonate
state is calculated neutralizing the charge of the selected site, −q → 0. Since the virtual proton is periodically
replicated when it is introduced into the system, we must also include the corresponding neutralizing background.
The resulting change in the electrostatic energy, ∆E, can be calculated using Eq. (2). The intrinsic pKa of the
reaction is defined as pKa = − log10(Ka/c

	), where c	 = 1 M is the standard concentration. The subscript 0 on the
brackets in Eqn. (6) indicates that the evolution of the system in between the virtual proton insertions is performed
using the Hamiltonian of the unperturbed (without virtual proton) system.

IV. CANONICAL FORMULATION OF THE CHARGE REGULATION THEORY

To construct a canonical theory of CR, we consider a nanoparticle of Z acidic surface sites inside a SHC of free
volume V0 = 4π

3 (R3
c − a3). In equilibrium, Zeff of surface sites will remain deprotonated. The bulk of the cell

contains NH free hydronium ions and Zeff −NH monovalent Na+ ions. The cell also contains a 1:z− electrolyte of
concentration cs . The total number of monovalent cations (counterions) is N+ = z−csV0 + Zeff and the number of
z−-valent anions (coions) is N− = csV0. All ions are modeled as hard sphere of radius ri, with a point charge located
at their center. The cations, anions, and hydronium ions are free to move through out the free volume V0. There is a
chemical equilibrium between the free hydroniums and the protons adsorbed to the nanoparticle’s surface. The goal
of the theory is to calculate Zeff , for a given number of free hydroniums NH and electrolyte of concentration cs, and
then relate these to the pH inside the SHC.

Working in the framework of canonical ensemble, the equilibrium distributions of ionic species, subject to the
nanoparticle’s electric field, follow from the stationary condition1,94

δF
δρi(r)

= µi, (7)

where F represents the Helmholtz free energy and µi are the Lagrange multipliers that ensure the fixed number of par-
ticles of type i inside the cell. This relation can be interpreted as expressing the condition of constant electrochemical
potential of each specie i inside the system.

The Helmholtz free-energy functional F is composed of the entropic (ideal gas) contribution F id, a mean-field
contribution Fmf , and a (generally unknown) excess95 free-energy Fex. The ideal contribution is explicitly given by

F id =
∑
i

∫
ρi(r)[ln(Λ3

i ρi(r))− 1]dr, (8)

where Λi denotes the thermal wavelength of a specie i. The mean-field contribution reads

Fmf =
∑
i

∫
qziρi(r

′)%(r)

ε|r − r′|
drdr′ +

q2

2

∑
i,j

∫
zizjρi(r)ρj(r

′)

ε|r − r′|
drdr′, (9)

where q is the proton charge. The sum is performed over the ionic species of valence zi, and %(r) = −Zeffq
4πa2

δ(r − a)

is the uniform charge density at the nanoparticle surface arising from the deprotoneted sites. Application of the
Euler-Lagrange condition (7) leads to the general relation

ln
[
Λ3
i ρi(r)

]
+ βqziϕ(r) + βµexi (r) = βµi ≡ ln

(
Λ3
i c̄i
)
, (10)

where ϕ(r) is the mean electrostatic potential,

ϕ(r) =
∑
i

∫
qziρi(r

′)

ε|r − r′|
dr′ +

∫
%(r′)

ε|r − r′|
dr′, (11)
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and the position-dependent excess chemical potential is defined as µexi (r) =
δFex

δρi(r)
. We note that, due to the

rotational symmetry with respect to both azimuthal and polar angles, the ionic distributions are functions of the
radial coordinate r alone, and the above integrals simplify to

ϕ(r) = −Zeffq
εr

+
4πq

εr

∑
i

[∫ r

a

ziρi(r
′)r′2dr′ + r

∫ Rc

r

r′ρi(r
′)dr′

]
. (12)

The first term of the rhs of this equation is the isotropic potential due to the nanoparticle, whereas the other
contributions represent the potential due to the ionic species. The same result can be easily obtained by a direct
application of the Gauss Law and the underlying radial symmetry. The electrostatic potential is set to zero at the
cell boundary r = Rc, where the electric field also vanishes due to the overall charge neutrality inside the SHC.

The lhs of Eq. (10) can be interpreted as the electrochemical potential of ionic specie i at position r. The equilibrium
condition then establishes that this electrochemical potential must be constant everywhere. Relation (10) leads to
the following equilibrium concentrations:

ρi(r) = c̄i exp [−βqziϕ(r)− βµexi (r)] . (13)

In the present canonical formalism, the coefficients c̄i must be determined from the constraint of fixed number of ions
of each type, Ni, inside the SHC. Using Eq. (13), these coefficients can be evaluated as

c̄i =
Ni

4π

∫ Rc

a

r2e−βqziϕ(r)−µex
i (r)dr

, (14)

and can, therefore, be interpreted as the functionals of ionic density profiles.

The coefficients c̄i in Eq. (10) are defined as c̄i ≡
eβµi

Λ3
i

. Furthermore, we can split the total electrochemical

potential µi into the ideal gas and the excess contribution, βµi = ln(Λ3
i ci)+βµexi , where the mean ionic concentration

is ci = Ni/V0. Note that µexi contains all the interactions, including the contribution from the mean field electrostatic
potential. The activity aH of hydronium ions is then:

aH =
cHe

−βµex
H

c	
=
c̄H
c	
, (15)

and can be calculated directly using Eq. (14), if the electrostatic potential and the local excess chemical potential
µexH (r) inside the cell are known.

The local excess chemical potentials µexi (r) in Eq. (10) accounts for the ionic finite size effects and the electrostatic
correlations96,97. Since in this paper we will only consider solutions of low salt concentrations, under 1M, the steric
effects can be ignored – except for the formation of the Stern layer at the surface of a nonoparticle. The electrostatic
correlations between ions result in ionic repulsion from a neutral hard wall. This can be understood as follows96.
In the bulk of suspension, ion electric field is screened by the counterion cloud, resulting in a negative electrostatic
solvation free energy. Presence of a wall breaks the spherical symmetry of the ionic cloud, diminishing the screening
of electric field produced by the ion and, therefore, the magnitude of the (negative) electrostatic solvation free energy.
This results in an effective repulsion of ions from a neutral hard wall. For monovalent ions this effect is small and can
be neglected, on the other hand for multi-valent ions it becomes significant. The solvation free-energy can be readily
computed using Green function formalism (for details, see Appendix A). Neglecting the curvature effects we obtain:

βµexi (r) ≡ βWi(r) =
z2
i λB
2
W0

(
e−2κ(r−a−ri) + e2κ(r+ri−Rc)

)
, (16)

where

W0 =

∫ ∞
0

(
p− k
p+ k

)
k

p
dk, (17)

and κ =
√

4πλB
∑
i ciz

2
i is the characteristic inverse Debye screening length inside the cell and p ≡

√
k2 + κ2.

For a given Zeff and {Ni}, the modified PB (mPB) equation, described by the set of equations (12), (13), (14)
and (16) can be solved numerically to determine the ionic distributions and the mean electrostatic potential by means
of Picard iteration algorithm. First, guess functions are assigned for the density profiles ρi(r). Using Eq. (11), the
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corresponding electrostatic potential can be calculated. Then, Eqs. (14), (16) and (13) can be used to estimate a new
set of density profiles. The procedure is repeated until convergence is achieved. This process allows one to calculate
the equilibrium distributions for a given number of hydronium ions NH and Zeff . However, the solution obtained
thus far is not self-consistent, in the sense that the charge regulation effect was not taken into account. Indeed, the
number of deprotonated groups, Zeff , is controlled by the chemical equilibrium between free hydroniums and the
adsorbed protons. Following Ref. [98], we can determine Zeff using a two state model:

Zeff = Z
e−βf0

e−βf0 + e−βf1
=

Z

1 + e−β∆µ
, (18)

where f0 is the free energy of the system when a site is deprotonated, f1 is when it is protonated, and ∆µ = f1 − f0

is the free energy change of the system due to the removal of proton from the bulk of the cell and its reaction with
the adsorption site. In the initial state the site is deprotonated and is solvated by the ions of electrolyte solution,
resulting in solvation free energy (see Appendix A):

βµsol =
λB
2

∫ ∞
0

(
k − p
p+ k

)
e−2kridk, (19)

where ri is the hydrated ionic radius, i.e. the distance of the closest approach of ions to the surface. The proton in
the bulk has free energy µH . After the protonation, there is a chemical free energy gain associated with the formation
of a covalent bond between the proton and the site. This energy can be expressed in terms of the acid dissociation
constant Ka as kBT ln

(
KaΛ3

H

)
. Furthermore when proton becomes bound to the site, it still interacts electrostatically

with all the other deprotonated sites as well as with all the other ions inside the solution, resulting in an electrostatic
energy qφ. Therefore,

β∆µ = ln
(
KaΛ3

H

)
+ βqφ− βµsol − βµH . (20)

Substituting this into Eq. (18), we can rewrite it as

Zeff =
Z

1 + 10(pKa−pH)e−βqφ+βµsol
. (21)

This expression might give a misleading impression that the effective charge is determined solely by the difference
pH−pKa alone. This, however, is not the case90, since the electrostatic contribution depends on the pH non-trivially
in virtue of the relation (14).

In order to calculate the electrostatic contribution φ, discreteness of sites must be taken into account98. Following,
Ref [98], we can split φ into the mean-field and discrete surface charge contributions βqφ = βqϕ(a) + βqϕdisc. The
mean-field ϕ(a) is determined by the solution of the PB equation, while the effects due to the discreteness of the
surface sites are included using the theory of one component plasma (OCP) resulting in98

βϕdisc =
λBMZeff

a
√
Z

, (22)

where M ≈ 1.106 is the Medulung constant of the two dimensional triangular lattice.
Equation (21) can now be solved self-consistently in a combination with the mPB equation. We proceed as follows.

For a given value of pKa and ions of each type inside the cell {Ni}, we “guess” the mean-electrostatic potential inside
the suspension ϕguess(r). For this guess we calculate the ionic density profiles using Eq. (13) and pH using Eq.
(15). We then solve Eq. (21) to obtain Zeff . Using this value and the ionic density profiles we then recalculate
the electrostatic potential using Eq. (12), and repeat this procedure until convergence is achieved. The full titration
curve can be obtained by varying the number of free hydronium ions inside the cell NH for a fixed concentration of
salt ions.

V. RESULTS

We shall now employ both simulations and theory to investigate CR mechanism in suspensions containing multiva-
lent ions. The results presented are for weak acidic surface groups of pKa = 5.4. All ions are treated as hard spheres of
radius ri = 2 Å. Nanoparticles are hard spheres of radius a = 6 nm with Z surface adsorption sites. For theory we will
use SHC of radius Rc = 12.4 nm. To explore the accuracy of the mPB equation, we start by considering nanoparticles
of fixed charge. Once convinced of the accuracy of the mPB approximation for 1:z electrolyte, we will proceed to
investigate charge regulation and construct the tritation isotherms, which we will then compare to simulations for
different salt concentrations and charge asymmetries.
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A. Ionic profiles

To test the accuracy of the mPB equation for suspensions with multivalent coions, we calculate the ionic density
profiles for nanoparticles of fixed charge −Zq. Fig. 3 shows ionic profiles around a nanoparticle of charge Z = 200, in a
suspensions containing 1:3 electrolyte of various concentrations: cs = 20 mM (a), cs = 100 mM (b) and cs = 150 mM
(c). A very good agreement is observed in all cases. The reason for such good agreement is due to the absence of
strong electrostatic correlations between ions in the vicinity of the charged surface – because of their strong repulsion
from the charged surface the concentration of multivalent coion remains low everywhere. We also note that, since
ionic radius is small and the concentrations are not too large, the packing effects close to the surface are insignificant.
As the result, steric interactions among the condensed counterions – which are completely neglected at the mean-field
level – are negligible. Furthermore, since the counterions are monovalent, electrostatic correlations between them
remain weak near the charged surface. The trivalent coions, on the other hand, are strongly repelled from the surface.
Since the surface charge is not very large, the counterion concentration close to the surface is not sufficient to produce
a neighboring layer of trivalent coions (the so-called layering effect), again signifying that ionic correlations are small
in this range of ionic concentration and surface charge, and are well described by Eq. (16).
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FIG. 3: Ionic profiles around a nanoparticle of radius a = 6 nm, and a fixed charge of −200q. Black and red symbols
are simulation results for monovalent cations and trivalent anions, respectively, while blue curves are the corresponding
theoretical predictions. The mean salt concentrations are cs = 20 mM (a), cs = 100 mM (b) and cs = 150 mM (c).

Similar trends can be observed in Fig. 4, which shows the density profiles for the same set of salt concentrations,
but in a regime of much higher surface charge, Z = 1200. Despite the buildup of a much larger and thinner layer of
counterions at the surface, the ionic correlations are not large enough to result in any significant deviation from the
mean-field predictions. This again is a consequence of weak electrostatic correlations among monovalent counterions at
the surface1. If counterions were trivalent and coions monovalent, the repulsion between neighboring counterions close
to the surface would result in strong deviations from the mean-field predictions99. It is thus important to emphasize
that the validity of the mPB equation is restricted to the case of monovalent counterions and the surface charge and
salt concentrations that are not too large. In the case of trivalent counterions, strong electrostatic correlations will
restrict considerably the range of validity of the mean-field approach1.
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FIG. 4: Ionic profiles around a nanoparticle of radius a = 6 nm, and a fixed charge of −1200q. Black and red symbols
are simulation results for monovalent cations and trivalent anions, respectively, while blue curves are the corresponding
theoretical predictions. The mean salt concentrations are cs = 20 mM (a), cs = 100 mM (b) and cs = 150 mM (c).
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Perhaps the most interesting feature of the comparisons presented in Figs. 3 and 4 is the ability of the mPB equation
to accurately describe the ionic depletion close to the cell boundary. This depletion is clearly more pronounced for
multivalent coions and is a consequence of electrostatic correlations. The correlations between ions result in counterion
clouds that screen ionic electric field inside the electrolyte. The distortion of the polarization cloud produced by the
wall prevents efficient screening, resulting in a repulsion from the wall. This effect is stronger for trivalent ions, which
feel greater repulsion from a neutral hard wall. In order to emphasize this point, in Fig. 5 a comparison is shown
between the distributions of monovalent and trivalent anions around a nanoparticle of charge Z = 600. In the case of
1 : 3 electrolyte, a larger depletion zone is observed around the nanoparticle, which is mainly of electrostatic nature.
At the same time, a strong repulsion of trivalent anions from the neutral cell boundary can be seen.

4 6 8 10 12 14 16
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0.003

0.006

0.009

0.012

0.015

ρ
- [

M
]

1:1
1:3

FIG. 5: Comparison between coion distributions calculated using the mPB equation, for the case of 1:1 (black curve)
and for the case of 1 : 3 (red curve) electrolytes. In both cases cs = 10 mM. The nanoparticle charge is fixed at −600q
and radius a = 6 nm.

The mPB equation, therefore, captures the most important electrostatic correlation effects present in 1:z electrolytes.
This is not the case for the usual PB equation without the electrostatic solvation correction, in which case the profiles
near a hard wall remain the same as in the bulk. We should stress that a proper description of such depletion effect
is quite important, since the contact theorem100–105 allows us to connect the ionic density at the hard wall with the
osmotic pressure that exists inside the suspension.

B. Tritation curves

Having established the accuracy of the mPB equation for ionic density profiles, we proceed to include CR to
investigate how variation of pH influences the nanoparticle charge and the osmotic pressure inside the suspension.
All the results presented in this section have been obtained for nanoparticles with Z = 600 weak acidic sites and
size a = 6 nm. For very high pH the acidic groups become completely deprotonated resulting in nanoparticles with
surface charge density of σ ≈ 212.2 mC/nm2.

In Fig. 6 we present the titration curves for suspensions of nanoparticles containing 1:2 electrolytes at concentrations:
cs = 10 mM (a); cs = 50 mM (b); and cs = 100 mM (c). A perfect agreement between theory and simulations is
found for all salt concentrations, in the whole range of pH values. The success of the theory is clearly due to the high
accuracy of the mPB equation for predicting the ionic density profiles and due to very accurate description of the
electrostatic potential in the vicinity of each site, calculated using the ϕdisc and µsolv. We observe that for pH & 8,
the number of protonated sites is very low. On the other hand for pH . 2 almost all sites are protonated. Addition
of electrolyte leads to screening of electrostatic interactions, resulting in lower protonation for the same value of pH.
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FIG. 6: Tritation isotherms showing the nanoparticle surface charge density as a function of solution pH, in the
presence of 1:2 electrolytes of concentrations cs = 10 mM (a), cs = 50 mM (b) and cs = 100 mM (c). Black symbols
are the simulation results, whereas the blue solid curves correspond to theoretical predictions.

Titation curves for the case of added 1:3 electrolyte at concentration cs are shown in Fig. 7. To highlight the effect
of larger anionic charge, in the panels we also plot the corresponding titration isotherms of suspensions with 1:1 salt
at the same concentration. Again, a very good agreement between simulations and theory is observed for all studied
electrolyte concentrations. We see that increase of anion valence results in diminished protonation – larger Zeff –
for the same salt concentration and pH. The reason for this is that the large charge of trivalent anions favors their
repulsion from the nanoparticle surface, see Fig. 5. This is further amplified by the electrostatic correlations that also
favor bulk solvation of trivalent coions. The net result is that compared to 1:1 electrolyte there are fewer trivalent
anion present near the surface of a nanoparticle, making the electrostatic potential less negative – and, therefore,
attracting less hydronium ions into this region – leading to diminished protonation and larger Zeff .

The difference in protonation between suspensions containing either 1:3 or 1:1 electrolyte is most pronounced at
intermediate pH values, in the range pH ∼ 5 to pH ∼ 7. For example, at pH = 6.0 and cs = 50 mM, the the number
of deprotonated groups rises from Zeff ≈ 179 to Zeff ≈ 248, when z− is changed from one to three —representing a
∼ 38% increase in the nanoparticle charge.
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FIG. 7: Tritation isotherms showing the nanoparticle surface charge density as a function of solution pH, in the
presence of 1:1 and 1:3 electrolytes of concentrations cs = 10 mM (a), cs = 50 mM (b) and cs = 100 mM (c). Symbols
are the simulation results, whereas the blue and red solid curves correspond to theoretical predictions for trivalent
and monovalent anions, respectively.

Although the theory proposed in this paper is able to describe very well suspensions containing multivalent coions, we
expect it to fail when applied to suspensions containing multivalent counterions, such as Ca++. For such suspensions,
both proton and Ca++ will compete for the same adsorption sites, leading to strong correlations between the two
near the surface of a nanoparticle. Fig 8, compares the tritation curves obtained using the canonical rMC simulations
(symbols) with the predictions of the present theory (solid curve) for suspensions containing 2 : 1 electrolyte. As
expected, we see strong deviations between the present theory and the simulations. At this time it is not clear how
to include the strong electrostatic correlation effects into the theoretical framework presented in this paper.
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FIG. 8: Comparison of titration isotherms calculated using rMC (symbols) and the present theory (solid blue curve)
for suspensions containing 2 : 1 electrolyte at concentration cs = 1 mM.

C. Osmotic pressures

One of the advantages of the proposed theoretical framework is its ability to accurately predict the ionic density
profiles at the outer boundary of a SHC. This allows us to use the contact-value theorem100–105 to calculate the
osmotic pressure inside the suspension. The exact relation between the osmotic pressure Π and ionic densities at
contact with the outer wall of the SHC is

βΠ =
∑
i

ρi(Rc − ri), (23)

where the summation is over all ionic species. This relation establishes that the osmotic pressure, which is constant
throughout the system, can be computed via the kinetic momentum which is transferred to the hard wall by ion
collisions. Accurate calculations of these contact values are not easy, since they usually require access to ionic
correlations. Size effects, for example, are known to push particle towards the outer walls, increasing the contact
values, whereas electrostatic solvation effects leads to ionic depletion. In the case of small ions at concentrations less
than 1 M, the latter effect is the dominant one. In view of the observed accuracy of the propose model to reproduce
such depletion effects, it can be used as a promising route to efficiently and accurately compute osmotic pressures as
a function of pH and electrolyte concentration inside a suspension.
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FIG. 9: Osmotic pressures computed from the contact value theorem, Eq. (23), as a function of the packing fraction
η, for 1:3 electrolyte at fixed values of solution pH and cs. In the left panel results are shown for a case where pH = 3,
whereas right panels correspond to a higher pH of pH = 6. Two representative salt concentrations are considered:
cs = 50 mM (top pannels) and cs = 100 mM (bottom panels).

The osmotic pressures for different pHs and salt concentrations, as a function of the nanoparticle volume fraction η,
are shown in Fig 9, for the case of 1:3 electrolytes. At low packing fractions, the osmotic pressures are approximately
constant, showing a sharp increase for higher concentrations of the nanoparticles, η & 0.1. For such high volume
fractions, the trivalent anions are strongly repelled from the nanoparticle surface and are pushed towards the cell
boundary, attracting a large number of monovalent cations into this region as well. This results in a large contact
density at the outer SHC surface, leading to a sharp rise in osmotic pressure.

The hydronium concentration is generally much smaller than the concentration of cations from dissolved salt and
added base, the main effect of increasing the pH is to increase (in magnitude) the nanoparticle charge. This requires
a larger number of base cations inside the cell to preserve the overall charge neutrality. The higher the packing
fraction, the larger the concentration of dissolved cations, resulting in higher osmotic pressures. This explains why
the pressures increase much stronger at larger η when the pH values are higher (see Fig. 9b) in comparison to the
case of smaller pH (see Fig. 9a). This trend is weaker in the case of larger salt concentrations (see bottom panels),
when the dominant population of cations arises from the dissociated salt, instead of the added base.

VI. CONCLUSIONS

We have studied CR of nanoparticles in the presence of electrolyte containing multivalent ions. Differently from
the earlier approaches which studied CR for a semi-grand canonical system87,92,98, in which suspension is separated
from the reservoir by a semipermeable membrane, the present theory is constructed directly for an isolated suspension
(canonical ensemble)93. It is important to stress that for a semi-grand canonical system, presence of Donnan potential
between system and its implicit reservoir results in titration isotherms (plotted as a function of reservoir pH) that
can be very different from those of an isolated system77,93,106. Furthermore, we stress that the usual constant pH
simulation methods allow us to control only the pH of the reservoir and not the pH of the system107. The theory
presented in this paper applies directly to isolated suspensions, without invoking an external reservoir. The comparison
with simulations shows that the theory is very accurate for suspensions containing 1:z electrolytes at all pH values.
The theory is also able to accurately predict ionic depletion close to hard walls — this depletion is driven by the
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electrostatic correlations between cations and anions of electrolyte. Taking advantage of the good accuracy of the
theory for predicting the ionic density profiles, we have used the well-known contact value theorem to calculate the
osmotic pressure of suspensions of nanoparticles for different pH values and salt concentrations. We have also shown
that if suspension contains multivalent counterions, the present theory looses its accuracy. This is a consequence of
strong electrostatic correlations between the multivalent cations and the adsorbed protons, which cannot be accounted
for in the framework of the present theory. This will be the subject of the future work.
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Appendix A: Electrostatic correlations contributions

Here we present a detailed calculation of the solvation free energy for ions in the bulk and for surface charge groups.
To this end, we calculate the electrostatic potential produced by a point charge q′, located a distance z from a hard
wall placed inside an electrolyte solution. If the screening length is much smaller than the nanoparticle radius, κa� 1,
the curvature effects can be ignored (as far as the electrostatic solvation energy is concerned), and the nanoparticle
interface can be modeled as a flat surface located at z = 0. We separate the system into two regions: −∞ < z < d,
which contains the hard wall, but no electrolyte due to hardcore repulsion of ions from the wall, and z > d, where
electrolyte is present. The distance d corresponds to the distance of closest approach between the ions and the hard
interface. We consider separately the cases in which the test-charge is placed inside the region 0 ≤ z ≤ d (region
without electrolyte) and z > d (inside the electrolyte).

1. Test-charge at z > d

Using cylindrical coordinate system, the position of the point charge can be represented by (S′, θ′, z′). Moreover,
due to the translational symmetry over the plane, we can set the radial coordinate S′ = 0, without loss of generality.
The azimuthal symmetry, means that the electrostatic potential does not depend on θ. For z > d, the electrostatic
potential at (S, z) then satisfies the Helmholtz equation with a source term:

(∇2 − κ2)G(S, z, z′) = −4πq′

ε
δ(z − z′)δ(S

′)

2πS′
, (A1)

where ∇2 =
1

S

∂

∂S

(
S
∂

∂S

)
+

∂2

∂z2
. For z < d, the potential satisfies the Laplace equation, ∇2G = 0. In virtue of the

azimuthal symmetry, it is convenient to express the potential in terms of the Bessel function of zeroth order J0(kS)
as:

G(S, z, z′) =

∫ ∞
0

g(z, z′; k)J0(kS)kdk. (A2)

The completeness relation for the Bessel functions requires that108

δ(S)

S
=

∫ ∞
0

kJ0(kS)dk. (A3)

Substituting Eqs. (A2) and (A3) into Eq. (A1) yields

∂2g

∂z2
− p2g = −2q′

ε
δ(z − z′), (A4)

for z > 0, where p2 = k2 + κ2. Here, use was made of the relation
1

S

∂

∂S

(
S
∂J0(kS)

∂S

)
= −k2J0(kS). Similarly, using

the expression (A2) in Laplace equation, we obtain:

∂2g

∂z2
− k2g = 0, (A5)

when z < d. Equations (A4) and (A5) must be solved subject to conditions of: continuity g(z, z′; k) at z = d;

discontinuity of derivative at z = z′, g′(z → z′−, z; k) − g′(z → z′+, z
′; k) =

2q′

ε
; and symmetry under the exchange

of the source and the observation point z ←→ z′. In addition, the function g(z, z′; k) must be bounded in the limits
|z| → ∞. Solving Eqs. (A4) and (A5) with these constraints, we obtain:

g(z, z′; k) =
q′

εp

[
e−p|z−z

′| +
p− k
p+ k

e−p(z+z
′−2d)

]
, for z > d. (A6)

The electrostatic potential produced by a point charge placed at z′ at an arbitrary point (z, S) can be obtained upon
substituting Eq. (A6) into Eq.(A2). In the region of interest (z > d), the potential is comprised by two contributions:
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the usual Debye-Hückel (DH) potential of an ion in the bulk electrolyte – first term of Eq. (A6) – and the polarization
contribution produced by the wall – second term of Eq. (A6). The effective ion-wall interaction potential is then96:

W (z) =
q2

2ε

∫ ∞
0

(
p− k
p+ k

)
k

p
e−2p(z−d)dk (A7)

where the relation J0(0) = 1 has been used. The major contribution to the integral comes from k → 0, in which
case p→ κ. A convenient approximation thus amounts to the replacement e−2p(z−d) → e−2κ(z−d), which renders the
integration position-independent:

Wi(z) =
z2
i q

2

2ε
e−2κ(z−d)

∫ ∞
0

(
p− k
p+ k

)
k

p
dk. (A8)

In the case of SHC model there are two surfaces: the nanoparticle surface and the cell wall. Using the superposition
approximation we arrive at Eq. (16).

2. Charge in the region 0 ≤ z < d

We now consider the situation of a point charge (corresponding to one of the adsorption sites) located in the region
free of electrolyte, −∞ ≤ z ≤ d. The electrostatic potential then satisfies the equations:

∇2G(z, z′, S) = −4πq′

ε
δ(z − z′)δ(S)

2πS
, (A9)

for −∞ < z < d, and (
∇2 − κ2

)
G(z, S) = 0 (A10)

in the region z ≥ d. Proceeding as before, and using expressions (A2) and (A3), the function g(z, z′; k) now satisfies:

∂2g

∂z2
=

k2g − 2q′

ε
δ(z − z′) (−∞ < z < d)

p2g (z ≥ d).
(A11)

These equations can be solved to yield

g(z, z′; k) =
q′

εk

[
e−k|z−z

′| +

(
k − p
k + p

)
ek(z+z′−2d)

]
for −∞ < z < d. (A12)

Again, the first term of this expression yields the usual Coulomb potential produced by the charge, while the second
term is due to the polarization of ions of electrolyte by the electric field produced by the test charge. The solvation
free energy of a point charge located on the hard wall (S′ = 0, z′ = 0) is then:

µsolv =
z2
i q

2

2ε

∫ ∞
0

(
k − p
k + p

)
e−2kddk. (A13)
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