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Abstract

Methane measurements at liquefied natural gas (LNG) facilities play an important

role in characterizing methane emissions from the natural gas supply chain. The large

size and complexity of LNG facilities make quantifying emissions with ground-based

monitoring systems challenging, making aerial platforms one of the preferred methods

for methane measurements at these sites. However, aerial measurements typically pro-

vide a snapshot of emissions at a given instance, necessitating further analytical steps to
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infer both annualized emissions and the range of possible emissions at different instants

in time. This study uses aerial measurements at two LNG facilities from a Quantifica-

tion, Monitoring, Reporting, and Verification project to characterize the distribution

of temporally averaged emissions (i.e., annualized inventories) and possible site-level

emissions at any given point in time (“instantaneous emissions”). The former provides

uncertainty on the aerial measurement component of measurement-informed inventories

representing annual averages, while the latter will help contextualize future snapshot

measurements (e.g., aerial surveys or high-resolution satellite platforms) at LNG facil-

ities. We find that instantaneous emissions may fall well outside of the distribution

describing uncertainty in the annual inventory. We also compare different pre-analysis

schemes for aerial data, as existing literature does not provide a clear consensus on

methods for doing so, especially at LNG facilities.

Keywords: methane emissions, site-level emissions, instantaneous emissions, oil and gas,

LNG, measurement-informed inventory

Synopsis: We evaluate the impact of initial aerial data pre-analysis schemes and highlight

the differences in distributions between instantaneous and average-based site-level total emis-

sion rates at two LNG facilities.

1 Introduction

Natural gas is often considered a transitional energy source,1 serving as a bridge from coal

and oil to renewable energy sources. Since natural gas is predominantly composed of methane

(CH4),2 there has been increasing research into the impact of methane emissions from the

natural gas value chain.3–9 Methane is a potent greenhouse gas (GHG) with a global warming

potential 82.5 times greater than that of carbon dioxide (CO2) over a 20-year period.10 Thus

reducing methane emissions from the oil and gas industry is a crucial step in addressing global

warming. This process is relatively straightforward compared to other methane emission

sources such as agriculture and landfills,11 due to the low cost of abatement, identifiable
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and concentrated point sources, opportunities for equipment repair, and the availability of

existing infrastructure and technologies.12

The Russian invasion of Ukraine has shifted geopolitical dynamics, prompting the Euro-

pean energy market to seek alternative energy sources to Russian pipeline gas while main-

taining its strong commitment to reducing greenhouse gas emissions.13 Concurrently, the

United States has substantially increased its liquefied natural gas (LNG) exports, becoming

the world’s largest exporter in 2023.14 This surge highlights the critical need for accurate

methane emissions reporting at LNG facilities, which is essential for effective emission reduc-

tion strategies. However, methane emissions during the liquefaction process, which involves

cooling and condensing natural gas into a liquid form for efficient storage and transportation

over long distances, have not been studied as extensively15 as those at simpler oil and gas

production sites16 or compressor stations.17

Thanks to voluntary programs such as the Oil and Gas Methane Partnership 2.018 and

differentiated gas,19 many operators in the United States are increasingly committed to de-

veloping precise, site-level measurement-based methane emissions inventories that include

an aerial measurement component, emissions below aerial technology detection limits, and

known emissions that are typically not captured by the overflights (e.g., Refrigeration Tur-

bines, Thermal oxidizers). However, creating measurement-informed inventories (MII) at

LNG facilities presents unique challenges due to their complexity, large scale, tall multi-level

structures, and numerous equipment groups.

Various technologies and platforms are used to measure methane emissions20 and ulti-

mately develop measurement-informed methane inventories at various scales.21–23 Many of

these technologies have been tested via controlled releases.24–26 However, a small number

of measurements taken at a single instant in time (“snapshot measurements”) can under- or

overestimate long term emission characteristics due to the temporal variability of emissions.7

Measurements at a high temporal resolution from continuous monitoring systems (CMS) can

be used to reconcile long term averages (i.e., inventories) and snapshot measurements at the
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site-level,27 but current CMS solutions are mostly intended for use at simplier production

sites.28,29 Therefore, to measure methane over the large and complex LNG facilities in this

study, we use data from Bridger Photonics Gas Mapping LiDAR.30 To account for temporal

variability of the emissions, Bridger conducted multiple measurement campaigns at both

LNG facilities, with each campaign consisting of one or more full facility scans.

Estimated methane emission rates from Bridger have been evaluated in a number of

single-blinded studies.31–35 However, quantifying emission rates poses a challenge when the

detected plume is located at the edge of Bridger’s measurement swath, a region approxi-

mately 100 meters wide captured by the optical sensor. When this occurs, Bridger typically

notes that an emission has occurred, but does not produce a rate estimate. Currently, the

literature does not contain clear guidelines on how to use these measurements. In this pa-

per, we explore three data pre-analysis schemes, one of which employs a similar approach

to that used by Johnson et al.36 We demonstrate how these schemes influence the resulting

distribution of point-source emissions.

Once pre-analysis schemes are finalized, additional analytical choices remain for aggregat-

ing individual measurements into a comprehensive site-level inventory. Other studies have

focused on evaluating greenhouse gas emissions across the life cycle of LNG but lack details

on the computational methods for LNG site inventories. Schuller et al.37 and Okamura et

al.38 reported emissions associated with LNG at the producing country level, but provided

limited detail on equipment- or site-level emissions. Tamura et al.39 studied the life cycle of

CO2 and CH4 emissions in LNG, using survey data to track emissions during the liquefac-

tion process, but do not describe the methods for computing total site emissions. Zhang et

al.40 predominantly focused on CO2 emissions at LNG facilities and emphasized that a lower

detection limit is necessary for their method to effectively measure methane emissions. Inno-

centi et al.15 quantified emission rates for key functional elements (site zones corresponding

to particular processes) at LNG facilities using remote sensing techniques but highlighted

the need for more direct measurements to produce annual site-level rates. Building on these
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studies, Zhu et al.41 evaluated the first multi-scale measurements of GHG emissions at two

US liquefaction terminals and found that the measured GHG emissions intensity is consis-

tent with the reported emission intensities, as CO2 contributes more than 90% of total GHG

emissions on these sites.

There is no “traditional” method for establishing a MII at LNG sites, and various forms

of emissions averaging can be employed when inferring site-level distributions for emission

inventories. Our study adds to the work of Zhu et al.41 by exploring two distinct approaches

for computing site-level LNG emissions. We introduce a method for creating a distribution

of site-level methane emissions at any given instance in time, referred to as an instantaneous

emissions profile. This distribution of instantaneous emissions shows the range of emissions

that a remote sensing technology, such as a satellite or aerial flyover, could detect at any

given time, assuming the measurement campaign accurately captures all possible emission

states at the point source-level. We compare the distribution of instantaneous emissions to

a method that relies on spatial aggregation and temporal averaging, similar to Schwietzke et

al.,42 who investigated the discrepancies between episodic emission sources and traditional

reporting methods at a basin level. To the best of our knowledge, this analysis utilizes the

most comprehensive aerial dataset currently available for LNG sites.

2 Methods

2.1 Design of aerial measurement campaigns

This study uses methane emissions data collected by an aerial platform during the LNG

Quantification, Monitoring, Reporting, and Verification (QMRV43) project. Specifically,

Bridger Photonics provided data at a point-source level resolution collected at two LNG

liquefaction sites, which we will refer to as Site A and Site B. The project started with a

Baseline measurement campaign during which initial emissions measurements were taken.

This was followed by several Enhanced Monitoring (EM) campaigns, each involving multiple
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full facility scans. Each scan is a collection of individual Bridger passes (swaths) over the

site, which together provide full coverage of the facility over a span of 1-2 hours. The

project concluded with an End-of-Project (EOP) campaign at both sites. At Site A, the

measurement campaigns spanned June 2022 to September 2023 and resulted in a total of 29

scans. At Site B, the measurement campaigns spanned October 2022 to September 2023 and

resulted in a total of 20 scans. The exact dates and times of the measurement campaigns

are listed in Section S1 of the Supporting Information (SI) document. Each measurement

campaign (i.e., Baseline, EM, or EOP) typically comprised of one to six total facility scans

conducted within a single day, except for the EOP campaigns, which spanned two days each.

Note that Bridger used a rotary-wing aircraft during the BL and EOP campaigns, while a

fixed-wing aircraft was employed during the EM campaigns. The different aircraft operate

at varying altitudes and speeds, which influence the probability of detecting emissions.

We do not account for measurement uncertainties of the Bridger system, as the appli-

cability of Bridger’s measurement uncertainties has not been extensively evaluated in the

context of LNG facilities, which differ significantly from production or midstream oil and

gas sites. It is not clear if the methodologies proposed by Conrad et al.34 for handling Bridger

measurement uncertainties for measured emissions and by Johnson et al.36 for unmeasured

emissions are transferable to an LNG setting, particularly for measurements involving flares

that in some cases extend over 500 feet tall. Therefore, we do not consider Bridger mea-

surement uncertainty, and we also do not account for certain key emission sources, such as

turbine exhaust, that Bridger does not detect.

Sites A and B have similar “functional elements,” which are a collection of equipment

groups involved in specific processes that perform analogous operational functions (e.g.,

LNG Tanks). Each functional element has multiple potential emission point sources. Our

analysis focuses on emissions occurring directly on the sites, excluding those observed at

offsite locations that were also captured by Bridger.

Note that Bridger reported methane emission rate estimates in standard cubic feet per
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hour (scfh), which we convert to kg/hr for this paper. See details on unit conversion in SI

Section S2. For confidentiality purposes, the data from both sites have been standardized

using the corresponding site’s data mean and standard deviation, that is we subtract the

mean from all site measurements and divide by the standard deviation. This was done

to anonymize the magnitude of the methane emissions while preserving the distributional

behavior.

2.2 Data pre-analysis schemes

When a methane plume is detected on the edge of Bridger’s measurement swath, Bridger

is often able to identify elevated concentrations, indicating an emission, but not produce an

emission rate estimate. Other technical or environmental conditions (e.g., rapidly changing

wind direction) may also preclude an emission rate estimate when elevated concentrations are

detected. The end-user of these data has several options for handling observed enhancements

without a rate estimate. We consider the following non-exhaustive options: 1) exclude

observations from the analysis when the Bridger algorithm lacks sufficient information to

estimate an emission rate, 2) impute Bridger’s minimum detection limit, which represents

the smallest methane emission rate detectable with 90% certainty, under the assumption

that the rate’s absence is due to its low magnitude, and 3) impute the average emission rate

observed at the specific source location during the corresponding measurement campaign.

This third approach, similar to that used by Johnson et al.36 for unmeasured emission

sources, averages previous measurements instead of sampling from them. This results in the

same mean but a narrower distribution compared to a sampling approach. The choice of

method for handling these observations will affect the result of any subsequent analysis.

Furthermore, once an emission source is identified, Bridger will continue to monitor it in

subsequent scans within the same measurement campaign. If a previously detected source

does not show enhanced concentrations in later scans, Bridger will report “no gas detected.”

This outcome may indicate the intermittency of the emission, possibly because the source
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ceased leaking by the time of the follow-up scan, or it could be due to the complexity of the

LNG facility. For instance, a plume from one emission source could obscure another source

positioned at a lower level of a large, multi-tier structure like an LNG Train.

The way we handle these non-detections, and the assumptions we choose to adopt, can

significantly impact the resulting emission rate data. This decision-making process is referred

to as the "emission persistence assumption." We consider two options:

1. Excluding “no gas detected” observations. This approach assumes that each source

emits consistently, maintaining 100% persistence. Non-detections are considered anoma-

lies, possibly due to detection limitations or environmental factors (e.g., complexity of

wind patterns), rather than actual terminations of emissions and therefore are excluded

from the analysis.

2. Imputing an emission rate of zero for “no gas detected” observations. Assigning an

emission rate of zero to these cases suggests intermittent emissions, adjusting each

source’s persistence based on the frequency of these zero detections. A higher rate of

non-detections indicates lower persistence, reflecting the sporadic nature of emissions.

We evaluate three data pre-analysis schemes, summarized in Table 1. A detailed descrip-

tion of each is as follows.

• Data pre-analysis Scheme 1: Persistence Adjusted with 90% POD Substitution. In this

scheme, the adjusted persistence assumption imputes zero kg/hr rate estimates for “no

gas detected” observations, which are then included in the calculation of point-source

averages. This approach is equivalent to adjusting the Bridger average of positive

emission rates by applying a persistence factor, defined as the ratio of the number of

emission detections to the total number of passes within a scan. Additionally, when

Bridger detects enhanced methane concentrations but fails to produce a rate estimate at

the measurement swath (pass) level we impute minimum 90% probability of detection

(POD) emission rate estimate, using 26 SCFH when Bridger’s aircraft operates at
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approximately 500 feet and 66 SCFH at altitudes above 700 feet.35 Note that the POD

also depends on the operating speeds of the aircraft.

• Data pre-analysis Scheme 2: 100% Persistence without Substitution. In this scheme,

the 100% persistence assumption implies that emission source emits consistently, and

thus “no gas detected” observations are considered as anomalies and excluded from the

analysis. The observations where Bridger detects enhanced methane concentrations

but fails to generate a rate estimate are also omitted and no substitution is applied.

• Data pre-analysis Scheme 3: 100% Persistence with Average Substitution. As in

Scheme 2, the 100% persistence assumption implies that the emission source emits

consistently. Therefore, any "no gas detected" observations are considered anomalies

and are not included in the analysis. In situations where Bridger detects enhanced

concentrations from a source but cannot quantify the emission rate, the average esti-

mated emission rate from the corresponding campaign for that point source is used. If

no such estimates are available, the emission rate is defaulted to the 90% POD rate.

Table 1: Summary of Bridger data pre-analysis schemes.

Data pre-analysis
Scheme

Substitution method for detected
but not quantified sources

Persistence
assumption

1 90% POD adjusted
2 excluded 100%

3 campaign average or
90% POD if no measurements are available 100%

Given that these non-exhaustive data pre-analysis schemes will affect the subsequent

analysis, we first assess the impact of these three schemes on the resulting dataset. To see if

the resulting datasets are statistically different, we use a non-parametric statistical test, the

Kruskal-Wallis test, followed by post-hoc pairwise comparisons to test for significant differ-

ences between the resulting datasets. For these comparisons we use the pairwise Wilcoxon

rank sum test, with a p-value adjustment applied to account for multiple comparisons.
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2.3 Site-level aggregation methods

Currently in the US there are no regulatory specifications for calculating measurement-

informed, site-level emissions inventories at oil and gas sites, including LNG sites. Average-

based emission computation (e.g., temporal averages for functional elements) is intuitive for

annual inventory reporting purposes. However, many top-down measurement technologies

(e.g., satellite or aerial) provide a snapshot of a site’s emissions, capturing data instanta-

neously without incorporating historical averages into a given measurement. With this in

mind, our study compares two distinct approaches for aggregating methane emissions: 1)

creating a distribution of temporal site-level total emission averages (such that represent

annual site-level emissions) using an average-based method and 2) creating a distribution

of instantaneous site-level total emission rates possible to observe at any given moment in

time.

2.3.1 Average-based method for functional elements

One way that the aerial-measurements component of MII could be calculated is by using

the average-based aggregation method. At a high-level, the method first calculates temporal

averages for each point source (i.e., average point source emission rates within a scan), then

creates spatial aggregation at the functional element-level (i.e., sum the point source averages

within a given functional element), and finally takes a temporal average at the functional

element level (i.e., average functional element-level estimates over multiple scans). The

functional elements at LNG sites are often large equipment groups that contain multiple

potential emission point sources, and as such, Bridger often detected multiple sources within

each functional element.

In this method, we calculate the average emission rate for each point source during a

scan by averaging all detected emissions from that specific point source across the duration

of the scan. This results in one average emission rate per point source per scan. For each

scan, we then aggregate the point source-level averages to the functional element-level. This
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is done by summing the averaged point source-level emissions within each functional element

for each scan. If a given functional element had no detected emissions during a given scan,

we impute a 0 kg/hr emission for that scan. This results in one emission rate per functional

element per scan. See section S3 in the SI for details on the imputed 0 kg/hr emissions.

To generate a distribution of potential site-level emission rates, we assume that emissions

across all scans and equipment groups are independent. This simplification is necessary

due to the limited availability of data, with only 29 scans at Site A and 20 scans at Site

B. Assuming independence requires less data since we are not modeling the correlations or

interactions between observations. Nevertheless, we evaluated an approach where emissions

from different measurement campaigns, conducted at least a month apart, are treated as in-

dependent, while scan-level emissions within each campaign, typically lasting a day or two,

are not. This method produced functional element-level distributions with similar means

but drastically different shapes and wider spreads, attributable to small scan sample sizes

(ranging from one to six scans within a given measurement campaign), see Section S4 in

SI for details. However, this approach requires more aerial measurements to produce reli-

able site-level measurements. The operator noted that LNG facilities typically operate at a

similar configuration (greater than 90% capacity factor), implying minimal operational dif-

ferences among scans, regardless of whether they are conducted within the same or different

measurement campaigns. Therefore, we opted to maintain the assumption of independence

between scans for the analysis presented in this paper.

The average-based emission distributions that are based on the independence assumption

of all scans are constructed for two LNG sites as follows:

1. For each functional element, randomly sample from the scan-level emission rates with

replacement. Compute the average of the measurements within this sample. Repeat

this process 10,000 times. For this method, we take the size of each sample to be the

number of scans conducted at that site. This results in 10,000 bootstrapped average

emission rates (across all scans) for each functional element. For example, randomly
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draw with replacement 29 scan-level functional element emission rates (since Bridger

conducted 29 scans of Site A) for Site A Train 1, compute their average emission rate,

save this average value, and repeat 10,000 times. Do this for each Site A functional

element. Follow the same steps for the Site B except using a sample size of 20 since

Bridger conducted 20 scans of Site B. As per Central Limit Theorem, with a large

enough sample size the distributions of the mean values will be normal unless the

underlying distribution is highly skewed or sampling process is not truly random.

2. For each functional element, fit a normal distribution to the 10,000 bootstrapped

overall average emission rates from the previous step.

3. For each functional element, take 10,000 samples from the normal distributions that

were fitted in the previous step. This approach has several benefits: (1) it models the

underlying distribution of a functional element, extending beyond the limited scope of

the observed samples; (2) sampling from this fitted distribution smooths out anomalies

due to random variation or outliers, thus yielding a more generalized view of the dis-

tribution; (3) it enables the simulation of data points that, while not originally present

in the dataset, are statistically consistent with the existing data.

4. Sum the samples across functional elements, working element-wise. This results in

10,000 bootstrapped, site-level emission rate estimates.

Most of the bootstrapped functional element-level average emission rates were well ap-

proximated by a normal distribution. However, the distributions for East Jetty and Train

9 were not well described by the Normal distribution, as the underlying distributions were

multi-modal. The distributions for Marine Flare, BOG Compressors, West Jetty, and LNG

Tanks 2 were not perfectly symmetric. We tested a non-linear kernel fit as an alternative to

the normal fits (see Section S5 in SI for details), but the differences were minimal, leading

us to conclude that the Normal distribution adequately describes the distribution of overall

means for each functional element. This outcome is expected with an appropriate sample
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size and when the underlying distributions are not highly skewed. If normality cannot be

assumed for the sample mean distribution, steps 2 and 3 mentioned above must be modified.

2.3.2 Instantaneous method

In this method, we estimate a distribution of instantaneous emission rates. This distribution

describes the relative probability of observing a given site-level emission rate during any

snapshot measurement of the full site. The average-based method aggregates emissions at

the functional element level and assumes that all average emission rates are independent

and equally likely. The instantaneous method instead samples directly at the individual

point source level and assumes that all point source-level emission rates are independent and

equally likely.

To account for intermittency at the point source level, we impute zero emission rates

for the scans in which Bridger did not detect a given source. For example, during the EM2

measurement campaign, the Site A Marine Flare underwent four scans, yet no emissions were

detected. Consequently, we impute four instances of zero kg/h emission rates for the Marine

Flare point source, reflecting the absence of emissions during those scans. As a result, at

Site A, every point source has a minimum of 29 emission rates, with more in instances where

the point source was observed multiple times within a given scan. During a scan each point

source can be observed multiple times due to overlaps between the measurement swaths

(passes).

To produce the distribution of instantaneous rates, we first randomly sample one emission

rate, which may include rates of zero kg/hr, from each detected point source at a site. Next,

we sum these rates across all point sources within the site to calculate a site-level emission

rate. This process is repeated 10,000 times, generating 10,000 estimates of the site-level

instantaneous emission rates.

This procedure imposes the following assumptions, which we consider a reasonable start-

ing point. Future work will relax some of these assumptions.
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1. The presence and magnitude of an emission at one location are not correlated with

the presence and magnitude of an emission at any other location.

2. There is no overlap between the Bridger measurement swaths. In practice, certain

methane emission point sources may be measured more than once during a single scan

of the entire facility due to overlap between the individual swaths. Therefore, in our

current analysis, we are likely including fewer zero emission rates than we should be,

which biases the distribution upwards and results in overall higher estimates.

3 Results

The following subsections will demonstrate the differences in data pre-analysis schemes and

in site-level aggregation methods. Specifically, we will highlight how average-based methods

do not capture the variability of instantaneous emissions.

3.1 Data pre-analysis schemes

Figure 1 shows the point source-level average emission rates (i.e., no aggregation method

applied) resulting from the three different pre-analysis schemes discussed in Section 2.2.

The most conservative data pre-analysis scheme, “Data pre-analysis Scheme 3", results in the

highest site-level emission rates, as expected. This is because 100% persistence is assumed,

and either average campaign emission rates or 90% Bridger POD were imputed for cases

where gas is detected but no rate is produced. The pairwise Wilcoxon rank sum test reveals

that there is a statistically significant difference between Schemes 1 and 2 and between

Schemes 1 and 3 (p-value < 2e-16). No statistical difference was found between Scheme 2

and Scheme 3 at the 0.05 significance level (p-value = 0.14). The median of the data from

Scheme 1 is lower than those of the other two pre-analysis schemes. This is because Scheme

1 adjusts for persistence, while Schemes 2 and 3 assume 100% persistence. We conclude,

therefore, that the persistence assumption is the most important pre-analysis consideration.
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Differences between Schemes 2 and 3 are minor, meaning that the method for handling the

no-quantification detections has minimal impact on the resulting emission rate distribution.

Figure 1: Point source-level average emission rates (i.e., no aggregation method applied)
resulting from the three considered data pre-analysis schemes discussed in Section 2.2. Data
are shown as boxplots, with whiskers showing 1.5 times the interquartile range. The y-axis
is limited to [-1, 1] to show detail.

Note that we do not recommend a specific data pre-analysis scheme; rather, we highlight

that the choice of pre-analysis scheme can significantly influence the resulting emissions

datasets.

3.2 Site-level aggregation methods

3.2.1 Average-based Method for Functional Elements

For the remainder of this section, we show results using “Data pre-analysis Scheme 3,” as

it retains the highest amount of information among the available options.. The two sites

considered in this analysis have similar functional elements and operational processes. How-

ever, the major contributors to overall emissions differed between the two sites. We use the

average-based method to evaluate the contributions of each functional element to the overall

site-level emissions.

Figure 2 shows each functional element’s scan-level average emission rate as a percent of

scan-level total site emissions. The average emissions are computed prior to imputing scan-

level zero emission rates. For Site A Flares are the primary source of methane emissions
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in nearly every scan. Additionally, there is large variability in flare emissions between the

different scans. Because the flare emissions account for the largest portion of scan-level site

emissions, the variability in flare emissions also drives the site-level emissions variability

between scans. The second largest source of emissions at Site A is the Marine Flare. There

was a major operational change that occurred at the Marine Flare between Scans 7 and

8. According to information from the operator, before this date the marine flare at Site

A had been utilized during every cooldown and, briefly, during regular ship loading. Since

the operational changes were made, the marine flare has been used during ship loading only

when the vapor from the ship is off-spec (i.e., the composition has amount of CO2 and water

vapor beyond the site’s tolerance), resulting in emissions that are an order of magnitude

lower than before this operational change.

At Site B, on the other hand, Trains have the highest methane emissions during all scans.

Similar to the flares at Site A, the variability in emission rates observed between scans at

Trains is the primary factor influencing the fluctuations in the estimated site-level emission

rates at Site B. The Flares and Marine Flares on Site B have lower magnitude compared

to site A and also contribute less to scan-level site emissions, due to the presence of large

emissions from the Trains.
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Figure 2: The percent contribution of each functional element’s average emission rate to
the scan-level total emissions at each facility prior to scan-level zero emission rates being
imputed.

3.2.2 Comparative analysis of instantaneous and average-based methods

Figure 3 shows the distribution of site-level emission rates at Sites A and B, derived from

both the instantaneous and average-based approaches. Recall that the data from both sites

have been standardized using the corresponding site average-based distribution parameters,

thus preserving the emission distribution shapes of both sites while ensuring comparability

between average-based and instantaneous distributions. The shape and spread of these dis-

tributions give one measure of uncertainty in the site-level rate estimates. The standardized

average emissions at Sites A and B are normally distributed, with both having a 95% confi-
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dence interval of [-2, 2] as expected. The instantaneous distributions of both sites have heavy

tails, which is driven by the presence of infrequent large emissions in the underlying point

source-level data. The 95% confidence interval, [-5, 14], of Site A instantaneous site-level

emissions is wider than the 95% confidence interval, [-3, 9], of Site B instantaneous site-level

emissions. The instantaneous method draws from emissions point sources directly and hence

more often includes large, sporadic emissions that are smoothed out when the averaging

aggregation method is used.

As expected, we see that the instantaneous distributions are wider than the average

distributions on both sites, as averages dampen the influence of infrequent large emission

detections. This implies that a snapshot measurement from, for example, a satellite or an

aerial survey may show emissions that are considerably larger or smaller than described by an

average-based inventory. Specifically, the standard deviation of the emissions inferred from

the average-based method is 5 times smaller than the standard deviation of the emissions

inferred from the instantaneous method on site A, and 3 times smaller on site B.
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(a) Site A

(b) Site B

Figure 3: Site-level emissions distributions using both the averaging and instantaneous meth-
ods for Sites A and B. The 95% confidence intervals are identified using solid lines for average
site-level emissions and dashed lines for instantaneous site-level emissions. Emission rates
have been standardized for anonymity.

19

https://doi.org/10.26434/chemrxiv-2024-rgppp ORCID: https://orcid.org/0000-0002-6192-7139 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rgppp
https://orcid.org/0000-0002-6192-7139
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion

In this study, we aim to bridge a gap in the literature by providing a comprehensive analysis of

site-level methane emissions at LNG facilities. We use two aggregation methods to calculate

emissions at the site level using data from the QMRV project collected on two LNG facilities.

Key learnings from this project include the following:

1. Data pre-analysis significantly influences the emission estimates. Specifically, adjusting

for persistence compared to assuming 100% persistence has a statistically significant

impact (p-value < 2e-16) on resulting emission estimates. Excluding detected but not

quantified emissions compared to using the 90% POD or campaign averages did not

result in a significant difference (p-value = 0.14).

2. Similar LNG facilities operated by the same company can have different emission char-

acteristics. Although the standardized emission rates for Sites A and B were similar in

shape and magnitude when calculated using the average-based method, the standard-

ized emissions at Site A have a much wider spread than those at Site B when assessed

with the instantaneous method. Furthermore, the flares were the largest contributors

to emissions on Site A, while trains were the largest contributors on Site B.

3. There is substantial variation in emissions between functional elements on a given

site. Therefore, measurements at the functional element-level, followed with further

root cause analysis at the source level, are necessary for targeted emission mitigation

strategies.

4. The emission rate estimates derived from multiple scans highlight the intermittent

nature of emissions from key components, particularly flares and trains. Properly

accounting for this intermittency or understanding its causes is crucial for developing

accurate, measurement-based emission inventories at the site level.
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5. We develop a method for estimating the distribution of instantaneous site-level emis-

sions. We find that the distribution of instantaneous emissions is much wider than

the distribution of average emissions for both sites. This implies that snapshot mea-

surements, which capture the instantaneous emission rate of an LNG facility, can fall

outside of the distribution describing the annual inventory (i.e., the annual mean) and

the uncertainty surrounding it. The instantaneous approach should not be used for MII

computations, because it describes the variability of the emissions at specific moments

in time, rather than providing an accurate representation of the annual inventory.

This study highlights the variability in methane emissions at LNG facilities and the com-

plexity of aggregating them at the site-level. Leveraging data from the LNG QMRV project,

we have demonstrated the impact of data pre-analysis schemes on emission estimates. Addi-

tionally, we create and further investigate two distinct methodologies for calculating site-level

emissions: the average-based method, which represents the variability in the average site-

level emission rate, and the instantaneous method, which represents the variability in the

possible emission rates on the site at any given point in time. We would like to emphasize

that the instantaneous approach should not be used for inventory purposes, such as annual

emissions reporting, whether for regulatory compliance or voluntary disclosures, as it doesn’t

represent annual site-level emissions. We find that these methods yield different distribu-

tions of site-level emissions, with the average-based method smoothing the instantaneous

emission variability. This analysis, predicated on the assumption that emission events are

independent, simplifies the complexity of emission dynamics and may not fully reflect the

actual behavior of emissions at a site. Future research will quantify the correlation struc-

ture of methane emissions on LNG facilities to relax this assumption. Additionally, we will

extend this analysis to other types of oil and gas facilities, such as those in the midstream

and production sectors.
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• Independence of measurement campaigns.

• Normal and kernel fit.
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