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Abstract 16 
 17 
Identifying druggable binding sites on proteins is an important and challenging problem, 18 
particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or 19 
predicted structures. The Site-Identification by Ligand Competitive Saturation (SILCS) method 20 
accounts for the flexibility of the target protein using all-atom molecular simulations that include 21 
various small molecule solutes in aqueous solution. During the simulations the combination of 22 
protein flexibility and comprehensive sampling of the water and solute spatial distributions can 23 
identify buried binding pockets absent in experimentally-determined structures. Previously, we 24 
reported a method for leveraging the information in the SILCS sampling to identify binding sites 25 
(termed Hotspots) of small mono- or bi-cyclic compounds, a subset of which coincide with known 26 
binding sites of drug-like molecules. Here we build in that physics-based approach and present a 27 
ML model for ranking the Hotspots according to the likelihood they can accommodate drug-like 28 
molecules (e.g. molecular weight > 200 daltons). In the independent validation set, which includes 29 
various enzymes and receptors, our model recalls 67% and 89% of experimentally-validated 30 
ligand binding sites in the top 10 and 20 ranked Hotspots, respectively. Furthermore, we show 31 
that the model’s output Decision Function is a useful metric to predict binding sites and their 32 
potential druggability in new targets. Given the utility the SILCS method for ligand discovery and 33 
optimization the tools presented represent an important advancement in the identification of 34 
orthosteric and allosteric binding sites and the discovery of drug-like molecules targeting those 35 
sites. 36 
 37 
Introduction 38 
 39 
There has been no time like the present for structure-based drug design (SBDD) given the number 40 
of protein structures solved at or near atomic resolution currently available in the Protein Data 41 
Bank,1 with >200,000 experimental structures and >1,000,000 computed structure models,2 and 42 
the >200,000,000 computed structures in the AlphaFold Database.3 These structural models 43 
cover a plethora of potential drug targets.4 Furthermore, just as GPUs have revolutionized deep-44 
learning models for protein structure prediction,3,5,6 they have also brought all-atom molecular 45 
dynamics (MD) simulations of large proteins at meaningful timescales into routine reach.7,8 This 46 
combination, along with advances in our understanding of the molecular nature of disease and 47 
the associated growth of personalized medicine, has the potential to produce many new 48 
therapeutic agents.  49 
 50 
After target identification, the critical first step in the SBDD process is either to identify binding 51 
sites of known ligands or identifying candidate sites for virtual screening. Historically, 52 
computational binding pocket identification was first carried out using the protein molecular 53 
surface defined with the LJ potential and a grid of lattice points sampling the space around that 54 
surface.9 Standard methods still often use geometric analysis,10–12 in addition to molecular 55 
docking, and/or machine-learning.13 When a representative structure is available and the binding 56 
pocket is relatively well-defined, methods including FTMap14–16 and Fpocket17 are effective, as 57 
well as the widely-used methods related to common CADD software packages, such as 58 
SiteMap18,19 (Glide/Schrödinger),20 SiteFinder21 (MOE/Chemical Computing Group), or 59 
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AutoLigand22 (AutoDock).23 Some methods employ template based modeling to predict binding 60 
sites when only a sequence is known.24–27 PepSite uses 3D grids of position-specific scoring 61 
matrices to efficiently identify linear peptide binding sites across the proteome, an interesting 62 
approach for a highly-specialized class of ligand-protein interactions.28 There are many machine-63 
/deep-learning models13,29 that incorporate geometry, sequence-homology, structural features, 64 
molecular docking, and/or consensus to predict ligand binding sites.30–36 The recently published 65 
AlphaFold 3 model claims to predict protein-ligand interactions with higher fidelity than standard 66 
docking methods,37 although the web server available for non-commercial researchers only 67 
predicts sites for nineteen common cofactors like ATP and citric acid. To remain highly 68 
computationally efficient, methods reliant on static structures necessarily neglect protein 69 
backbone flexibility, thus cannot capture protein allostery or cryptic binding sites.38–42 In addition, 70 
the traditional molecular docking approaches used in available methods,43,20,23,44,45 while efficiently 71 
sampling known ligand-protein interactions,16,34 rely on continuum electrostatic models and/or 72 
statistical potentials to estimate the energetics of binding. Such methods are limited in their ability 73 
to accurately account for the complex balance of enthalpic and entropic costs and desolvation 74 
contributions that contribute to ligand binding.  75 
 76 
A powerful way to overcome these limitations is through the use of MD simulations, and of 77 
particular interest, all-atom cosolute MD simulations.46,47 Alternatively, a key example of a natural, 78 
non-cosolute approach to incorporating dynamics into site prediction is to utilize enhanced 79 
sampling or coarse grained simulations to sample pocket openings, and include the resulting 80 
dynamics in the inputs to a ML model, such as the method CryptoSite.42 On the other hand, 81 
cosolute methods are conceptually similar to experimental fragment-based drug design48,49 82 
wherein proteins are co-crystallized with various small solutes to determine their binding sites.50 83 
In general, cosolute methods involve solvating the target biomolecule with various small 84 
molecules and performing molecular simulations to analyze the distribution of the molecules over 85 
the course of the simulation. This approach is widely-employed51–56 including by MDmix,46,57 pMD-86 
Membrane,58,59 Mix-MD,60–62 SWISH and SWISH-X,63,64 Cosolvent Analysis Toolkit (CAT),65 and 87 
SILCS.47,66,67 The coarse grain MD cosolute method Colabind was recently released,68 which 88 
allows substantially faster sampling than all-atom MD, but with corresponding accuracy sacrifices. 89 
The success of the all-atom cosolute MD methods is due to advances in efficient, GPU-enabled 90 
molecular dynamics software packages,69–72 combined with consistent improvements in the 91 
accuracy of all-atom force fields,73–77 such that accurate sampling of the interactions of solutes 92 
with flexible proteins in the presence of explicit atomistic water is readily achievable.  93 
 94 
Specifically, the present study is based on the SILCS methodology. SILCS samples the protein 95 
conformational ensemble in the presence of multiple solutes and water while alternating between 96 
an oscillating chemical potential Grand Canonical Monte Carlo (GCMC) sampling scheme and 97 
conventional MD78,79 that dramatically accelerates the rates of penetration of solutes and water 98 
into hydrophobic pockets and other buried cavities. After extensive sampling, the occupancies of 99 
the solute molecules and water are converted to functional group-type specific free energy maps, 100 
or FragMaps. An example of the FragMaps surrounding the protein TEM-1 β-lactamase is 101 
depicted in Figure 1A, and Figure 1B shows molecular renderings of the 8 solutes used in the 102 
standard SILCS simulations. These FragMaps form the basis for all subsequent analysis in 103 
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SILCS, such as performing molecular docking of small molecules in the field of the maps.80,81 In 104 
a previous paper, a method was presented for identifying a comprehensive set of fragment binding 105 
sites, or Hotspots, on proteins,82 and subsequently applied to RNA.83 Although some Hotspots 106 
correspond with the known binding sites of small molecules (Figure 1C), it was unclear which 107 
Hotspots were really ‘druggable’ using only the previous method. Here we define druggable as 108 
being suitable for binding drug-like molecules, such as those with molecular weight (MW) > 200 109 
Da. 110 
 111 

 
Figure 1: Example SILCS FragMap and Hotspots and depiction of the SILCS solutes. A) 
TEM-1 β-lactamase is rendered in NewCartoon style (PDB: 1JWP), with the various FragMaps 
contoured at -1.2 kcal/mol. The green map corresponds to generic apolar carbons (propane 
and benzene carbon), the red corresponds to hydrogen-bond acceptors, the blue corresponds 
to hydrogen-bond donors, the cyan corresponds to positive charges (methylammonium 
nitrogen), the orange corresponds to negative charges (acetate oxygen), gold corresponds to 
alcohols (methanol oxygen), and the solid tan surface is the Exclusion map. B) Depiction of the 
8 solutes used in the SILCS GCMC/MD simulations, namely: benzene, propane, 
methylammonium, acetate, imidazole, formamide, dimethyl ether, and methanol. The 
molecules are rendered in CPK style, where cyan atoms are carbons, red atoms are oxygen, 
blue atoms are nitrogen, and white atoms are hydrogen. C) Depiction of TEM-1 in NewCartoon 
style, with the Hotspots rendered as pink spheres, and with the crystallographic ligands from 
PDBs 1ERO and 1PZO. The ligands are colored as in panel B). 

 112 
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In this study we present a new set of tools to identify Hotspots that contribute to binding sites for 113 
drug-like molecules. The method first calculates a range of properties characterizing each 114 
Hotspot, which are then used as features in a machine learning (ML) algorithm that predicts the 115 
likelihood of each Hotspot participating in a drug-like binding site. For model training Hotspots 116 
identified as being in a druggable site were 1) within 12 Å of at least one adjacent Hotspot, 2) 117 
within 5 Å of the non-hydrogen atoms of a crystal location of a drug-like ligand, and 3) partially 118 
buried. The first criteria assumes that a drug-like molecule is comprised of a minimum of two 119 
linked fragments. The second criteria is experimental validation of Hotspots being located in a site 120 
which binds a drug-like molecule through X-ray crystallography. The third criteria is based on the 121 
assumption that binding sites are pockets in which the ligands are partially buried84–86 as 122 
determined by an empirical relative buried surface area cutoff described below. For the training 123 
set, the developed ML model identifies 76% and 80%, of druggable sites in the top 10 and 20 124 
Hotspots, respectively. In the validation set it recovers 67% and 89% of druggable sites in the top 125 
10 and 20 total Hotspots, respectively. 126 
 127 
Methods 128 
 129 
SILCS workflow 130 
 131 
The overall workflow was to run standard SILCS GCMC/MD simulations of the target proteins 132 
solvated in water with a variety of solute molecules (Figure 1B) at 0.25 M for a total of 1 μs as 133 
previously described.47,67 Analysis of the occupancies, and therefore free energy affinities, of each 134 
solute gives an atom-type specific 3D affinity map (FragMap) over the entire 3D space of the 135 
protein, as well as an Exclusion map containing all the voxels with zero solute or water occupancy 136 
(Figure 1A). The PDB identifiers of the protein structures used for the SILCS simulations are 137 
provided in Table S1. Note that wherever possible, an apo structure was used for the SILCS 138 
simulations; else, a structure with minimal ligand size was used. Any ligands were removed from 139 
the structure prior to the simulations. For transmembrane proteins, the membrane orientation was 140 
determined using the PPM (Positioning of Proteins in Membranes) webserver,87,88 after which a 141 
bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol 142 
(9:1 ratio) was constructed using the CHARMM-GUI webserver.89,90 The CHARMM-GUI 143 
webserver was also used to generate small missing loops (<12 amino acids) and to adjust the 144 
protonation state of titratable residues.89,90 The protonation state of titratable residues at pH 7.0 145 
was determined using PropKa3.91 The FragMaps were obtained from our previous study82 that 146 
were performed using SILCS software version 2019 (SilcsBio LLC) and Gromacs version 2019, 147 
except for ANGPTL4, TEM-1, NKG2D, and GABABR, for which SILCS software version 202392 148 
and Gromacs version 2022 were used.69,70 The SILCS simulations are based on a published 149 
GCMC/MD approach78 that has not been changed beyond porting the GCMC code to GPUs79 that 150 
is implemented in version 2023. The computations for each set of SILCS FragMap using version 151 
2023, were carried out in parallel on ten compute nodes each with 1 GPU (e.g. GTX 980, GTX 152 
1080Ti, RTX 2080Ti) and eight CPU threads (e.g. AMD Ryzen 7 1700, AMD EPYC 7551P), and 153 
require between ~1-7 days to complete depending on the system size. The full simulation boxes 154 
in this study contain between ~35,000 and ~190,000 atoms. 155 
 156 
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After calculating the FragMaps, we performed the SILCS-Hotspots calculation as described in our 157 
previous work.82 The Hotspots calculation consists of comprehensively docking a library 90 mono- 158 
and bicyclic fragments93 with MW < 190 Da into the FragMaps and Exclusion map. Then two 159 
rounds of clustering are performed to identify binding sites that include one or more of the 160 
fragments (Figure 1C). Each original Hotspot is then defined by the number of fragments in that 161 
site and the LGFE scores of those fragments from which features such as the minimum (e.g. most 162 
favorable) LGFE or mean LGFE over all the fragments in that Hotspot are calculated and used 163 
for ranking. The SILCS-Hotspots calculations were run using version 2019, except for all proteins 164 
in the validation set, where version 2023 was used.92 The SILCS-Hotspots docking performed for 165 
this study utilized a GPU implementation of SILCS-MC docking.94 The SILCS-Hotspots 166 
calculations generated ~6,000 to ~65,000 independent SILCS-MC jobs that each run for ~15 sec 167 
total and can be scheduled to run in parallel on a given cluster. 168 
 169 
Additional characterization of Hotspots as potential druggable binding sites was performed by 170 
screening a database of 348 FDA-approved compounds at selected Hotspots. The docking was 171 
carried out in a 5 Å radius sphere centered on the Hotspot. After docking, each Hotspot was 172 
characterized by the average LGFE and relative buried surface area (rBSA) for the top twenty 173 
molecules, ranked by the LGFE. rBSA is defined as the ratio of the solvent accessible surface 174 
area of the ligand alone relative to that of the ligand in the presence of the protein, such that 100% 175 
rBSA indicates a fully buried ligand with no solvent accessible surface area (SASA). The SASA 176 
of the ligand in both the presence and absence of the protein was based on the conformation of 177 
the ligand from the SILCS-MC docking. The 348 compound FDA database was extracted from an 178 
initial set of FDA-approved molecules derived from the online databases DrugBank95 and 179 
Drugs@FDA.96 An initial filter was applied to select only molecules with MW between 250 and 180 
500 Da. To reduce the dimensionality while maintaining the diversity of the molecules in the FDA 181 
set, we clustered the dataset with Morgan fingerprints using a radius of 2 and Tanimoto similarity 182 
index of 0.3, then selected a representative molecule from each cluster, yielding a total of 380 183 
molecules. The final set of 348 molecules was arrived at by manually removing outliers in the 184 
number of rotatable bonds or hydrophobic groups. The FDA database is available in sdf and pdf 185 
formats on GitHub at https://github.com/mackerell-lab/FDA-compounds-SILCS-Hotspots-SI. The 186 
FDA dataset curation and generation of the pdf table of 2D molecular images was done with the 187 
python API for RDKit.97 188 
 189 
Calculation of new analysis features 190 
 191 
The Hotspot analysis workflow to calculate features for ML model development consists of three 192 
keys steps: cluster adjacent Hotspots within some user-tunable cutoff distance, collect various 193 
properties of the individual Hotspots and Hotspot clusters, and then use those features to develop 194 
the ML model to identify Hotspots at the binding sites of drug-like molecules. Here we define a 195 
Hotspot cluster as containing all the Hotspots within 12 Å of each Hotspot (centroid), because the 196 
maximum distance between two neighboring Hotspots in the training set is 11.6 Å. Based on this 197 
definition, each individual Hotspot can be a member of multiple Hotspot clusters, though each 198 
Hotspot is the centroid of just one Hotspot cluster with the features based on that cluster assigned 199 
to the centroid Hotspot. 200 
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 201 
The new features include the number of protein non-hydrogen atoms in the input PDB file within 202 
a user-defined radius of each Hotspot (default 3 Å), the SASA and volume of each Hotspot in the 203 
presence of the protein (using a 3 Å radius for the Hotspots), the SASA and volume of the Hotspot 204 
clusters, the distances between Hotspots in the cluster, as well as various statistical measures 205 
(e.g. mean, minimum, and maximum values) of the distribution of these properties over the 206 
Hotspot cluster (Table 1). The protein-derived features are similar to those used in previous ML 207 
models.98,99 As a feature we wanted the calculation of the SASA of a Hotspot in the presence of 208 
the protein to account for the protein flexibility that is included in the SILCS simulations. 209 
Accordingly, in addition to using the original crystal structure used for the SILCS simulations for 210 
the SASA calculation, an “Exclusion-map HS SASA” was calculated where the solvent-211 
accessibility of the Hotspot (default radius 5 Å) was relative to voxels that were included in the 212 
SILCS Exclusion map rather than the standard use of the positions of the protein atoms. The 213 
different Hotspot radii (3 Å for use with protein PDB file and 5 Å for use with Exclusion map) 214 
adjusts for the smaller size of an Exclusion map relative to a corresponding protein. All SASA 215 
calculations used a solvent probe radius of 1.4 Å. Additional features using the Exclusion map 216 
were calculated as described in Table 1. 217 
 218 
The code to calculate the SASA of Hotspots with respect to the Exclusion map was built on the 219 
freeSASA100 package in python. The freeSASA code was modified to allow for non-default input 220 
atomic radii for the Hotspots and Exclusion map voxels. In addition, the SASA of Hotspot clusters 221 
was calculated based on the SASA of all the Hotspots in the cluster (default radius 5 Å). The 222 
Exclusion map is represented as a set of spheres of radius 1 Å sitting on 1 Å3 grid voxels. To 223 
calculate the volume of the Hotspot clusters not within the protein or Exclusion map a Monte Carlo 224 
integration algorithm was implemented. The calculation of the SASA and volume of the Hotspot 225 
clusters requires substantial CPU time, and so the algorithms were parallelized with numba.101 226 
 227 
Table 1: Names and descriptions of the features calculated by the new SILCS-Hotspots 
workflow. The radius of each Hotspot for the SASA calculations can be user-defined separately 
for the protein coordinates and Exclusion map calculations; defaults are 3 Å and 5 Å, 
respectively. LGFE stands for Ligand Grid Free Energy of the fragments located in each 
Hotspot and SASA stands for solvent-accessible surface area.  
Name Description 
Orig Mean LGFE of each Hotspot (Original ranking metric). 
Min Minimum LGFE of each Hotspot cluster. 
Ave Average LGFE of each Hotspot cluster. 
NFrag Number of drug-like fragments in each Hotspot. 
N_Heavy_Atoms Number of protein non-hydrogen atoms within 3 Å of each Hotspot. 
N_BBone_Atoms Number of protein backbone atoms within 3 Å of each Hotspot. 
PDB_SASA SASA of protein atoms occluded by each Hotspot. 
Excl_SASA SASA of protein Exclusion map occluded by each Hotspot. 
PDB_HS_SASA SASA of each Hotspot occluded by the protein. 
Excl_HS_SASA SASA of each Hotspot occluded by the Exclusion map. 
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Adj_PDB_SASA SASA of protein atoms occluded by each Hotspot cluster. 
Adj_PDB_HS_SASA SASA of each Hotspot cluster occluded by the protein. 
Relative_Adj_SASA The relative SASA of each Hotspot cluster defined as the ratio of SASA 

of the Hotspot cluster in the presence of the protein PDB to total SASA 
of the Hotspot cluster without the protein. 

Vol Volume of each Hotspot excluding the volume overlapping with protein 
atoms. 

Excl_Vol Volume of each Hotspot, excluding the volume overlapping with the 
SILCS Exclusion map. 

MinDist Minimum distance between each Hotspot and the other Hotspots in the 
cluster. 

MaxDist Maximum distance between each Hotspot and the other Hotspots in the 
cluster. 

MidDist Median distance between each Hotspot and the other Hotspots in the 
cluster. 

AvgDist Average distance between each Hotspot and the other Hotspots in the 
cluster. 

Sum_<feature> Sum of <feature> over the Hotspot cluster. 
Mean_<feature> Mean of <feature> over the Hotspot cluster. This is sum divided by the 

number of Hotspots in the cluster. 
Min_<feature> Minimum of <feature> among Hotspots in the cluster. For example, the 

value of the most favorable LGFE of the Hotspots in the cluster. 
Max_<feature> Maximum of <feature> among Hotspots in the cluster. For example, the 

value of the Hotspot with largest Volume in the cluster. 
 228 
Training and validation data set curation 229 
 230 
The training set is constructed from the seven protein systems from the previous SILCS-Hotspots 231 
paper:82 Cyclin-dependent kinase 2 (CDK2) in both active and inactive states,102,103 Extracellular-232 
signal-regulated kinase 5 (ERK5),104 Protein tyrosine phosphatase 1b (PTP1B),105–108 Androgen 233 
receptor,109,110 and three G-protein coupled receptors (GPCRs), namely G protein-coupled 234 
receptor 40 (GPR40),111,112 M2 Muscarinic receptor,113,114 and β2 Adrenergic receptor.115,116 The 235 
validation set is comprised of eleven proteins, seven of which we recycle from previous SILCS-236 
MC publications.80,81 namely: P38 mitogen-activated protein kinase,117,118 Farnesoid X bile acid 237 
receptor (FXR),119 β-Secretase 1 (BACE1),120,121 tRNA methyl transferase (TrmD),122 Myeloid cell 238 
leukemia 1 (MCL1),123,124 Heat-shock protein 90 kDa (Hsp90),48 and Thrombin.125 To those we 239 
added the C-terminal domain of the lipid-binding protein angiopoietin-like 4 (ANGPTL4),126 TEM-240 
1 β-lactamase,127–129 Natural killer group 2D receptor (NKG2D),130,131 and GPCR γ-aminobutyric 241 
acid receptor (GABABR) in both active and inactive states.132–134  242 
 243 
For each protein system, we identified relevant crystal structures where there is a drug-like ligand 244 
bound and aligned these structures to the structure used to generate the SILCS FragMaps. 245 
Hotspots within 5 Å of a ligand non-hydrogen atom are classified as a “true hit”. In addition, a 246 
Hotspot must be within 12 Å of at least one other Hotspot to be a true hit, and the 12 Å path must 247 
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be unobstructed by any Exclusion map voxels. In the training set, if a Hotspot is within 5 Å of more 248 
than one ligand, it is counted for both ligands to reflect its importance in identifying more than one 249 
distinct ligand binding site. The PDB1 and D3R135 structures used are listed in Table S1, and the 250 
Hotspots considered true hits are listed in Table S2. In each system, there may be several ligands 251 
bound in similar positions available in different PDB files, but only one such ligand was selected 252 
to represent that binding site. In a few cases, there are Hotspots that are within 5 Å of the ligand 253 
but are located on the surface of the protein above the ligand binding site. Figure S1 depicts one 254 
such example, Hotspot 25 in the ERK5 system, which is within 5 Å of the ligand but largely solvent-255 
exposed. As one of our criteria of druggable binding sites was that they are partially buried sites, 256 
we removed outlying Hotspots with greater than 300 Å2 Exclusion-map HS SASA (Figure S2), as 257 
these sites were assumed to not be suitable for binding drug-like molecules. This empirical cutoff 258 
corresponds to ~42% rBSA. 259 
 260 
Evaluation of model performance 261 
 262 
To evaluate the developed models, we calculated precision, recall, weighted F1, and binding site 263 
recall using the Hotspots identified as true hits. Evaluating a Hotspot classification model requires 264 
ranking the Hotspots, then selecting a cutoff, such as taking all Hotspots with LGFE < 0 or taking 265 
the top N Hotspots. For a given cutoff, precision is the ratio of true hits to the total number of 266 
Hotspots up to and including the cutoff, while recall is the ratio of true hits up to and including the 267 
cutoff to the total number of experimentally verified hits. For example, if a protein has four total 268 
experimentally verified hits, two of which are identified with a cutoff at ten Hotspots, the precision 269 
is 2/10 = 0.2 and the recall is 2/4 = 0.5. The weighted F1 statistic is the population-weighted 270 
harmonic mean of precision and recall. This is important because it accounts for the low proportion 271 
of Hotspots which are true hits: only 7% of all the Hotspots in the training set are experimentally 272 
verified hits and only 2% in the test set. Accordingly, a random predictor would have a precision 273 
of ~0.02 for the validation set, which is a useful comparison when evaluating the precision of a 274 
model (e.g., 0.2 for the validation set example represents a ten-fold increase over a random 275 
predictor). In addition, binding site recall was calculated to compare the performance of the 276 
models on the practical problem of identifying at least one Hotspot per ligand. Binding site recall 277 
is defined as the ratio of identified ligand binding sites to the total number of experimentally 278 
identified ligand binding sites for that protein. A ligand binding site is identified once a single 279 
Hotspot within 5 Å of that ligand is identified above a given cutoff. Accordingly, the maximum 280 
number of ligand binding sites is equivalent to the total number of experimentally identified ligand 281 
binding sites although the total number of Hotspots defined as true hits may be greater than the 282 
total number of experimentally identified ligand binding sites. Below the total number of 283 
experimentally verified hits is indicated as “# Sites” in the tables. 284 
 285 
We note that the calculated performance of the models may underestimate their true 286 
performance, since we base our true hits on crystallographically-identified ligand binding sites. It 287 
is possible that some of the Hotspots occupy sites for which a ligand indeed exists but has not 288 
yet been identified. Accordingly, the number of true hits may actually be higher than is calculated 289 
in the present study. 290 
 291 
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We used the proteins TEM-1 and NKG2D, both containing cryptic sites, to benchmark our method 292 
against three alternative methods, namely CryptoSite,42 SiteMap18,19 and SiteFinder.21 Note that 293 
previously the SILCS-Hotspots approach was also benchmarked against FTMap and Fpocket. 294 
These proteins are in common between our validation set and a recent method employing 295 
SiteMap and SiteFinder to identify cryptic sites, which found that both SiteMap and SiteFinder 296 
struggled to identify the cryptic sites on these two proteins.136 We used the free, online CryptoSite 297 
server at https://modbase.compbio.ucsf.edu/cryptosite to obtain the results of the predictions 298 
using the apo structures of each protein listed in Table S1. The results took ~ 7 hours, although 299 
the site and original publication notes that on average there can be a total time of 1-2 days 300 
depending on the server load.42 301 
 302 
Table 2: Linear SVM hyperparameters. Descriptions of hyperparameters are adapted from 
the sci-kit learn library documentation.137 Where multiple hyperparameter values were tested, 
the bolded parameter value was selected in the final model. 
Hyperparameter Values Description 
C 1e-4, 1e-3, 1e-2, 

1e-1 
Regularization strength, which is proportional to 1/C. 
Regularization provides a way to reduce the final 
model complexity. 

intercept_scaling 1e1, 1e2, 1e3 Reduce impact of C on intercept fitting. 
loss hinge, 

squared_hinge 
The loss function used in training the classification 
model. Hinge loss is the standard for SVM. 

penalty l2 Regularization penalty, the l2-norm. 
fit_intercept True The input feature vector includes a scalar intercept 

term. 
dual auto Automatically select optimization algorithm where the 

optimal choice depends on the relative numbers of 
features versus samples, and some choices of other 
parameters. Auto will be the default in scikit-learn 
version 1.5.  

max_iter 1e8 Maximum number of iterations of the linear solver. 
tol 1e-4 Tolerance criterion for convergence of the linear 

solver. 
class_weight balanced A weight for the regularization parameter C, in this 

case inversely proportional to the class proportion. 
 303 
 304 
Machine learning methods 305 
 306 
Given the limited size of the dataset, we focused our efforts on Support Vector Machine (SVM) 307 
and Random Forest classifier models. Random forest models and SVM with nonlinear kernels 308 
resulted in over-training (Table S3). While all models generated reasonable average weighted F1 309 
statistics on the 5-fold cross-validation (CV), there is a significant degradation in performance 310 
between the average CV recall and the recall after fitting on the whole training dataset (single-fit) 311 
(Table S3). In comparison, the linear kernel SVM had similar recall between a single-fit and the 312 
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average CV recall (Table S3), so we selected the linear kernel SVM model and fully trained its 313 
hyperparameters (Table 2). To optimize the performance of the SVM, we performed 314 
standardization ((�⃑� − 𝜇)/𝜎) of each feature, then performed principal component analysis (PCA) 315 
on these features and used the principal components as inputs for all subsequent models. This 316 
ensures the inputs are all mutually orthogonal. The hyperparameters were optimized using a grid 317 
search of the parameter space described in Table 2. Each round of grid search was performed 318 
using 5-fold cross-validation, and the selection of optimal parameters was made based on the 319 
weighted F1 statistic. Subsequently we performed recursive feature elimination138 to identify the 320 
optimal number of input principal components and reduce the risk of overfitting by reducing the 321 
dimensionality of the inputs (Figure S3A). The first 22 principal components were selected, 322 
corresponding to the maximum weighted F1 in Figure S3A. The distribution of the data in the first 323 
two principal components is given in Figure S3B, indicating that the two classes are somewhat 324 
linearly separable. The final model hyperparameters are indicated in Table 2 with bold text. These 325 
were used to train the final model on the whole training dataset; all subsequent results in the 326 
paper are based on this model. A key output of an SVM model is the Decision Function, defined 327 
as the distance a Hotspot lies from the SVM’s decision boundary and can be interpreted as the 328 
confidence that a given Hotspot corresponds to a true hit and, therefore, likely located within 5 Å 329 
of a crystallographic ligand binding site.139,140 The Decision Function is positive for higher 330 
confidence, and negative for confidence that the Hotspot is not a suitable binding site. The ML 331 
scripts were written using the scikit-learn version 1.3.0137 and pandas 2.0.3141 python libraries. All 332 
3D molecular renderings were generated using VMD version 1.9.3,142 and all plots were created 333 
with the python library matplotlib143 using the accessible color sequences of Petroff.144 334 
 335 
Results 336 
 337 
The present study involved the development of a ML model to predict the probabilities that SILCS 338 
Hotspots are located in druggable binding sites, based on those sites which are occupied by drug-339 
like molecules (MW > 200 Da) as identified in crystallographic studies. The model builds on the 340 
previously reported SILCS Hotspots based on fragment docking into the SILCS FragMaps 341 
combined with additional features for each Hotspot used in ML model development targeting the 342 
known druggable sites. The training set included seven proteins while the validation set included 343 
eleven proteins. As presented, the developed ML model predicts those Hotspots with a high 344 
probability of defining druggable sites based on a quantitative ranking score that may be applied 345 
to new systems. 346 
 347 
Of the eleven proteins in the validation set, seven were used in previous SILCS-MC benchmarking 348 
studies, and as such each contain a single orthosteric binding site.80,81 In addition, allosteric 349 
ligands were identified for the validation set proteins where available. The full details of the 350 
structures and ligands used in both the training and validation sets is described in Table S1, but 351 
some additional details are given here. For P38 we selected the allosteric inhibitor ligand BIRB 352 
796 bound in PDB 1KV2.118 Note that for the purposes of this study BIRB 796 may be only partially 353 
allosteric, as it also overlaps with orthosteric site defined by the ligand in PDB 3FLS.117 We 354 
collected five additional systems, ANGPTL4, TEM-1, NKG2D, and GABABR in both the active and 355 
inactive state. For ANGPTL4, we selected a structure with glycerol bound for the SILCS 356 
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simulations (PDB: 6U0A) and used a Palmitic acid-bound structure for assessing which Hotspots 357 
are in a ligand binding pocket (PDB: 6U1U).126 TEM-1 was selected because of its cryptic 358 
allosteric binding site,38,128 which is absent in the apo structure we used for the SILCS simulation 359 
(PDB: 1JWP).127 Similarly, NKG2D was selected for a cryptic allosteric site.130,131 For the GABABR, 360 
as previously described for the CDK2 system,82 we collected two sets of FragMaps corresponding 361 
to the active (PDB: 7CA3, allosteric modulator BHFF) and inactive (PDB: 7CA5, apo) 362 
conformations. Each FragMap set was used to identify ligands from separate PDBs (6UO8 and 363 
7C7Q). This allows us to assess if the individual FragMap sets allows the prediction of binding 364 
sites from either state of the protein. However, the large interdomain rearrangement of the 365 
transmembrane (TM) helices between active and inactive states132 disallows predicting the 366 
allosteric binding site present in the active conformation using the inactive conformation with the 367 
an equilibrium MD method such as SILCS. 368 
 369 
New Hotspot properties improve the identification of druggable Hotspot clusters 370 
 371 
To generate features of model development we calculated numerous properties of individual 372 
Hotspots including features based on the Hotspot clusters of which they are the centroid Hotspot. 373 
The previously published Hotspot ranking (Orig in Table 1) was based purely on the mean LGFE 374 
over all the specific fragments present in each Hotspot.82 As discussed above a single Hotspot 375 
represents a binding site for fragments (MW < 200 Da) which are generally smaller than most 376 
drugs. The ranking of all the Hotspots using the mean LGFE, as well as being within 12 Å of at 377 
least one other Hotspot, is shown in Figure S4, which highlights that for many proteins in the 378 
training set, the mean LGFE has limited predictive power. To evaluate the ability of the LGFE to 379 
predict the binding sites for drug-like molecules, the binding site recall was calculated with respect 380 
to the crystallographic ligand poses. The mean LGFE ranking captures 40%, 44%, and 80% 381 
experimental binding sites in the top 10, 20, and 40 Hotspots, respectively, over the training set 382 
protein systems (Table 3). While the mean LGFE score used to rank the original Hotspots is 383 
somewhat successful as a predictor of the Hotspot being a drug-like molecule binding site in some 384 
systems, significant improvements can be made by incorporating additional features in ML model 385 
development, as shown below.  386 
 387 
Table 3: Training set binding site recall in the top 10, 20, and 40 
Hotspots. The recalls are reported for three models: Hotspot LGFE, 
Exclusion-map HS SASA, and the SVM model. Binding site recall is the ratio 
of unique ligands within 5 Å of an experimentally-validated ligand binding site 
over the total number of such sites for that protein. 
Protein Name # Sites Top 10 Top 20 Top 40 

LGFE (Original ranking metric) 
CDK2 Active 6 0.67 0.67 0.67 
CDK2 Inactive 6 0.33 0.33 0.83 
ERK5 2 0.50 0.50 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 0.00 0.50 0.50 
GPR40 2 0.00 0.00 0.00 
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M2 Muscarinic 2 0.50 0.50 1.00 
Androgen 2 0.50 0.50 1.00 
Total 25 0.40 0.44 0.80 

Exclusion-map HS SASA 
CDK2 Active 6 0.50 0.83 0.83 
CDK2 Inactive 6 1.00 1.00 1.00 
ERK5 2 1.00 1.00 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 0.50 1.00 1.00 
GPR40 2 1.00 1.00 1.00 
M2 Muscarinic 2 0.50 1.00 1.00 
Androgen 2 1.00 1.00 1.00 
Total 25 0.76 0.88 0.96 

SVM model 
CDK2 Active 6 0.50 0.50 0.83 
CDK2 Inactive 6 1.00 1.00 1.00 
ERK5 2 1.00 1.00 1.00 
PTP1B 3 0.33 0.33 1.00 
β2 Adrenergic 2 1.00 1.00 1.00 
GPR40 2 0.50 1.00 1.00 
M2 Muscarinic 2 1.00 1.00 1.00 
Androgen 2 1.00 1.00 1.00 
Total 25 0.76 0.80 0.96 

 388 
When designing new features, we considered another limitation in the original ranking where the 389 
mean LGFE scores of Hotspots with high solvent exposure are often quite favorable. To account 390 
for the degree of solvent accessibility required to make a binding site more favorable for drug-like 391 
molecules as well as consider the size of drug-like molecules, we designed features related to 392 
the degree of solvent accessibility of the Hotspot, the volume of the Hotspot not occluded by the 393 
protein, the number of Hotspots in a cluster, and the totals of these in each Hotspot cluster. Figure 394 
2 shows the ranking based on Exclusion-map HS SASA for all Hotspots also within 12 Å of at 395 
least one other Hotspot. Those Hotspots within 5 Å of a drug-like molecule from crystallographic 396 
structures are shown as large circles. The Exclusion-map HS SASA ranking greatly improves the 397 
selection of Hotspots close to drug-like molecules. Table 3 shows that the mean binding site 398 
recalls have increased over that of the original LGFE Hotspot ranking to 76%, 88%, and 96% for 399 
the top 10, 20, and 40 Hotspots, respectively. While accounting for the SASA and presence of at 400 
least one adjacent Hotspot greatly improves the identification of druggable Hotspots, there is 401 
variability over the training set proteins. For example, with PTP1B or the M2 Muscarinic receptor, 402 
these two criteria alone aren’t particularly effective. Accordingly, we reasoned that using a ML 403 
classifier method to combine the information from many features should provide a better ranking. 404 
If the model is trained with cross-validation, it could also lead to robust generalization across a 405 
range of protein systems. 406 
 407 
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Figure 2: Ranking based on Exclusion-map HS SASA of individual Hotspots with a 
minimum of one adjacent Hotspot within 12 Å. The larger circles denote Hotspots within 5 
Å of a non-hydrogen atom of a drug-like compound bound to the proteins.  

 408 
Machine learning model improves identification of druggable Hotspots 409 
 410 
While the individual feature of Exclusion-map HS SASA, and presence of adjacent Hotspots, 411 
contain substantial information about whether a Hotspot is located in a drug binding site, an 412 
appropriately selected and trained ML model should better integrate the information from a wider 413 
range of features and improve the model’s accuracy as well as generalizability. Accordingly, we 414 
trained several ML models using the features listed in Table 1, as shown in the supporting 415 
information (Table S3). From that analysis we selected the SVM classifier with a linear kernel as 416 
implemented in scikit-learn library.137,139 The final model improves the predictive power over the 417 
untrained features alone, as shown in Figure 3. Figure 3A shows the model’s Hotspot ranking for 418 
each system and highlights the Hotspots which are within 5 Å of a ligand. Figure 3B presents a 419 
precision-recall curve for the training data and includes comparison to two untrained models, the 420 
original mean LGFE of all the molecules in the Hotspot, and Hotspot Exclusion-map HS SASA. 421 
Precision-recall curves show the change in precision over increasing recall, which corresponds 422 
to lowering the level of the cutoff above which a Hotspot is predicted to be a hit. Figure 3C shows 423 
the merged ranking of Hotspots from all proteins, for each of the three models, corresponding to 424 
Figure 3B. To facilitate easy comparison, the LGFE and Exclusion-map HS SASA were inverted, 425 
and then the LGFE, Exclusion-map HS SASA and SVM Decision Function were Min-Max 426 
normalized ((�⃑� − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 −𝑚𝑖𝑛)) so that they all predict maximal druggability at 1 and 427 
minimal druggability at 0 (Figure 3C). Figure 3C shows that generally, the SVM model has the 428 
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greatest density of true hits in the lower rankings; we note that the relative ranking within each 429 
metric is important in Figure 3C, not the position of the curves with respect to one another (Figure 430 
3C). Indeed, the SVM model has superior performance to the other models, demonstrated by the 431 
larger area under the precision-recall curve (AUC) for the SVM model (0.42) as compared to the 432 
LGFE (0.08), Exclusion-map HS SASA (0.29), and the random model (0.07) (Figure 3B). The 433 
SVM model’s AUC increased six-fold from that of the random model (0.07 to 0.42) (Figure 3B). 434 
 435 

 
Figure 3: Performance of final model on the training set. A) Ranking of each protein’s 
Hotspots by the final SVM model’s Decision Function with Hotspots within 5 Å of the non-
hydrogen atoms of known drug-like molecules (true hits) shown as large circles. B) Precision-
Recall curves of the original LGFE (blue), Exclusion-map HS SASA (yellow), and SVM Decision 
function (red) models. AUC stands for area under the curve, and the black dashed line reflects 
the ratio of hits to total Hotspots, or the expected AUC for a random model. C) Ranking of all 
training set Hotspots using the Min-Max normalized ranking metric in which the range for each 
metric is set from 0 to 1 using (�⃑� − 𝑀𝑖𝑛)/(𝑀𝑖𝑛 −𝑀𝑎𝑥). Hotspots within 12 Å of at least one 
other Hotspot from all proteins are combined and plotted as a continuous curve. Prior to Min-
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Max normalization the Exclusion-map HS SASA and LGFE were inverted to allow direct 
comparison to the SVM Decision Function. The large markers denote hits, as in panel A). 

 436 
In practical terms, the model identifies 80% of ligand binding sites in the top 20 Hotspots (Table 437 
3). This is impressive performance given the challenging nature of the problem since the binding 438 
sites identified here include both allosteric and orthosteric sites based on ligands exclusively 439 
absent in the crystal structures used in the SILCS simulations.82 In the top 20 Hotspots the SVM 440 
model fails to identify three out of twenty-five ligand sites (Table 3). One is a relatively solvent-441 
exposed site on the protein PTP1B, and so are unusual in our training set and challenging to the 442 
model. The remaining three missing ligands belong the CDK2 kinase in the active state. Two of 443 
these missing sites share the same Hotspot ranked 34th by the SVM model (Table S2). The last 444 
missing site has no Hotspot within 5 Å (Table S2), as highlighted in the previous paper.82 Missing 445 
this binding site is therefore not a limitation of the ranking method itself but the sampling of that 446 
particular pocket using the CDK2 Active structure 3MY5 with the SILCS method. While the system 447 
PTP1B, which has largely surface-exposed binding sites, remains challenging even for the SVM 448 
model, the model prediction generally improves across all systems (Figure 3B), and may be more 449 
generalizable than a single feature such as the Exclusion-map HS SASA, which happens to 450 
perform well on this particular dataset. However, an unbiased assessment of the final model must 451 
rely on an independent dataset. 452 
 453 
Validation of the final SVM model 454 
 455 
To validate the final model, we gathered a set of proteins independent of the training set, as 456 
discussed in the Methods. The details of the ligands analyzed for each system are listed in Table 457 
S1 and Table S2. The results for predicting all Hotspots near crystal ligands using the SVM model 458 
are given in Figure 4A, and a comparison of the model’s performance to the untrained LGFE and 459 
Exclusion-map HS SASA models are given in Figure 4B and Figure 4C. The results for predicting 460 
individual binding sites is given in Table 4. There is a six-fold increase in precision-recall AUC 461 
between the random model and the SVM model in the validation set (0.02 to 0.12), the same as 462 
was in the training set (0.07 to 0.42), which suggests that the model was not overfit to the training 463 
data. More practically, the model recalls 67% of ligand binding sites in the top 10, and 89% of 464 
sites in the top 20 Hotspots, respectively (Table 4). The SVM model’s Decision Function 465 
outperforms the untrained models as demonstrated by the increased precision-recall AUC (Figure 466 
4B). Notably, the Exclusion-map HS SASA ranking performs worse in the validation set than in 467 
the test set, suggesting that the trained SVM model is more generalizable than either individual 468 
feature alone (Figure 4B). Furthermore, although the Exclusion-map HS SASA ranking performed 469 
slightly better at binding site recall on the training set (Table 3, top 20), the SVM model performs 470 
better than either untrained model on the validation test (Table 4). Overall, the results argue that 471 
the model is not over-fitted to our limited training data, and that the model can predict druggable 472 
binding sites across a range of proteins with reasonable accuracy. 473 
 474 
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Figure 4: Performance of final model on the validation set. A) Ranking of each protein’s 
Hotspots by the final SVM model’s Decision Function with Hotspots within 5 Å of the non-
hydrogen atoms of known drug-like molecules (true hits) shown as large circles. B) Precision-
Recall curves of the original LGFE (blue), Exclusion-map HS SASA (yellow), and SVM Decision 
Function (red) models. AUC stands for area under the curve, and the black dashed line reflects 
the ratio of hits to total Hotspots, or the expected AUC for a random model. C) Ranking of all 
training set Hotspots using the Min-Max normalized ranking metric in which the range for each 
metric is set from 0 to 1 using (�⃑� − 𝑀𝑖𝑛)/(𝑀𝑖𝑛 −𝑀𝑎𝑥). Hotspots within 12 Å of at least one 
other Hotspot from all proteins are combined and plotted as a continuous curve. Prior to Min-
Max normalization the Exclusion-map HS SASA and LGFE were inverted to allow direct 
comparison to the SVM Decision Function. The large markers denote hits, as in panel A). 

 475 
While the model performs quite well across most of the validation set, it performs poorly on the 476 
heterodimer GABAB Receptor in both active and inactive states. It captures one of nine true hit 477 
Hotspots in the active state and zero of three in the inactive, which corresponds to identifying only 478 
one of three ligand binding sites (Table 4). The orthosteric binding site (2C0, Baclofen) was not 479 
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identified in GABABR Inactive, despite being identified in the GABABR Active simulations. In the 480 
simulations of the inactive state, the orthosteric binding site is highly solvent exposed, and the 481 
Hotspots’ Exclusion-map rBSA values range from 1% to 40%, less than the empirical 42% cutoff 482 
used to define the training set (see Methods). This makes this site an outlier compared to the data 483 
used to train the model. However, another challenge is that the GABABR heterodimer is much 484 
larger than the other proteins considered. A total of 416 Hotspots were identified or about four- to 485 
five-times the number in the training set systems. To account for this, we ranked the Hotspots 486 
near the extracellular part of the GABAB1 subunit. From among these 118 Hotspots, a Hotspot 487 
near the ligand 2C0 is now ranked in 33rd, or in the top 40 (Table S2). Finally, the missing site in 488 
the GABABR active state is an allosteric binding site between the two TM domains and directly 489 
interacts with lipids in the bilayer during the SILCS GCMC/MD simulations (Figure S5), making 490 
this site uniquely challenging to identify with our method. We ranked all the Hotspots in the TM 491 
region and found that the first two Hotspots near the ligand are only ranked 50th and 57th, 492 
respectively (Table S2). A future improvement of the model could explicitly account for lipid 493 
interactions at membrane-protein interfaces, since this burial is not explicitly accounted for in the 494 
highly-predictive Exclusion map surface area calculations. 495 
 496 
Table 4: Validation set binding site recall in the top 10, 20, and 
40 Hotspots. The recalls are reported for three models, the LGFE, 
Exclusion-map HS SASA of the Hotspot, and SVM model’s Decision 
Function. Binding site recall is the ratio of the total number of ligand 
binding sites within 5 Å of a Hotspot in the top N Hotspots. A site is 
identified when at least one Hotspot corresponding to a ligand is 
selected in the top N. 
Proteins Name # Sites Top 10 Top 20 Top 40 

LGFE 
P38 2 0.50 1.00 1.00 
BACE1 1 1.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
TrmD 1 1.00 1.00 1.00 
Thrombin 1 1.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 0.67 0.67 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 0.33 0.33 
GABABR Active 2 0.00 0.50 1.00 
GABABR Inactive 1 0.00 0.00 1.00 
NKG2D 1 1.00 1.00 1.00 
Total 18 0.61 0.72 0.83 

Exclusion-map HS SASA 
P38 2 1.00 1.00 1.00 
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BACE1 1 0.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
TrmD 1 1.00 1.00 1.00 
Thrombin 1 0.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 0.67 1.00 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 0.33 0.67 
GABABR Active 2 0.00 0.00 0.00 
GABABR Inactive 1 0.00 0.00 0.00 
NKG2D 1 1.00 1.00 1.00 
Total 18 0.56 0.72 0.78 

SVM model 
P38 2 1.00 1.00 1.00 
BACE1 1 1.00 1.00 1.00 
Hsp90 1 1.00 1.00 1.00 
TrmD 1 1.00 1.00 1.00 
Thrombin 1 0.00 1.00 1.00 
MCL1 1 1.00 1.00 1.00 
FXR 3 1.00 1.00 1.00 
ANGPTL4 1 1.00 1.00 1.00 
TEM1 3 0.33 1.00 1.00 
GABABR Active 2 0.00 0.50 0.50 
GABABR Inactive 1 0.00 0.00 0.00 
NKG2D 1 1.00 1.00 1.00 
Total 18 0.67 0.89 0.89 

 497 
 498 
Model’s Decision Function is a predictor of Hotspot druggability 499 
 500 
While the SVM model highly ranks most Hotspots corresponding to known drug-like ligand binding 501 
sites in the top 20 (Table 4), there are a number of high-ranking Hotspots that do not correspond 502 
to known binding sites. Because some may be associated with true drug-like binding sites for 503 
which no ligand has yet experimentally been identified, we hypothesized that the most highly-504 
ranked Hotspots should be more druggable than those ranked poorly. To test this hypothesis, we 505 
selected two proteins in the validation set, namely TEM-1 and GABABR Active, and docked the 506 
FDA database of 348 compounds at the Hotspots ranked 1-10, 91-100, and for GABABR 391-507 
400. These Hotspots represent the most and least-druggable according to the SVM model’s 508 
ranking. For each Hotspot we report the mean LGFE and rBSA for the top twenty compounds 509 
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ranked by LGFE (Table S4). The mean LGFE scaled by mean rBSA (mean LGFE x mean rBSA), 510 
where 100% rBSA is equivalent to 1.0, was used as a measure of Hotspot druggability. This 511 
assumes that druggable sites have favorable LGFE scores with high rBSA values, associated 512 
with high affinity and with buried sites, respectively. We plotted the final SVM model’s Decision 513 
Function against the mean LGFE x rBSA for these Hotspots in Figure 5. In general, it shows the 514 
expected anti-correlation between Hotspot predicted druggability, based on larger positive SVM 515 
Decision Function values and more negative LGFE x rBSA scores corresponding to druggable 516 
sites. 517 
 518 
The SVM Decision Function’s anti-correlation with the LGFE x rBSA druggability scores accounts 519 
for slightly different trends in LGFE and rBSA individually between GABABR and TEM-1. For the 520 
TEM-1 Hotspots, the top 10 Hotspots have substantially higher average rBSA and the average 521 
LGFE values of Hotspots 91-100 decrease only slightly, whereas in GABABR Active the average 522 
LGFE score decreases substantially while the average rBSA values decrease slightly (Table S4). 523 
The fact that GABABR Hotspots appear far more druggable, having more favorable average LGFE 524 
and lower rBSA, despite only considering Hotspots 91-100 is due to that system have significantly 525 
more Hotspots due to its larger size than the TEM-1 system. Importantly there are large 526 
differences between the SVM Decision Function scores between Hotspots 1-10 and 91-100 for 527 
both proteins, indicating the ability to discriminate between sites in difference proteins. In addition, 528 
it is notable that with both proteins the SVM Decision Function scores for the top Hotspots are 529 
similar, ~1.0, indicating that the SVM values may be applied directly to new proteins for the 530 
selection of potential druggable sites. Finally, the lack of a stronger anti-correlation between SVM 531 
Decision Function scores and the Mean LGFE x rBSA druggability scores may be associated with 532 
the concept of druggability being fairly imprecise. For example, some binding sites may have high 533 
affinity for just a few ligands, and low affinity for all other ligands, yielding lower druggability score 534 
despite the fact that the site is druggable in principle.  535 
 536 
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Figure 5: SVM model Decision Function and the Mean LGFE times rBSA for selected 
Hotspots. For TEM-1 and GABABR, the Hotspots 1-10 and 91-100 were selected, and for 
GABABR Hotspots 391-400 were also selected. The trendlines show the linear line of best fit. 
For TEM-1 Hotspots 1-10 and 91-100 correspond to SVM Decision Function scores of ~1.0 and 
-1.5, respectively, while Hotspots 1-10, 91-100, and 391-400 correspond to SVM Decision 
Function scores of ~1.0, 0.2, and -1.5. The discrepancy in the relationship is due to the 
significantly higher number of Hotspots with GABABR versus TEM-1, which biases the overall 
distribution towards lower ranking SVM Decision Function scores. 

 537 
Comparison to existing methods of cryptic binding site prediction 538 
 539 
In our previous work introducing the SILCS-Hotspots method, we compared the Hotspots 540 
generated against the fragment binding sites identified by FTMap16 and Fpocket,17 and found that 541 
SILCS-Hotspots identifies more Hotspots near the crystallographic sites than the other methods.82 542 
To give a sense of the performance of the model against other available cryptic binding site 543 
identification methods, we selected two proteins in our validation set, TEM-1 and NKG2D, to 544 
compare with CryptoSite.42 These cryptic sites were selected because they were recently 545 
identified136 as being particularly challenging to SiteMap (Schrödinger, Inc.)18,19 and SiteFinder 546 
(Chemical Computing Group).21 CryptoSite successfully identified the cryptic site in NKG2D 547 
(Figure S6). As noted in the original CryptoSite paper, it identifies the residues involved in the 548 
disruption of a core region upon ligand binding to the cryptic site of TEM-1, although the scores 549 
of ~0.06-0.08 are below the typical CrytoSite cutoff score of 0.1 (Figure S6).42 These results 550 
suggest that both CryptoSite and SILCS-Hotspots perform better than either SiteMap or 551 
SiteFinder at identifying cryptic sites. It should be noted that CryptoSite requires more 552 
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computation than SiteMap/SiteFinder, and similarly SILCS-Hotspots requires more than 553 
CryptoSite associated with the computational requirements of the initial SILCS Simulations. The 554 
SILCS-Hotspots method is not intended to be used as a standalone tool, but as part of the 555 
integrated SILCS workflow with methods for site identification, pharmacophore discovery and lead 556 
optimization. 557 
 558 
Conclusions 559 
 560 
We previously presented the SILCS-Hotspots method to leverage the information in SILCS 561 
FragMaps to identify a comprehensive set of fragment binding sites. Here we have built upon the 562 
previous work and developed a predictive algorithm which identifies the binding sites of larger, 563 
drug-like molecules. As a training set, we used the original set of proteins which included a list of 564 
Hotspots within 5 Å of a drug-like ligand in a crystal structure of the protein. We first demonstrated 565 
that the existing SILCS-Hotspot ranking, based solely on the mean LGFE of each Hotspot that is 566 
within 12 Å of at least one other Hotspot, was insufficient to efficiently identify druggable binding 567 
sites. Next, use of the Exclusion-map HS SASA of each Hotspot and presence of at least one 568 
adjacent Hotspots was shown to substantially improve the ranking. Building on this, a SVM 569 
classification model was developed using a wide array of Hotspot and Hotspot cluster properties 570 
as features. This led to improved predictions and the final model was validated on a separate set 571 
of 9 proteins, on which the model performs quite well. On the problem of identifying at least one 572 
Hotspot per ligand binding site, the final model achieves 80% recall in the top 20 Hotspots per 573 
protein (20 out of 25 total ligand binding sites total) in the training set, and 89% recall in the top 574 
20 on the validation set (16 out of 18 total sites). By comparing the model’s ranking with the 575 
predicted affinity and solvent accessibility of members of a chemically-diverse set of FDA-576 
approved compounds, we argue that the model predicts sites which are likely druggable even if 577 
they haven’t yet been identified through the presence of crystallographic ligands. 578 
 579 
In practice, the presented workflow and SVM model offers the capability of identifying novel 580 
binding sites for drug-like molecules in proteins, including allosteric sites. This takes advantage 581 
of the high information content in the SILCS FragMaps that include contributions from protein 582 
flexibility, desolvation and protein-functional group interactions which, in a ligand discovery 583 
scenario can be used for database screening and ligand optimization. Notable is the high 584 
performance of the SVM model on the validation-set proteins. This is suggested to be due to the 585 
use of the physics-based SILCS FragMaps in the initial Hotspots calculation avoiding inherent 586 
overtraining effects that may occur with a ML model solely based on data fitting. However, the 587 
model may have limitations associated with sites adjacent to the lipid bilayer, such as the site 588 
observed in GABABR Active state. Future efforts will focus on addressing this issue, such as by 589 
directly accounting for burial in lipids and by constructing a training set of sites at protein-bilayer 590 
interfaces. Furthermore, while the model has been tested on a reasonably diverse test set of 591 
proteins including challenging cryptic sites, more extensive testing is necessary to conclude the 592 
model will generalize to exotic systems. We expect that this relatively simple classification model 593 
with the physical insights from SILCS sampling will tend to generalize well. 594 
 595 
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Figure S1: Surface-exposed Hotspot 25 in ERK5. 597 
Figure S2: Distribution of Hotspot SASA by protein system. 598 
Figure S3. Analysis of the recursive feature elimination and the top two principal components 599 
(PCs) of the training set. 600 
Figure S4: Ranking based on mean LGFE of each Hotspot. 601 
Figure S5: Burial of allosteric binding site between GABABR Active TM domains. 602 
Figure S6: CryptoSite predictions for NKG2D (A) and TEM-1 (B). 603 
 604 
Table S1: List of proteins and ligands used for methods validation. 605 
Table S2: Training and validation set Hotspots and ligand distances. 606 
Table S3: Stratified 5-fold Cross-validation training of higher-order SVM Classifier with polynomial 607 
or radial basis functions kernels and a Random Forest model. 608 
Table S4. FDA compound screening for selected Hotspots of TEM-1 and GABABR Active. 609 
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