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1 Abstract 

Affinity selection-mass spectrometry (AS-MS) is a ligand discovery platform that relies upon mass spectrometry 
to identify molecules bound to a biomolecular target. When utilized with large peptide libraries (108 members), 
AS-MS sample complexity can surpass the sequencing capacity of modern mass spectrometers, resulting in 
incomplete data, identification of few target-specific ligands, and/or incomplete sequencing. To address this 
challenge, we introduce pyBinder to apply label-free quantitation (LFQ) to AS-MS data to process primary MS1 
data and develop two scores to rank the peptides from the integration of their peak area: target selectivity and 
concentration-dependent enrichment. We benchmark pyBinder utilizing AS-MS data developed against a 
protein, anti-hemagglutinin antibody 12ca5, revealing that peptides that contain a motif known for target-specific 
high-affinity binding are well characterized by these two scores. AS-MS data from a second protein target, WD 
Repeat Domain 5 (WDR5), is analyzed to confirm the two pyBinder scores reliably capture the target-specific 
motif-containing peptides. From the results delivered by pyBinder, a list of target-selective ions is developed and 
fed back into subsequent MS experiments to facilitate expanded data generation and the targeted discovery of 
selective ligands. pyBinder analysis resulted in a four-fold increase in motif-containing sequence identification 
for WDR5 (from 3 ligands discovered to 14 discovered), showing the utility of the two scores. This work 
establishes an improved approach for AS-MS to enable discovery outcomes (i.e., more ligands identified), but 
also a way to compare AS-MS data across samples, protocols, and conditions broadly. 
 

2 Introduction 

Affinity selection-mass spectrometry (AS-MS) discovers high-affinity ligands to biomolecular targets using 
mass spectrometry for ligand identification.1–3 The selection principles of AS-MS are highly similar to phage and 
mRNA display,4–6 though AS-MS generally utilizes a single enrichment step without genetic amplification. AS-MS 
typically utilizes synthetic peptide libraries, providing unrestricted access to non-natural amino acids and a facile 
opportunity to tailor library design to the biomolecule target. Thus, one of the main applications of AS-MS is the 
selection of small combinatorial libraries (103-106 members) biased or ‘focused’ toward the target to gain 
structure-activity relationship (SAR) information.7–10 These approaches can accelerate medicinal chemistry 
efforts by the rapid identification of ‘hot-spot’ residues critical for activity as well as the combinatorial sampling of 
the chemical space available to non-natural amino acids.7,11,12 Beyond these focused efforts, recent 
advancements have demonstrated de novo ligand discovery with AS-MS from fully randomized peptide and 
peptidomimetic libraries up to 108 members against several targets.13–16 Despite its overall use, AS-MS heavily 
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depends on high-resolution mass spectrometry analysis and stands to benefit by leveraging methods from the 
field of MS-based proteomics.  

Solutions developed to solve the data incompleteness from the field of proteomics could be used to 
improve AS-MS. MS-based proteomics has detailed the “missing value” problem, hallmarked by an incomplete 
set of peptides or proteins identified across samples or replicates.17–20 A similar concept can be applied to AS-
MS, where there is little-to-no overlap of the identified sequences of peptide ligands across replicates. This 
challenge is pronounced by the common practice in AS-MS to run the spectrometer in data dependent acquisition 
(DDA) mode. In DDA, individual precursor ions are selected from the primary mass spectrum (MS1) for 
fragmentation by tandem mass spectrometry (MS2). Rules for precursor selection are clearly programmed into 
the spectrometer method; however, the selection process is not robust. In other words, DDA is stochastic and 
can result in incomplete data collection. Due to the time required to perform DDA, the speed of the mass 
spectrometer can become insufficient for complex samples where peptides elute together quickly. High sample 
complexity combined with the stochasticity of precursor selection can lead to inconsistent peptide identifications 
across technical replicates. Together, the typical approach for mass spectrometry in AS-MS can lead to many 
peptides being missed, as detected later from retrospective analysis (see Figure S1).  

Label-free quantitation (LFQ) is fully compatible with AS-MS and delivers a complete dataset without 
relying on peptide identification from tandem spectrometry. As a cornerstone in MS-based proteomics, LFQ 
utilizes MS1 precursor ions to examine sample composition. This approach compares peptide ions without the 
need for sequence databases, stable isotope labeling, or chemical modifications seen in other methods21–23 
ensures AS-MS data can be directly analyzed. For unambiguous discernment of peptide ions, LFQ strongly and 
benefits from high-resolution instrumentation.24,25 LFQ analysis of mass spectrometry data have become used 
as a part of open-source and commercial software and including MaxQuant,22 Proteome Discoverer, and PEAKS 
Studio.26–28 LFQ has been proven to increase data depth, sensitivity, and completeness with applications in 
biomarker discovery, disease profiling, elucidation of drug mechanisms, and single-cell proteomics. Thus, the 
versatility of LFQ is evident in both basic and applied research,21,29  and might enhance the capabilities of AS-
MS. 

We demonstrate the integration of LFQ into AS-MS using Python, named ‘pyBinder,’ for the improved 
discovery of target-selective, high-affinity peptide ligands. The broader goal of AS-MS is to discover target-
selective ligands, which can be understood from the MS1 data. However, data processing methods in AS-MS 
have primarily focused on filtering peptide sequencing data derived from tandem MS2 spectra.30 To this end, 
pyBinder generates two scores for each peptide ion identified: (i) target selectivity, established by comparing 
target protein versus off-target samples; and, (ii) a concentration-dependent enrichment score (CDE), calculated 
by analyzing the correlation between peptide intensity and target concentration in the AS-MS experiments. We 
have validated our method by analyzing ligands targeting the anti-hemagglutinin antibody (12ca5) and WD 
repeat-containing protein 5 (WDR5), both known for their high-affinity binding motifs. The outcomes from 
pyBinder analysis indicate that peptides containing the 12ca5 and WDR5 motifs are highly-ranked based on 
target selectivity and CDE compared to other peptide features identified in the LFQ analysis. Lastly, re-
measurement of the sample by targeting other highly ranked peptide ions increased the discovery of motif-
containing peptide sequences. Thus, pyBinder appears might aid peptide therapeutic candidate discovery from 
AS-MS data. 
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3 Results and Discussion 

Improvements to mass spectrometry methods stand to improve AS-MS broadly. To understand AS-MS 
data, we define two terms: “sequencing coverage” and “sequencing fidelity.” First, sequencing coverage is 
defined as the percentage of all peptide ions isolated for MS2 fragmentation. Sequencing coverage is calculated 
in post-processing analysis by comparing the number of MS2 spectra gathered versus the total number of peptide 
ion features in the sample. A peptide ion feature is defined by its retention time, mass-to-charge ratio (m/z), and 
isotopic pattern. Low sequencing coverage means that the AS-MS sample was too complex. In this scenario, 
the number of peptides in the sample surpassed the spectrometer’s capability. In comparison, high sequencing 
coverage means the spectrometer gathered MS2 spectra for almost all peptides in the sample. Our second term, 
sequencing fidelity, assesses the quality of the MS2 spectra. It is defined as the percentage of all MS2 spectra 
that result in high-quality assignment of a peptide sequence in post-processing analysis. In our work, de novo 
sequencing analysis was performed in PEAKS Studio where an Average Local Confidence (ALC) of ≥80 was 
considered for high-quality sequence assignment.26 Low sequence fidelity can be due to several factors: low 
peptide abundance, co-isolation of multiple peptide precursors, poor fragmentation patterns or kinetics, and/or 
mistaken isolation of non-peptide molecules.31–34 Thus, we can evaluate approaches to  improve both the quantity 
and quality of AS-MS from the sequencing coverage and fidelity, respectively. 

Retrospective analysis of a prior AS-MS discovery campaign estimated the sequence coverage and 
fidelity to be ~10-18% and ~1.7-8%, respectively (Figure 1), concretely describing the incompleteness of AS-MS 
data. We reanalyzed the raw data from our previously published ligand discovery campaign of a canonical 12-
mer library against angiotensin-converting enzyme 2 (ACE2) with anti-hemagglutinin antibody 12ca5 used as a 
side-by-side off-target control.14 The mass spectrometer gathered 3,468 (ACE2) and 5,895 (12ca5) MS2 spectra 
out of 32,722 and 33,306 total identified peptide features respectively, meaning the sequence coverage was low 
at 10.6% for ACE2 and 17.7% for 12ca5. Most peptides (>80%) were not isolated for MS2 fragmentation by the 
mass spectrometer. The low coverage is partly due to  the use of both higher-energy collisional dissociation 
(HCD) and orthogonal electron-transfer dissociation (ETD), which have been previously seen to improve 
sequencing fidelity of de novo sequencing.8,13,30 Using both fragmentation modes increases the cycle time to 
fragment each peptide precursor, with a rate of ~1.2 MS2 spectra per second was observed here. Of the MS2 
spectra gathered, most were of poor quality with the sequence fidelity 1.7% for ACE2 and 8.0% for 12ca5. When 
sequencing coverage and fidelity are combined, only 0.18 – 1.4% of all peptides were successfully characterized 
by the mass spectrometer to yield a peptide sequence. 

 

https://doi.org/10.26434/chemrxiv-2024-lfqjb ORCID: https://orcid.org/0000-0002-7242-801X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-lfqjb
https://orcid.org/0000-0002-7242-801X
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

 

 
Figure 1. Retrospective analysis of previous AS-MS campaigns reveals the opportunity for deeper data 
analysis by LFQ. (A) The mass chromatogram of mass-to-charge ratio versus retention time with peptide 
features identified by PEAKS studio in black, all collected MS2 scans in blue, and all MS2 scans that resulted in 
a high-quality sequence assignment in red. High-quality sequence assignment was defined by having an ALC 
score calculated by PEAKS Studio ≥80 with a sequence that conforms to the synthetic library design. (B) A 
zoomed in portion of the mass-to-charge ratio versus retention time plot filtered to show only z states of 3 shows 
the low coverage of high confidence identifications during untargeted runs. (C) Statistics for each of the three 
groups, showing the percentages of the total number of features subjected to MS2 and that resulted in high 
confidence sequences that conform to the synthetic library design. 
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To improve the mass spectrometry performance in AS-MS, the common method of spectral database 

matching was considered first as it would improve sequencing fidelity. Database matching constrains the 
sequence assignment of the MS2 spectra to a list of peptide sequences that may be in the sample. Thus, peptide 
sequences can be assigned from MS2 spectra even if the spectra are of sub-optimal quality for de novo 
sequencing. However, spectral matching appears intractable for 108 combinatorial libraries because the 
corresponding database must be large. These types of libraries are designed to include numerous amino acids 
at multiple positions in an unbiased, randomized, distribution and thus samples from a much larger theoretical 
sequence space (e.g., a 108 library samples a 1015 sequence space).13–16 Because the synthesis is unbiased, 
the database would need to include all sequences in the full theoretical sequence space. For a routinely used 
108 library, this large database would result in a ~15000 TB FASTA file using a minimal UTF-8 encoding, unable 
to be handled by most MS analysis software and storage media. However, database matching may still be 
tractable for smaller, focused libraries, depending on their design. Because spectral matching is not possible for 
large libraries used in de novo discovery, other methods that rely on spectral matching appear intractable, 
including data-independent acquisition (DIA) spectral matching to improve the MS2 deconvolution of co-isolated 
peptides.35–37 Nevertheless, several strategies from MS-based proteomics appear compatible with AS-MS, 
including LFQ as previously mentioned.21–23 

We introduce ‘pyBinder’ to combine LFQ with AS-MS to understand the quality and value of the ligands 
discovered for their target-selectivity (Figure 2). While standard software packages can accomplish LFQ analysis 
of MS data,22,26–28 we sought to develop an open-source approach in Python and utilized pyOpenMS.38 Starting 
with the ACE2 and 12ca5 dataset in Figure 1, pyOpenMS was used to identify peptide ion features by fitting the 
Averagine isotopic distribution39 with z state filtering to compile a list of peptide features per AS-MS sample 
replicate. Optimization of the feature identification was performed by comparing the overlap in features identified 
between pyOpenMS and PEAKS Studio as a baseline, until both showed comparable feature detection 
capability. Details of the parameter optimization are given in Table S2. Because AS-MS experiments are 
completed in triplicate, the map of peptide features (retention time vs m/z) from each sample was aligned in 
retention time using the pose clustering algorithm as previously described.40 The resulting aligned map generated 
a consensus list of all peptide ion features observed across all proteins and replicates. Comparison of each 
peptide feature can then discern the target selectivity of each. 
 

 
Figure 2. Label-free quantitation (LFQ) improves the affinity selection-mass spectrometry (AS-MS) 
discovery platform. LFQ performed by pyBinder enables the analysis of AS-MS data from the MS1 peptide 
features without relying on tandem sequencing results (MS2 data). Thus, the success of the affinity selection can 
be robustly judged by the enrichment level of peptides identified from MS1 features. The MS1 features can be 
evaluated for the target-selectivity as well as target concentration-dependent enrichment (CDE). With the target-
selectivity and CDE scores, a list of promising peptide features can be generated by pyBinder and fed back into 
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a subsequent targeted mass spectrometry experiment to reveal a larger amount of target-selective peptide 
ligands. 
 

To discern target selectivity, pyBinder analyzes extracted ion chromatograms (EICs) for all peptide ion 
features discovered. EICs shows the signal intensity as a function of retention time, where the signal is the 
intensity from the spectrometer at the mass of the peptide ion ± 0.005 m/z (10 ppm error on 500 m/z). In the 
EICs, the peptide ion features are unique given the high precision of the Orbitrap spectrometer utilized when 
combined with a specified retention time window (10 minutes). From these EICs, all consensus features are 
quantitated by integration. Integrated peak areas were gathered after a Savitsky-Golay noise filter was applied. 
Detection of the peak was done independently by using the PeakUtils Python package within the EIC window to 
account for retention time drift across AS-MS replicates. The smoothed, identified peaks were then integrated 
numerically using cumulative trapezoids, as this method accounts for abnormal peak shape while also retaining 
a short computing time.  

From the integrated peak areas, two scores were developed to rank and prioritize peptides for their value 
as ligands: target selectivity and concentration-dependent enrichment (CDE, Figure 3). Target selectivity is a 
critical property at play in all ligand discovery platforms. While experimental controls and protocols are optimized, 
the discovery of nonselective or non-specific ligands impedes discovery efforts.41,42 By comparing the integrated 
peak areas from experimental replicates, the selectivity of each prospective ligand towards the target protein 
versus off-target proteins is immediately assessed. As illustrated in Figure 3A, the target selectivity score for a 
specific protein concentration is determined by the fraction of the total peak area contributed by that protein, 
assigning a selectivity score to each peptide feature for every protein, with all scores summing to one. A target 
selective ligand will appear only in the AS-MS samples that contain the target, whereas a nonselective ligand 
will have a target selectivity equal to the reciprocal of the total number of targets. Thus, selectivity scores 
differentiate between target-selective and nonselective ligands. With multiple AS-MS replicates, statistical 
significance of the target selectivity is assigned (SI Section 11.6). 
 The second score calculated in pyBinder is concentration-dependent enrichment (CDE). CDE was 
inspired by the connection between concentration dependence in binding interactions and selectivity.43,44 In 
pyBinder, CDE measures the change in the integrated intensity of a peptide feature relative to the amount of 
target protein used in the affinity selection experiment (Figure 3B). To enable this analysis, affinity selections 
were completed using varying quantities of target-labelled magnetic beads, as well as a negative control with 
beads lacking the target protein. We calculated the integrated peak areas for each protein loading scenario and 
assigned a CDE score based on the formula depicted in Figure 3B. The sign and magnitude of the CDE score 
is reported to gauge the target selectivity of each peptide feature.  

Beyond target selectivity, CDE scores can provide insight into the relative ligand binding affinity (apparent 
dissociation constant, KD), with theoretical scenarios given assumed KD values shown in Figure S2. High CDE 
scores indicate strong peptide enrichment from the affinity selection due to the target protein. Meanwhile, low 
CDE scores (e.g., near zero) indicate peptide enrichment regardless of target protein concentration, explained 
by nonspecific binding or poor affinity. Another potential case is a negative CDE score that could indicate that 
the target protein reduces peptide enrichment, possibly by reducing nonspecific binding.  

By utilizing these two scores, peptides are prioritized based on their potential as target-selective ligands. 
If known, the peptide sequences can delineate structure-activity relationships with respect to the target protein. 
If unknown, the peptide ion features can be formulated into a targeted list to perform subsequent targeted mass 
spectrometry. A much larger amount of data could then be revealed, greatly improving the data generation 
capabilities of AS-MS as a ligand discovery platform. 
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Figure 3. Target selectivity and concentration-dependent enrichment (CDE) scores are used to evaluate 
peptide features. (A) The selectivity score is calculated by comparing the area for a given feature with respect 
to a single protein and the total feature area measured across all proteins. A high selectivity score reflects a 
protein-specific feature, while a selectivity score near the reciprocal of the total number of proteins reflects a 
nonspecific binding feature. (B) The CDE score is calculated using the extracted feature area across several 
protein concentrations using the formula shown at the right. A high CDE score shows a strong selection pulldown 
of the peptide feature even at lower protein concentrations, while a low CDE score shows a lack of relationship 
between protein concentration and peptide pulldown.  

 To evaluate the performance of LFQ analysis of AS-MS data by pyBinder, an affinity selection was 
completed using 12ca5 compared to unlabeled magnetic beads. The anti-hemagglutinin antibody 12ca5 was 
chosen for its known binding motif, where peptides containing the sequence D**DY(A/S) often exhibit high affinity 
binding (e.g., KD < 300 nM).13,45 A 108-membered X12K library was used, where X denotes the set of 20 natural 
amino acids except cysteine (to exclude disulfide formation) and isoleucine (indistinguishable from leucine by 
MS). The selection was performed using three different amounts of 12ca5 loaded on the beads to enable CDE 
score calculations with either 0 (beads only), 55, 110, or 180 pmol of 12ca5 utilized. Selectivity scores were 
calculated using the beads only control as the off-target protein. After selection, peptide sequencing was 
performed with the standard intensity-ranked DDA approach, as in the 12ca5/ACE2 campaign. The list of 
sequenced peptides was filtered to match the library design and peptides containing the 12ca5 binding motif 
assigned with high confidence were compiled for analysis. This list of motif-containing peptides was then 
compared to the results from pyBinder for the high-priority peptide features.  

Both the selectivity and CDE scores from pyBinder were high for 12ca5 motif-containing peptides, which 
are expected to have high-affinity, target-selective binding (Figure 4). Independently, the motif-containing 
peptides were color-coded and visualized for target selectivity and CDE scores (Figure 4A and 4B). While their 
statistical significance, denoted by -log10(P-value), was less discerning than the scores themselves, the target 
selectivity and CDE scores clearly indicate the high performance of the motif-containing peptides in the affinity 
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selection experiment. Also, as expected, many peptide features were not sequenced (shown in gray) due to the 
low sequence coverage and low sequencing fidelity. Last, combining the two scores (Figure 4C) presented a 
high density of motif-containing peptides in the top right quadrant of the graph. Thus, this analysis in pyBinder, 
rooted in LFQ, demonstrated clear potential to efficiently analyze AS-MS data and distinguish ligands that are 
expected to be target-selective and high-affinity. 

  
Figure 4. The target selectivity and CDE scores of 12ca5 motif-containing peptides demonstrate the 
ability of pyBinder to distinguish target-selective, high-affinity peptides. Motif-containing peptides are 
shown in blue in each graph, with all other detected features are shown in gray. (A) A comparison of the selectivity 
score with respect to 12ca5 and the statistical significance as shown by the p-value. (B) A comparison of the 
CDE score and the statistical significance as shown by the p-value. (C) A comparison of the selectivity score and 
the CDE score. (D) A comparison of selectivity score, CDE score, and p-value. 

With 12ca5, we applied pyBinder to AS-MS data collected on a novel target protein, WDR5, using a 
similar motif-based analysis for validation when selected against the X12K peptide library. WDR5, like 12ca5, also 
has a known set of motifs associated with ligand binding at its ‘WIN’ site based on arginine-containing tripeptide 
sequences (e.g., ART and ARA) at the N-terminus of the peptide.46,47 From the AS-MS data, target selectivity 
and CDE were calculated and sequence assignments were gathered from the standard tandem sequencing of 
the 12ca5 and WDR5 samples. Motif-containing peptide sequences for both 12ca5 and WDR5 assigned from 
the data (ALC ≥70) were matched back to their respective scores in pyBinder by mass and were plotted 
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according to their selectivity scores, CDE scores, and p-values in Figure 5. For this case, the CDE score 
appeared to be a more effective filter than target selectivity. A range of target selectivity scores were observed 
across all the motif-containing peptides, suggesting a degree of nonspecific interactions with 12ca5 or possible 
sample carry-over in the mass spectrometer. Last, the low p-value cutoff (p < 0.05) appeared to hinder the 
prioritization of motif-containing peptides, consistent with the observations from the 12ca5 vs beads experiment 
in Figure 4A and B. For both cases, these results indicate that the peak detection and integration could potentially 
be improved to decrease the noise of the peak areas gathered.  

Given its potential, target-selective peptide features from pyBinder were used in a second round of mass 
spectrometry to reveal a larger amount of peptide ligands compared to the standard approach for WDR5 (Figure 
5). The output from pyBinder allows the quick prioritization of peptide features observed from the AS-MS 
experiment using the target selectivity and CDE scores to construct a list of features for tandem sequencing. 
With the same samples, additional mass spectrometry to the m/z and retention time of promising peptide features 
was completed. For WDR5, this approach increased the number of ligands discovered (ALC >80) from 2 to 7, 
or an increase from 3 to 14 ligands if using a slightly relaxed sequencing confidence (ALC >70). Full lists of the 
identified motif-containing sequences for the untargeted and targeted analysis methods for 12ca5 and WDR5 
are given in Tables S3 to S6. This increase of WDR5 motif-containing sequences demonstrates the application 
of pyBinder to increase the target-selective ligand identification rate and quality of data generated from AS-MS. 
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Figure 5. The application of pyBinder in targeted AS-MS increases the discovery rate of peptides containing 
the WDR5 binding motifs compared to untargeted methods. Plots shown highlight WDR5 motif-containing 
sequences that were successfully sequenced with high enough confidence, defined as an ALC score ≥70. Gray points 
reflect extracted features that either were not sequenced or had too low confidence in the sequence assignment. 
Motif-containing peptides trend towards having high selectivity scores and high CDE scores. Scatterplots comparing 
relationships between all the scores used are shown, where (A) shows selectivity score against statistical confidence, 
(B) shows CDE score against statistical confidence, (C) shows selectivity score against CDE score, and (D) shows all 
three values compared simultaneously. A tolerance value of 0.005 in mass-to-charge ratio was used to match 
sequence assignments back to features annotated by pyBinder, causing potential double assignments. 
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4 Conclusion 

We present pyBinder as a workflow to perform LFQ on AS-MS data that introduces two scores to 
characterize the value of identified peptide features: target selectivity and concentration-dependent enrichment 
(CDE). Starting from the results gathered from LFQ of AS-MS data, target-selective ligands can be identified 
without the need for isobaric labeling, stable-isotope labeling, or observation of MS2-based mass tags. Trends in 
the two scores were shown to distinguish ligands that were target-selective for two target proteins, 12ca5 and 
WDR5. Because they are connected to the ligand affinity, CDE scores can be combined with peptide sequence 
information in machine learning models to discover ligands. However, we did observe that the statistical 
significance of the two scores was less discerning. Aside from improvements to the data quality, we expect this 
challenge to be remedied with improvements to the peak detection and integration methods; however, the current 
method provides sufficiently powerful characterization of the data.  

From the two pyBinder scores, a list of prioritized peptide features could be enumerated for successful 
targeting in subsequent selection rounds to expand the data gathered from AS-MS. Lists of peptide features that 
exhibit high target selectivity and CDE can be fed back into targeted mass spectrometry methods by their mass-
to-charge ratio and retention time extracted from MS1 data. This approach of targeted mass spectrometry 
enabled by pyBinder remedies the challenge of high sample complexity and low sequencing coverage by 
focusing the MS sequencing capacity toward promising ligands. Carried further, the targeting enabled by 
pyBinder allows the deliberate use of increased mass spectrometer time per peptide to potentially increase 
sequencing fidelity. Thus, pyBinder appears able to overcome the two bottlenecks that limit AS-MS, sequence 
coverage and sequence fidelity, originally revealed in our retrospective analysis. 
 We expect this work to improve the robustness of AS-MS ranging from increasing the number of target-
selective ligands discovered to evaluating affinity selection conditions and peptide libraries. We demonstrated 
the ability of pyBinder to increase the amount of data generated from AS-MS experiments for the purpose of 
target-selective ligand discovery. pyBinder removes the reliance on sequencing results, which can be poor due 
to multiple reasons, and instead reports the quality of the AS-MS data using LFQ of MS1 information. Thus, 
pyBinder can analyze the general enrichment achieved by the affinity selection and be used to evaluate 
experimental designs and the suitability of peptide libraries to new targets. We expect pyBinder to improve AS-
MS by minimizing the identification rate of nonspecific ligands, improving the ability to establish structure-activity 
relationships (SAR), and estimate of binding affinity (KD) directly from ligand discovery experiments. 

5 Software Availability 

All code used in this work is available at https://github.com/malee97/pyBinder.  A Jupyter notebook facilitating 
the usage of pyBinder is present in the repository and is the primary method of using pyBinder. Additional 
instructions and required modules are also included. 
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