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Abstract 

The generation of three-dimensional (3D) molecules based on target structures 

represents a cutting-edge challenge in drug discovery. Many existing approaches often 

produce molecules with invalid configurations, unphysical conformations, suboptimal 

drug-like qualities, limited synthesizability, and require extensive generation times. To 

address these challenges, we present 3DSMILES-GPT, a fully language-model-driven 

framework for 3D molecular generation that utilizes tokens exclusively. We treat both 

two-dimensional (2D) and 3D molecular representations as linguistic expressions, 

combining them through full-dimensional representations and pre-training the model 

on a vast dataset encompassing tens of millions of drug-like molecules. This token-

only approach enables the model to comprehensively understand the 2D and 3D 

characteristics of large-scale molecules. Subsequently, we fine-tune the model using 

pair-wise structural data of protein pockets and molecules, followed by reinforcement 

learning to further optimize the biophysical and chemical properties of the generated 

molecules. Experimental results demonstrate that 3DSMILES-GPT generates 

molecules that comprehensively outperform existing methods in terms of Vina 

docking score, drug-likeness (QED), and synthetic accessibility score (SAS). Notably, 

it achieves a 33% enhancement in the quantitative estimation of QED, meanwhile the 

Vina score maintaining its state-of-the-art performance. The generation speed is 

remarkably fast, with the average time approximately 0.45 seconds per generation, 

representing a threefold increase over the fastest existing methods. This innovative 

approach highlights the potential of 3DSMILES-GPT to revolutionize the generation 

of drug-like molecules, pushing the boundaries of 3D molecular generation in the drug 

discovery process. 
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Introduction 

In recent years, deep generative models have attracted extensive attention, 

demonstrating remarkable advancements across diverse domains, ranging from 

natural language processing to video synthesis. These models exhibit remarkable 

proficiency in encoding and synthesizing data within continuous domains. However, 

as the focus shifts towards more intricate and discrete data types, notably chemical 

molecules, there is a growing emphasis on developing generative models capable of 

generating authentic and efficacious data within these realms. The progression of deep 

generative models has spurred the development of various methodologies aimed at 

tackling the challenge of molecular generation, offering a promising avenue for 

innovative drug molecule design. 

During earlier periods, ligand-based molecular generation (LBMG) gained 

significant popularity. These methodologies can be categorized into two primary types 

based on how generated molecules are represented: graph-based molecular generation 

and sequence-based molecular generation. The fundamental principle involves 

representing molecules as graphs or sequences, thus framing the generation task as 

either a graph structure generation or natural language generation problem. 

Techniques such as Bayesian optimization (BO) and reinforcement learning are 

employed to guide the model in generating the desired drug molecules. 

Molecules inherently possess structures resembling graphs, rendering it intuitive 

to express their information graphically. Consequently, methods for molecular design 

grounded in graph representations and traditional heuristic algorithms have long 

been established. For example, Brown et al. devised a molecular optimization 

algorithm based on molecular graphs by employing genetic algorithms in 20041, while 

in 2013, Virshup et al. introduced the ACSESS algorithm2. With the progression of 

graph neural networks (GNN) in recent years, these networks have exhibited 

remarkable adaptability across diverse challenges rooted in graph-structured data. 

DeCao et al. pioneered the integration of GNN for drug design with their 2018 

proposal of MolGAN3, thereby forging novel pathways in molecular design. As graph-

based methodologies continue to advance rapidly, an escalating number of researchers 
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are capitalizing on molecular graph representations for drug design4-8. 

When compared to GNN-driven strategies for molecular synthesis, sequence-

based methodologies offer a more succinct avenue. This stems from the fact that 

chemical compounds can be effectively represented through chemical languages such 

as the Simplified Molecular Input Line Entry System (SMILES)9 or SELFES10, which 

mirror the structure of natural language. Consequently, a plethora of scholarly works 

on molecular design have proposed frameworks based on recurrent neural networks 

(RNNs) or transformer11. In 2016, ChemVAE amalgamated variational autoencoders 

(VAEs) with BO to explore the latent state space in search of molecules with desired 

attributes12. In 2017, Olivecrona et al. harnessed reinforcement learning to fine-tune 

the generation process of RNN-based molecules, yielding structures similar to 

specified ones or possessing predetermined activities13. In 2021, Wang et al. shifted 

towards a transformer decoder instead of RNNs for generation, combining knowledge 

distillation and reinforcement learning to develop MCMG14. Over time, a variety of 

sequence-based molecular generation methodologies have emerged.15-26. 

However, 2D molecular generation exhibits a significant limitation since these 

techniques neglect the crucial 3D structural complementarity between protein pockets 

and molecules. Given the pivotal role of ligand-protein conformational selection in 

drug design, evaluating such complementary features requires an understanding 

grounded in the intrinsic 3D structures of protein pockets and molecules. 

Consequently, there has been emerging interest in 3D structure-based molecular 

generation. 

With the advent of deep geometric learning, numerous studies on autoregressive 

3D molecular generation have surfaced. For instance, Gebauer introduced G-SchNet27, 

an autoregressive deep neural network that generates diverse small organic molecules 

by sequentially positioning atoms in Euclidean space. Subsequently, models such as 

LiGAN28, GraphBP29, SBDD30, and Pocket2Mol31 have been developed to directly 

generate molecules within pockets32-35. However, autoregressive methodologies are 

susceptible to error accumulation, which has spurred the exploration of diffusion-

based 3D molecular generation approaches36-39. These methods facilitate the 
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simultaneous generation of entire molecules, rather than sequentially producing atoms. 

So far, these strategies have yet to effectively capture the distribution of chemical 

bonds, leading to the creation of impractical molecular structures. 

The 3D molecular generation methods discussed above primarily rely on GNN. 

While language models (LMs) effectively extract abundant 2D molecular insights 

from extensive drug-like datasets during 2D molecular design, their ability to 

represent continuous 3D molecular architectures remains limited. However, with the 

recent proliferation of large-scale language models (LLMs), numerous studies suggest 

that LLMs can adeptly acquire continuous numerical representations. Born et al. 

presented the Regression Transformer40, which accomplishes unified regression and 

prediction tasks by encoding numerical values as tokens. Furthermore, Flam-

Shepherd et al. utilized Cartesian coordinates xyz token to represent the 3D structures 

of molecules41. Both methodologies have shown promising effectiveness in their 

respective drug design endeavors. Recently, Feng et al. proposed Lingo3DMol42, a 

fragment-based LM-centric 3D molecular generation model, which exhibits 

promising performance surpassing that of graph network-based models during their 

benchmark assessments. Notably, BindGPT43, a decoder-only language model has 

demonstrated remarkable success in pocket-conditioned generation of 3D molecules. 

This approach aligns closely with the objectives of our research and serves as 

concurrent work that showcases similar methodologies.  

The aforementioned endeavors highlight the adeptness of LMs in discerning 

intricate details pertaining to the inherent 3D structural characteristics of molecules. 

Compared to the complex diffusion and GNN-based methods for molecular generation, 

autoregressive approaches grounded in LMs offer simpler and more efficient training 

processes. Moreover, token-only paradigms seamlessly integrate with existing 

universal LLMs. Consequently, we explore the feasibility of employing a simpler and 

more explicit method to delineate the structural features of molecules and protein 

pockets. Based on this foundational understanding, we affirm the capacity of LLM to 

apprehend pertinent positional cues associated with molecules and protein pockets. 

Herein, we present 3DSMILES-GPT, an innovative token-only framework designed 
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for explicit 3D molecular generation, firmly rooted in LLM. As shown in Fig. 1, the 

architectural blueprint of 3DSMILES-GPT centers on a transformer decoder. By 

framing the task of generating 2D and 3D structures as a natural language generation 

endeavor, 3DSMILES-GPT encodes atomic 3D coordinates as tokens, facilitating the 

acquisition of molecular 2D and 3D information. To maximize the intrinsic 

capabilities of LMs, our methodology begins with the pretraining phase of 

3DSMILES-GPT using an extensive dataset with drug-like molecules. After fine-

tuning on a specified protein-ligand dataset, we integrate surface atomic coordinates 

from pockets along with ligand molecules. Furthermore, to enhance the model’s 

ability to extract information from protein pockets, we introduce a protein encoder as 

a detachable modular component. Furthermore, the application of reinforcement 

learning methodologies enables the refinement of generated molecules across a 

diverse range of properties. The experimental results demonstrate that, compared to 

existing state-of-the-art (SOTA) methodologies, 3DSMILES-GPT achieves optimal 

performance across 8 out of 10 benchmark metrics including bioactivity, drug-likeness, 

and synthetic accessibility. Moreover, the targeted case studies on 5 distinct protein 

targets further elucidate its efficacy in generating drug-like molecules with robust 

binding strength in practical scenarios. 

 

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2 ORCID: https://orcid.org/0000-0002-0185-7570 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2
https://orcid.org/0000-0002-0185-7570
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 1 | The overview of 3DSMILES-GPT. 

 

Results 

The competency of language models in generating 2D molecular configurations is 

undeniable, owing to their adeptness in processing discrete data. By utilizing chemical 

languages like SMILES as input, these models demonstrate proficiency in acquiring 

knowledge of the inherent 2D topological arrangements of molecules. However, the 

pivotal question remains whether language models can effectively capture the 

distribution of continuous data, including molecular conformations. Thus, in this 

segment, we begin by assessing the quality of conformations generated by 

3DSMILES-GPT. Subsequently, we conduct an analysis of the properties and binding 

efficacy of the generated molecules. Finally, we evaluate the generalization capacity of 

3DSMILES-GPT with respect to specific drug targets. 

 

Quality of generated conformation 

A significant challenge in DL-based molecular generation is the frequent production 

of non-physically plausible structures, an issue further magnified in existing token-

only LLM-based methodologies. This limitation stems from the inherent difficulty that 
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token-only LLM-based approaches face in effectively processing continuous data, 

often leading to the generation of non-physical conformations. Addressing this critical 

concern, we aim to identify molecules that exhibit physical conformations. Building 

upon this premise, we delve into further exploration involving enhanced molecular 

affinity and desirable drug-likeness, taking into consideration the protein pocket as a 

constraint. In this aspect of assessment, distinct from mere generation of conformers, 

our focus lies predominantly on the physical plausibility of the generated molecules 

within the pocket.  

For molecules bound within protein pockets, each type of bond lengths exhibits a 

robust distribution due to the constrained degrees of freedom resulting from lower 

flexibility. These bond lengths do not vary significantly across different constrained 

pockets. To evaluate the performance, we compared the distributions of some common 

bond lengths between the generated molecules and training molecules across various 

types of chemical bonds, using the Jenson-Shannon divergence (JSD)44 as a 

quantification metric. We categorized the data based on the types of chemical bonds to 

visualize the distributions of bond lengths (Fig. 2a). It shows that our method 

maintains a most balanced overall performance with no significant weaknesses across 

all types of bonds, namely, no JSD values smaller than 0.4. In the first two groups 

shown in Fig. 2a, which include bonds with carbon atoms that form the basic skeleton 

of drug molecules, 3DSMILES-GPT generally achieved suboptimal results, slightly 

inferior to TargetDiff, a SOTA method based on diffusion models. Positively, with 

respect to chalcogen-related chemical bonds, our model achieved the best results for 

most of these bonds, showing its robustness. These bonds occur less frequently in drug 

molecules compared to other categories, but they remain crucial in key functional 

groups such as nitro and sulfonic groups, which are often found in antibacterial drugs. 

The success of 3DSMILES-GPT in these bonds is likely attributable to the GPT 

model’s capability to retain and recall information from scarce samples, allowing it to 

accurately reproduce the relative positions of atoms in molecules containing these 

relatively rare groups. 

As shown in Table S1 in more detail, our model achieves the best performance in 

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2 ORCID: https://orcid.org/0000-0002-0185-7570 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2
https://orcid.org/0000-0002-0185-7570
https://creativecommons.org/licenses/by-nc-nd/4.0/


over one-third of the bond length types and demonstrates comparably close to or 

superior performance in other bond length types compared to other models. On a 

global scale, our model’s predictive capability for bond lengths in pocket generation 

tasks still lags behind TargetDiff, This discrepancy may be attributed to potential 

forgetting phenomena in transfer learning. The results indicate that, when compared 

to other methods specifically designed for pocket generation tasks utilizing GNNs or 

language models, the performance of our model is essentially equivalent and, in some 

instances, even superior. This finding underscores that using atomic coordinates as 

tokens for prediction can effectively reproduce the distributions of molecular bonds.  

 

 
Fig. 2 | (a) The Jensen-Shannon Divergence (JSD) of common chemical bond lengths 

between 3DSMILES-GPT and other models, compared to reference molecules. For 

ease of visual comparison, the values are presented as 1-JSD, where values closer to 1 

indicate better performance. (b) The performance on each metrics and the overall pass 

rate of each model tested with PoseBusters. 

 

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2 ORCID: https://orcid.org/0000-0002-0185-7570 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2
https://orcid.org/0000-0002-0185-7570
https://creativecommons.org/licenses/by-nc-nd/4.0/


For a broader assessment, we employed PoseBusters45, a suite designed to examine 

the physical and chemical inconsistencies in docking and molecular generation. It 

offers diverse metrics for inspecting potential errors in molecular conformations. Thus, 

we aim for our generated molecules to achieve high pass rates across those all metrics 

evaluating validity, sub-structure and stereochemistry plausibility, rather than 

excelling solely in specific ones. As shown in Figure 2b and Table S2, our model 

consistently achieves over an 85% pass rate across multiple metrics, indicating that 

the majority of generated molecules adhere to the physical and chemical plausibility 

as observed in natural states. In contrast, other models such as Lingo3DMol and 

TargetDiff, while achieving optimal performance in individual metrics, exhibit subpar 

performance in certain specific metrics like bond angles or steric clashes, with pass 

rates ranging from 50% to 70%. Compared to Pocket2Mol, our model performs almost 

equally well across multiple metrics, achieving a pass rate of over 90% in various 

independent metrics.  

In addition, while Pocket2Mol generated molecules with low molecular weights, 

molecules generated by 3DSMILES-GPT whose molecular weights were closer to the 

reference (reported real active molecules), thereby better aligning with the 

requirements of real-world drug discovery scenarios (Table 1). Consequently, our 

superior performance across various metrics and the overall higher pass rate with 

PoseBusters underscore the robustness and applicability of our approach. In 

conclusion, 3DSMILES-GPT demonstrates commendable performance in generating 

molecular conformations. 

 

Molecular properties and binding mode 

Initially, an assessment was conducted to evaluate the binding strength of the 

generated molecules by scoring them directly using AutoDock Vina with Vina score 

(kcal∙mol-1). As shown in Table 1, it was observed that 3DSMILES-GPT achieved 

notably higher average Vina scores compared to other baseline methods, even 

surpassing those of genuine molecules.  

Molecules with large size are more likely to occupy protein pockets, leading to 
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higher Vina scores. This phenomenon emphasizes the importance of considering the 

physicochemical properties of generated molecules comprehensively. As 

demonstrated by Feng et al.42, certain large, multi-ring structured molecules are 

unsuitable for many cases of drug development. Therefore, a thorough evaluation of 

the generated molecules is essential. An examination of Table 1 indicates that the 

molecules generated by our model align more closely with authentic molecules in 

terms of molecular weight compared to other baseline methods. Regarding molecular 

size, TargetDiff closely resembles authentic molecules, exhibiting similar 

characteristics with our model. Conversely, the molecules generated by Pocket2Mol 

and Lingo3Dmol display undersized and oversized dimensions, respectively, in both 

molecular size and weight. 

 

Table 1 | Binding energies and drug-likeness properties. 

Metrics Ref. Pocket2Mol TargetDiff Lingo3DMol 3DSMILES-GPT 

Mean Vina score (↓) -7.45 -7.15 -7.11 -7.68 -7.72 

Mean QED (↑) 0.48 0.57 0.57 0.26 0.76 

Mean SAS (↓) 3.43 3.16 4.33 4.51 3.07 

Drug-like molecules % (↑) 74% 94% 81% 30% 100% 

Mol Size 22.75 17.74 22.65 40.68 23.71 

Mol Weight 332.35 241.25 298.41 480.50 329.10 

Validity (↑) - 1.00 0.97 0.99 0.99 

Diversity (↑) - 0.96 0.96 0.92 0.89 

BR % (↑) - 48% 48% 58% 53% 

BR-QED (↑) - 0.56 0.59 0.27 0.76 

BR-SAS (↓) - 3.52 4.78 4.51 3.10 
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Time/s (↓) - 13.63 12.19 1.32 0.45 

 

Subsequent analyses involved a comparison of the SAS and QED of the generated 

molecules. As shown in Table 1, our model demonstrates significant advantages in 

both QED and SAS metrics compared to alternative pocket-aware molecular 

generation approaches. Notably, our model exhibits an approximate 33% 

improvement in QED performance over the top-performing baseline, Pocket2Mol. 

This highlights the superior drug-like characteristics of the molecules generated by 

3DSMILES-GPT, thereby enhancing their potential pharmaceutical utility. 

Furthermore, when compared to other baseline models, the molecules generated by 

3DSMILES-GPT also demonstrate higher SAS values, indicative of improved 

synthetic feasibility. Additionally, in comparison to other methodologies, our 

approach demonstrates a superior molecular generation speed, of only 0.45s per 

generation, as evaluated using an NVIDIA Tesla V100 GPU. 

To further explore the interplay among the QED, SAS, and various other 

molecular properties, we utilized heatmap visualization (Fig. 3). Fig. 3a illustrates the 

relationship between the quantity of molecules and their corresponding QED and SAS 

values. Notably, a substantial proportion of molecules generated by 3DSMILES-GPT 

cluster in the bottom-left quadrant, indicating a prevalence of molecules exhibiting 

heightened QED and diminished SAS compared to other models. Furthermore, we 

investigated the influence of molecular weight on this relationship, revealing that the 

molecules generated by Pocket2Mol, characterized by elevated QED and reduced SAS, 

tend to possess smaller molecular weights (Fig. 3b). Subsequently, we explored the 

correlation between the Vina scores and QED/SAS. As depicted in Fig. 3c, the 

notably lighter coloration in the bottom-left quadrant for 3DSMILES-GPT indicates 

lower Vina scores and, consequently, reduced binding energies. 
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Fig. 3 | The distribution heatmaps of QED, SAS, and other properties for the 

molecules generated by each model. (a) QED, SAS and number of molecules, (b) 

QED, SAS and molecular weight, and (c) QED, SAS and Vina score. 

 

In our endeavor to create molecules, our objective is to generate compounds with 

properties that surpass those of currently available ones. To assess the model’s 

effectiveness in achieving this objective, we thoroughly examined the molecules 

generated by each model, using the ground truth molecules from the test set as a 

reference point. We refer to results where the affinity is superior to the reference 

molecules as “Better than References” (BR). The analysis revealed that our model 

exhibits reduced diversity compared to others, a finding that aligns with our initial 

expectations. This decline in diversity can be attributed to the imposition of 

constraints related to physicochemical properties during the training phase of 

3DSMILES-GPT, coupled with additional restrictions on QED and logP during the 

process of molecule generation, ultimately resulting in a lower diversity of generated 

molecules. 

We quantified the number of the molecules generated by 3DSMILES-GPT that 

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2 ORCID: https://orcid.org/0000-0002-0185-7570 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-0ckgt-v2
https://orcid.org/0000-0002-0185-7570
https://creativecommons.org/licenses/by-nc-nd/4.0/


achieved lower Vina scores compared to the reference molecules. Notably, 53% of the 

molecules generated by 3DSMILES-GPT exhibited lower Vina scores compared to 

the reference molecules, while Pocket2Mol and TargetDiff achieved 48%. However, 

although the molecules generated by Lingo3DMol often exhibit higher affinity than 

the reference molecules, they tend to cluster within a narrow range according to the 

Vina scores (Fig. 3). This might be suitable for certain drug discovery tasks, but if the 

reference molecules generally have high affinity, such as with kinase targets like 

ATK1 and CDK2, the proportion of BR molecules may decrease. On the other hand, 

3DSMILES-GPT shows the ability to explore chemical space with higher affinity for 

the target, which is an advantage of our model. We also computed the average QED 

and SAS of molecules from the BR set (Table 1), consistently demonstrating that 

3DSMILES-GPT keeps superior performance, particularly in QED, with an 

improvement of approximately 33%. 

In summary, 3DSMILES-GPT demonstrates the capability to generate molecules 

with higher binding affinity and improved QED and SAS metrics. Notably, it can 

produce conformations comparable to those obtained through redocking without 

requiring the redocking process, an outstanding capability of direct generation with 

physical conformation, which is absent in other models. 

 

Structure-based drug design for specific targets 

Many reported pocket-based molecular generation methods lack testing on real 

targets outside the training set, raising doubt on their practical efficacy in real drug 

design tasks. To address this, we selected four protein targets independent from the 

training and testing sets: AKT1 (4gv1), SARS-COV2 3CL proteinase (7d3i), CDK2 

(1h00) and DDR1 (5bvk).These targets have been utilized in virtual screening46, 47 and 

molecular generation tasks33, 34, 48, allowing us to simulate real drug discovery scenarios. 

As shown in Fig. 4a, the Vina scores of the molecules generated by 3DSMILES-GPT 

in the target pockets of these four different protein families predominantly fall within 

range of -10 to -5 kcal∙mol-1. This distribution is closer to the left side of the horizontal 

axis compared to both Pocket2Mol and TargetDiff, indicating higher binding energy 
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and better affinity. Compared to Lingo3DMol, the affinity distribution of the 

molecules generated by Lingo3DMol results is concentrated between -10 and -7, with 

a greater focus on the high affinity range than 3DSMILES-GPT. However, our model 

generates more molecules in the high affinity range (Vina score ≤-10) for targets 

other than DDR1. In practical drug discovery scenarios, high affinity is not the only 

pursuit, and molecules with better drug-likeness are also needed. Therefore, we 

filtered all molecules and re-examined the distribution of the Vina scores for the 

filtered molecules (Fig. 4b). It can be observed that the distribution of the Vina scores 

for the molecules generated by 3DSMILES-GPT does not change significantly 

compared to before filtering, indicating that the vast majority of the generated 

molecules meet our drug-likeness criteria. Additionally, most high-affinity molecules 

with Vina scores smaller or equal than -10 generated by other baseline models were 

filtered out, with the majority of molecules in this range being generated by 

3DSMILES-GPT. In the virtual screening process, due to the limited number of 

molecules that can undergo activity validation, medicinal chemists typically select a 

few molecules with better docking scores for testing. 3DSMILES-GPT can generate 

molecules with both high affinity and better drug-likeness for specific targets, 

implying that the model has a promising potential to discover lead compounds that 

may achieve activity validation at the molecular or cellular level in practical drug 

discovery applications. 
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Fig. 4 | The distributions of Vina scores for the specific targets. (a) The 

distribution of all generated molecules for each model. (b) The distribution after drug-

likeness screening (QED≥0.3, SAS≤5). The horizontal axis to the left represents 

better affinity. 

 

Beyond affinity, the purpose of generating molecules within specific target 

pockets also involves comparing the structural and binding mode similarity of the 

generated molecules to known ligands. As shown in Fig. 5, we selected the highest 

affinity molecules generated by each model to demonstrate their binding modes. 

Among the baseline models, Pocket2Mol and TargetDiff tend to generate either 

simple aromatic ring derivatives or complex macrocyclic compounds, lacking distinct 

target specificity. The molecules generated by Lingo3DMol are excessively large 

compared to the original ligands, consistent with the average molecular weight of 480 

Daltons obtained in the test set results. Furthermore, in the case of molecule within 

the CDK2 pocket, there are issues of fragmentation and clash with the protein pocket. 

Compared to other baseline models, the molecules generated by 3DSMILES-GPT 

exhibit more reasonable structures, and their binding modes within the pocket are 

relatively close to those of the original ligands. However, in the DDR1 pocket, the 

binding modes of the molecules are more exterior compared to that of the original 
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ligand, which may explain why 3DSMILES-GPT does not show a significant 

advantage in affinity for the DDR1 target over other baseline models.  

Overall, the tests on specific target pockets demonstrated that 3DSMILES-GPT, 

compared to previous baseline models, can generate more molecules that meet drug-

likeness criteria with high affinity for the target, while also exhibiting more reasonable 

structures and higher structural specificity for different targets. 

 

Fig. 5 | The binding modes of the molecules with optimal affinity generated by 

each model for specific targets, and the comparison with the binding modes of 

the original ligands. 

 

Conclusion 

In this study, we present 3DSMILES-GPT, an innovative token-only pocket-aware 

molecular generation method for creating 3D molecular structures within protein 

pockets. This method leverages the robust capabilities of large language models to 
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perceive and generate molecular structures that are not only chemically valid but also 

exhibit optimal biophysical and chemical properties. 3DSMILES-GPT exhibits 

exceptional performance across various benchmark metrics, outperforming existing 

methods in generating molecules with superior Vina docking scores and enhanced 

drug-likeness. Notably, the QED of the generated molecules improves by 33%, 

indicating that our model produces molecules more closely aligned with the 

pharmaceutical industry’s criteria for drug candidates. Furthermore, 3DSMILES-

GPT achieves a threefold increase in generation speed compared to the fastest existing 

methods, fulfilling the demand for rapid identification of drug candidates. Out-of-

dataset evaluations validate the model’s capability to generate drug-like molecules 

with strong binding affinities to specific targets, highlighting its potential in real-

world drug discovery applications. Leveraging the foundation of 3DSMILES-GPT, 

future efforts will focus on developing a universal drug design language model by 

integrating advanced large model techniques with comprehensive training data. In 

summary, 3DSMILES-GPT signifies a paradigm shift in molecular generation for 

drug discovery, leveraging the capabilities of large language models to tackle complex 

biological challenges. 

 

Methods 

Backbone 

The architecture of 3DSMILES-GPT comprises an 8-layer transformer decoder with 

12 attention heads, facilitating the autoregressive prediction of both 2D and 3D 

molecular structures while explicitly expressing them. The multi-head attention 

mechanism serves as a cornerstone of the Transformer model, allowing the model to 

attend to different subspaces of the input simultaneously, thus capturing richer 

information. Within the multi-head attention mechanism, each attention head learns 

a set of weights to compute attention weights for different positions in the input 

sequence, which are then used to weigh the input sequence representations. By 

performing parallel computation across multiple attention heads, the model gains the 

ability to interpret input sequences from various perspectives, thereby enhancing its 
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representational capacity and generalization performance. The attention mechanism 

is shown in Equation 1: 

���������(�, �, �) = softmax �
���

���
��. (1) 

where �, �, and � represent the query, key, and value matrices, respectively, and �� is 

the dimension of �.  

 

Detachable pocket encoder 

To augment the extraction of protein pocket information, a detachable pocket encoder 

has been devised. We implemented a spatial positional encoding strategy proposed by 

Zhou et al.49, which based Gaussian kernel to describe the atomic relative positions. 

The D-dimensional positional encoding between atom pairs can be expressed by the 

following equation: 

��� = ��������, ���; �, ��, ��, ����� ∈ [1, �]�. (2) 

where � denotes Gaussian density function ： 

�(�, �, �) =
1

�√2�
��(���)�

��� . (3) 

� represents the affine transformation parametrized with �, �: 

�(�, �; �, �) = ��� + ��. (4) 

Therefore, the information of � and � can be computed as: 

��� = ��GELU�������, (5) 

where �� and �� are learnable parameters. Ultimately, the integration between the 

pocket encoder and the backbone is achieved through cross-attention. 

 

Reinforcement learning 

The utilization of reinforcement learning to enhance sequence-based molecular 

generation models, such as REINVENT13, is a well-established practice. However, its 

application to the specific task of generating 3D molecules in protein pockets remains 

relatively uncommon. By simplifying the intricacies of 3D molecular generation and 
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representing molecular coordinates as tokens, we facilitate the direct adoption of 

methodologies akin to REINVENT for refining the generated molecules. Nevertheless, 

within this context, we opt for a more explicit strategy entailing multiple iterations 

employing policy gradient50 techniques to refine the model.  

In the present context, ��(�|�) denotes the initial policy governing our model, 

with � representing the protein pocket and � signifying the molecule. Simultaneously, 

�� stands for the initial fine-tuning dataset. At each iteration, � molecules are sampled 

for every protein pocket, with those demonstrating favorable properties being 

incorporated into the fine-tuning dataset ��  at the �  time step for subsequent 

iterations. Throughout each fine-tuning iteration, policy gradient methods are 

employed to iteratively refine the policy ��(�|�) of the model. 

 

Dataset and data preprocessing 

The pretraining phase encompassed a selection of 10 million molecules from the 

PubChem drug dataset51, excluding those exceeding 48 atoms or containing elements 

beyond ‘C’, ‘O’, ‘N’, ‘S’, ‘P’, ‘F’, ‘Cl’, ‘Br’, and ‘I’. Each molecule underwent stereoisomer 

enumeration using RDKit, followed by the generation of two conformations per 

stereoisomer, subsequently minimized using the MMFF94 force field. Conformational 

centering involved the subtraction of the coordinate center from each conformation. 

For fine-tuning, the Crossdocked202052 dataset was employed following the 

Pocket2mol methodology, with poses featuring rmsd greater than 2 Å discarded. A 6 

Å residue perimeter surrounding the ligand was isolated as pocket data, and the 

coordinates of the pocket surface were computed utilizing the MSMS53. The resultant 

coordinates underwent sparsification via pymesh.  

Further data processing was conducted to meet the model’s input requirements. 

Initially, the QED and logP (partition coefficient) values were computed. Molecules 

with QED exceeding 0.5 or logP values falling between -1 and 3 were assigned a label 

of 1, while those outside these ranges were labeled as 0. During the fine-tuning phase, 

we employed a similar approach to label the training data and augmented it with Vina 

score labels. Molecules with a Vina score less than -0.75 were labeled as 1, while those 
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with a score equal to or greater than -0.75 were labeled as 0. 

For the 2D molecular structure representation, SMILES notation was utilized, 

with SMILES sequences encoded at the character byte level instead of byte-level 

tokenization54. The initial vocabulary comprised 72 characters extracted from the 

SMILES alphabet. Following tokenization, it was segmented into 1000 most 

commonly encountered tokens. 

To address 3D molecular structures, data augmentation techniques were 

employed to instill three-dimensional equivariance into the model. This entailed 

random translation and rotation of the 3D structures, with each coordinate 

represented by a distinct token. 

 

Baseline 

We have selected SOTA models that represent three distinct approaches for pocket 

generation: Pocket2Mol31, an autoregressive model based on GNN. TargetDiff, which 

adopts diffusion-based methodologies for one-shot generation. Lingo3DMol42, rooted 

in language models. Pocket2Mol and TargetDiff underwent training utilizing the 

CrossDocked2020 dataset, whereas Lingo3DMol was initially pretrained on a dataset 

consisting of 12 million drug-like molecules, followed by fine-tuning on the 

PDBbind202055 dataset. For the evaluation in this study, we directly employed the code 

and pretrained models provided by the respective works. 

 

Training and generation protocol 

In the training phase, we prefixed the molecular QED and logP labels to the SMILES 

string, and appended the corresponding atoms’ coordinates to smiles tail. Coordinates 

between identical atoms were delineated by commas, while those between distinct 

atoms were enclosed within curly braces. In the fine-tuning stage, we converted the 

processed coordinates of the protein pocket surface into a prefix-form input string, 

allowing the model to comprehend the ligand coordinate boundaries. The sequence’s 

start and end were indicated by ‘<s>’ and ‘</s>’ tokens, respectively. Throughout the 

training regimen, we adopted a self-supervised methodology to acquaint the model 
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with the SMILES and coordinates strings of molecules. The primary optimization 

objective entailed minimizing the negative log-likelihood, as described in Equation 6: 

ℒ = −�log �
�

���

(��|���). (6) 

This objective was accomplished by iteratively refining the loss function through 

gradient descent until convergence. 

In the generation stage, we combined the processed protein pocket information 

with the specified molecular properties, forming the input for the model. The 

autoregressive process for generating smiles and coordinates strings follows Equation 

7: 

�(�) = ��(��|���)
�

���

. (7) 

 

Data availability 

The datasets utilized in our study are as follows: PubChem dataset is available at 

https://pubchem.ncbi.nlm.nih.gov/. For pocket-based molecular generation dataset is 

provided at 

https://drive.google.com/drive/folders/1CzwxmTpjbrt83z_wBzcQncq84OVDPurM.  

 

Code availability 

The code used in the study is publicly available from the GitHub repository: 

https://github.com/ashipiling/GPT_3DSMILES.  
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Supplementary Information 

Table S1 | Jensen–Shannon divergence (×10−3) between the bond length  

Bond Pocket2Mol TargetDiff Lingo3DMol 
3DSMILES-

GPT 

C-C 0.4422 0.3035 0.4062 0.4285 

C=C 0.3091 0.2014 0.5038 0.3994 

C#C 0.7276 0.6726 0.7048 0.577 

C:C 0.4273 0.199 0.411 0.4711 

C-N 0.3251 0.2419 0.4 0.4183 

C=N 0.3776 0.1597 0.6044 0.4086 

C#N 0.7487 0.6514 0.5625 0.4789 

C:N 0.4186 0.1315 0.4128 0.4596 

N-O 0.3743 0.3997 0.6086 0.4234 

N=O 0.5625 0.6684 0.7832 0.5534 

C-O 0.3272 0.2997 0.4084 0.409 

C=O 0.4604 0.4006 0.4992 0.4796 

C:O 0.5066 0.4483 0.486 0.4805 

C-F 0.4775 0.3141 0.4882 0.4769 

C-S 0.5076 0.3349 0.2188 0.2164 

C=S 0.5684 0.5845 0.8325 0.5128 

C:S 0.4105 0.388 0.3368 0.3084 

O-S 0.8054 0.3567 0.7434 0.6134 
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O=S 0.6534 0.6987 0.7126 0.4556 

C-Cl 0.3652 0.3433 0.1766 0.2284 

 

Table S2 | The performance in PoseBusters benchmark. 

Metrics 
All atoms 

connected 

Bond 

lengths 

Bond 

angles 

Internal 

steric 

clash 

Aromatic 

ring 

flatness 

Double 

bond 

flatness 

Internal 

energy 

Overall 

pass Rate 

Ref. ≈1.00 1 1 0.95 1.00 ≈1.00 1 0.95 

Pocket2Mol 1 0.92 0.99 0.99 0.99 0.99 0.97 0.86 

TargetDiff 1 0.99 0.75 0.92 1 1 0.74 0.50 

Lingo3DMol 1 0.91 0.55 0.59 0.99 ≈1.00 0.58 0.17 

3DSMILES-

GPT 
1 0.98 0.98 0.97 ≈1.00 1 0.92 0.86 
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