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Abstract

The inherent randomness of polymers has long posed challenges for their representa-

tion learning in polymer machine learning (ML). The Simplified Molecular-Input Line-

Entry System (SMILES) notation, which has excelled in small molecule research, un-

fortunately, struggles to flexibly capture the complexity of polymer structures, such as

random block copolymers. Recently, BigSMILES and its extensions have paved the way

for more accurate descriptions of polymer structures. However, whether BigSMILES

outperforms SMILES in polymer ML workflows has yet to be systematically explored

and demonstrated. To fill this scientific gap, we conducted extensive experiments in-

vestigating this question, encompassing a variety of polymer property prediction and

inverse design tasks based on both image and text inputs. Our findings reveal that

in 11 tasks involving homopolymer systems, BigSMILES-based ML workflows exhibit
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performance comparable to or even exceeding that of SMILES, underscoring the utility

of BigSMILES in representing polymer structures. Furthermore, BigSMILES offers a

more compact textual representation compared to SMILES, significantly reducing the

computational cost of model training, particularly for large language models. Through

these comprehensive experiments, we demonstrate that BigSMILES can achieve perfor-

mance on par with SMILES, while also facilitating faster model training and reducing

energy consumption, which could have a substantial impact on a wide range of poly-

mer tasks in the future, including property prediction (and classification) and polymer

generation across various polymer types.

Introduction

Machine learning (ML) methods have proven their efficiency and effectiveness in advancing

grand sustainable goals, such as accelerating molecular and materials discovery.1 In recent

years, a series of studies have focused on representation learning of materials to achieve

higher accuracy in ML predictions.2–8 Initially, scientists predominantly utilized descriptors

calculated from cheminformatics tools, such as RDKit9 and Mordred.10 These numerical de-

scriptors can be directly used as inputs for conventional ML models like Random Forest and

Gaussian Process.11,12 However, these descriptors are often atom- or bond-specific, making

it difficult to capture both short-range and long-range interactions within molecules. Conse-

quently, graph neural networks (GNNs) have garnered increasing attention in the molecular

field.13–17 Through graph convolution operations, GNNs extend the model’s learning from

the atomic and bond levels to the functional group level, extracting functional group-level

descriptors, thereby achieving high-dimensional molecular representations.

Yet, with the exponential growth of molecular data,18–20 descriptor-based and graph-

based models have revealed potential storage issues, as representing a single molecule often

requires hundreds or even thousands of descriptors, which could result in a breakdown in ac-

cess to and storage of molecular data, especially in mobile personal computers. As a remedy,
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textual representations of molecules can perfectly distinguish and record different molecular

structures with minimal memory requirements. The textual representation of molecules is

not a recent innovation. As early as 1988, Weininger ingeniously invented the Simplified

Molecular-Input Line-Entry System (SMILES)21 to represent molecular structures, which

has since been widely adopted by the scientific community. There emerged other textual

notations including the SYBYL Line Notation (SLN),22 the Modular Chemical Descrip-

tor Language (MCDL),23 and the International Chemical Identifier (InChI).24 Benefiting

from the recent surge in text processing capabilities powered by Transformer-based models,

text-based, especially SMILES-based, molecular property prediction models have received

unprecedented attention and development.25–28 The success of these models demonstrates

the potential to extract high-dimensional, complex chemical information from textual rep-

resentations.

To extend the functionality of molecular textual representations, such as SMILES, to

the polymer domain, Ma et al. introduced the use of "*" symbols in SMILES to denote

polymerization points within polymers, leading to the development of Polymer-SMILES (p-

SMILES).29 This concept has been widely adopted by polymer scientists. To more effectively

capture the randomness and complexity of polymers, Lin et al. proposed BigSMILES,30

a comprehensive and systematic representation method capable of describing any polymer

structure, overcoming the limitations of other text-based polymer representations. Due to its

powerful features, BigSMILES has been highly anticipated by the polymer community31–34

and has become the default representation method in polymer databases such as the recently

Community Resource for Innovation in Polymer Technology (CRIPT).35 However, the per-

formance of BigSMILES in polymer ML remains underexplored, leaving a gap between its

theoretically powerful capabilities and its practical applications.

In this work, we aim to benchmark the performance of BigSMILES in polymer ML

pipelines, comparing its relative advantages or potential disadvantages to SMILES (or p-

SMILES). Since current cheminformatics tools have yet to integrate BigSMILES, it is not
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possible to compute descriptors using BigSMILES, and therefore, we are unable to include

descriptor-based tasks in this comparison. Our study explores typical input types including

binary images induced by BigSMILES and using BigSMILES strings. We evaluated these

in convolutional neural networks (CNNs), deep neural networks, and large language models

(LLMs), focusing on polymer property prediction and molecular generation tasks.

Our extensive results demonstrate that BigSMILES encapsulates sufficient polymer chem-

istry information, enabling ML models based on BigSMILES to achieve prediction accuracy

that matches or even surpasses that of SMILES-based models. Surprisingly, in tasks involv-

ing LLMs, BigSMILES led to faster training speeds, which is a welcome benefit given the

ever-growing volume of polymer data. By utilizing BigSMILES, we can complete polymer

modeling tasks in shorter times and with lower energy consumption. This work bridges the

knowledge gap in the polymer community regarding the performance of BigSMILES in ML

tasks, providing objective evidence of BigSMILES’ role in polymer ML. As polymer data

continues to proliferate, the reduced memory usage and faster training speeds offered by

BigSMILES are likely to bring significant value to a wide range of polymer tasks.

Results and discussion

Conventional ML models or deep learning models are typically used to handle tabular and

numerical data. For character-based data like SMILES and BigSMILES, there are currently

two primary approaches to directly learn polymer chemical information from these strings

(as illustrated in Figure 1). The first approach involves converting the characters into binary

images, from which CNNs can extract chemical knowledge.36,37 The second approach employs

deep learning models that can process sequence and text directly, such as recurrent neural

networks (RNNs) and long short-term memory (LSTM),38,39 and the recently leading and

rapidly evolving Transformer and LLMs.25,26,28
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Figure 1: Two approaches that textual polymer representation can be used as ML inputs.
(a) Textual polymer representation is first transformed to images and then learned by CNNs.
(b) Textual polymer representation is directly served as input of LLMs after tokenization.

Regarding the first approach, we used binary images induced by SMILES and BigSMILES

as inputs to a CNN model to predict the glass transition temperature of various polymers.

The data and model parameters were adopted from this reference.38 After 100 training

epochs, ML models based on both types of string-based polymer representations converged.

To eliminate randomness, we repeated each configuration five times, with the results pre-

sented in Figure 2. The loss function is the relative absolute error(RAE), which is the abso-

lute value of the percentage error between the predicted value and the true value relative to

the true value. After the same training, the SMILES-CNN achieved a RAE of 16.46±0.12%

on the test set, while the BigSMILES-CNN performed a comparable RAE of 16.57±0.28%.

This finding is more intuitively illustrated in Figure 2(c), where we present several random

structures and the prediction results from models based on the two representations (with

the predictions closer to the true values highlighted in bold).
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SMILES-CNN BigSMILES-CNN

Polymer Referred Tg/K
Predicted Tg/K

SMILES-CNN BigSMILES-CNN

277 345.38 278.03

233 309.34 274.46

339 315.38 278.03

(b)(a)

(c)

Figure 2: Performance comparison of SMILES (a) and BigSMILES (b) in the CNNs. (c)
shows the prediction results for three example polymers, illustrating that BigSMILES-CNN
and SMILES-CNN exhibit comparable inference performance on the test set. Detailed pre-
diction lists are provided in the Section 1 of the Supporting Information (S1).

Next, we explored the application of these two text-based polymer representations in

LLMs, as LLMs can directly take text-based data as input. We fine-tuned PolyNC, an end-

to-end polymer LLM, on nine polymer tasks. During the fine-tuning phase, the model input

was either SMILES or BigSMILES, and the output was the corresponding property value.

The nine polymer tasks included atomization energy (AE), bandgap of polymer chains (BG),

bandgap of polymer crystals (BGC), charge injection barrier (CIB), crystallization tendency

(CT), electron affinity (EA), ionization energy (IE), CO2 permeability in polymer membranes

(CO2), and glass transition temperature of polyimides (Tg). The distribution of each dataset

is shown in Figure 3. As can be seen, all datasets exhibit a fairly pronounced normal

distribution, indicating that these datasets have well-distributed data, which is beneficial for

subsequent ML modeling.
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Figure 3: Data distribution. These datasets exhibit a fairly pronounced normal distribution.

After fine-tuning with the same configurations (fine-tuning details are provided in the

Methods section), the performance of the models based on the two textual representations

is shown in Figure 4. We used the mean absolute error (MAE) of the predictions on the test

set as the evaluation metric (Figure 4(a)). It can be observed that models using BigSMILES

as the representation method exhibited performance comparable to those using SMILES,

with slightly higher MAEs across various tasks. This may be influenced by the pretraining

of PolyNC, as SMILES was used as the structural representation for polymers during the

pretraining phase.
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Figure 4: Performance of the two representation methods in fine-tuning PolyNC: (a) shows
the model’s MAE, and (b) displays the time taken for model fine-tuning (in seconds).

Remarkably, it is noteworthy that when using BigSMILES as polymer representation, the

time required for fine-tuning the model was consistently shorter than that of SMILES. By an-

alyzing the datasets corresponding to SMILES and BigSMILES, we found that BigSMILES

can represent polymer structures with fewer tokens. For example, as shown in Figure 5,

after encoding by PolyNC’s encoder, the SMILES-based representation required 27 tokens,

whereas the BigSMILES-based representation needed only 24 tokens. The reason lies in

BigSMILES’ ability to convey polymer connectivity information with fewer tokens (high-

lighted in red in the figure). This ability and superiority are especially significant for large

datasets, where shorter training times translate to lower energy consumption and faster

model iteration.
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Item SMILES BigSMILES

Representation [*]Oc1ccc(Cc2ccc([*])cc2)cc1 {<Oc1ccc(cc1)Cc2ccc(cc2)>}

Tokens

'▁[', '*', ']', 'O', 'c', '1', 'c',

'c', 'c', '(', 'C', 'c', '2', 'c', 'c',

'c', '(', '[', '*', ']', ')', 'c', 'c',

'2)', 'c', 'c', '1'

'▁', '{<', 'O', 'c', '1', 'c', 'c',

'c', '(', 'c', 'c', '1)', 'C', 'c', '2',

'c', 'c', 'c', '(', 'c', 'c', '2)', '>',

'}'

Length of Tokens 27 24

Figure 5: Encoding details of SMILES and BigSMILES using PolyNC’s encoder. BigSMILES
represents polymer structures with fewer tokens.

We also explored the performance of BigSMILES in polymer generation tasks. The

training details of the model were consistent with our previously trained SMILES-based

polymer generation model, PolyTAO,20 with the only difference being the substitution of

SMILES with BigSMILES. Using data from PI1M,29 we trained a polymer generation model

based on BigSMILES. However, this model exhibited a lower capability in generating valid

BigSMILES structures. This may suggest that while BigSMILES represents polymerization

sites with fewer tokens, the chemical information conveyed by this representation is weaker

than that of p-SMILES. Further research is required to address this, including but not

limited to refining the syntax of BigSMILES and developing a custom tokenizer specifically

for BigSMILES.

Discussion and Conclusion

In this concise and timely study, we systematically explored the performance of SMILES and

BigSMILES, two polymer representations, across multiple polymer ML tasks. We found that
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BigSMILES exhibits performance comparable to SMILES. Although BigSMILES slightly

underperforms SMILES in some tasks, its ability to succinctly describe complex polymer

structures is a distinct advantage that SMILES lacks. Future efforts should focus on re-

fining the syntax rules of BigSMILES to enhance its richness in polymer chemical infor-

mation. As polymer ML ventures into uncharted territories, the limitations of SMILES in

representing polymer structures increasingly constrain its utility and scope. Consequently,

polymer ML pipelines based on BigSMILES are likely to attract greater attention and

adoption among polymer scientists, with BigSMILES’ functionality progressively improv-

ing—especially through its integration into cheminformatics tools for descriptor computa-

tion.

Another interesting finding of this study is that polymer ML workflows based on BigSMILES

consistently required shorter training times compared to those based on SMILES, particu-

larly in large language model scenarios. This advantage stems from the streamlined syntax

of BigSMILES. As more polymers are discovered and virtually designed, the datasets for

polymer ML training will continue to grow. Recent estimates by Li et al. suggest that

the candidate space for polyimides alone could reach nearly 2*10¹² compounds. Therefore,

using BigSMILES as a representation could significantly accelerate the construction of poly-

mer ML pipelines, whether in forward screening paradigms or inverse design paradigms. We

also adapted the SMILES-based polymer generation model PolyTAO20 and trained the first

polymer generation model based on BigSMILES, but further improvements are needed for

the model to better learn the BigSMILES syntax and generate more valid representations.

The current model is available on Hugging Face (https://huggingface.co/hkqiu/PolyT

AO-BigSMILES_Version).
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Methods

Batch Conversion to BigSMILES

At present, local chemical structure drawing tools do not yet support direct extraction of

BigSMILES. Fortunately, research groups led by Prof. Olsen and Prof. Seok have recently

developed tools to interconvert molecular structure/SMILES and BigSMILES,40,41 enabling

the acquisition of the millions of BigSMILES entries involved in this work. BigSMILES\_hom

opolymer41 can convert SMILES of homopolymers to BigSMILES, while for other polymer

structures, the structure-to-BigSMILES tool developed by Olsen et al. was utilized.40

Text-Induced Image Convolutional Neural Network

Here, we employed the optimal network parameters reported in this literature,36 comprising 2

convolutional layers, a fully-connected layer with 100 neurons, and convolutional and pooling

kernels of size (3, 3). The first convolutional layer had 256 kernels, while the second had 128

(see ref.36 for details). The shape of image is w * h, where w denotes the length of string

list and h denotes the max length of these strings. The dataset1 from this previous work,

a dataset of glass transition temperatures for polystyrenes and polyacrylates, was used for

training. The training-to-test split ratio was 0.8:0.2. The implementation was carried out

using PyTorch (version 1.12.1+cu113).

Large Language Model Fine-tuning

There are many excellent pre-trained polymer language models available, such as TransPoly-

mer,25 polyBERT,26 and PolyNC.28 Here, we chose to use PolyNC as the base model, as it is a

native end-to-end architecture that is convenient for building polymer text-description-based

property prediction models. For each fine-tuning task, we used the polymer text represen-

tations (SMILES or BigSMILES) as the model input, and the target property values as the

output.
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The hyperparameters used for the fine-tuning process are provided in Table 1. This

fine-tuning was implemented using 4 NVIDIA RTX 3090 GPUs.

Table 1: Hyperparameters during model fine-tuning.

Hyperparameter Configuration

batch_size 80

epochs 100

learning_rate 1e-5

warmup_ratio 0.2

epsilon 1e-8

Data and code availability

The training data of the CNN task can be accessed in this ref.36 The nine properties of

polymers during the fine-tuning of LLMs were collected from these references.15,17,42–45 The

PI1M dataset uesd for training the polymer generation models is publicly available at https:

//github.com/RUIMINMA1996/PI1M.

Our pre-trained model is publicly available at https://huggingface.co/hkqiu/Polym

erGenerationPretrainedModel(SMILES version) and https://huggingface.co/hkqiu

/PolyTAO-BigSMILES_Version (BigSMILES version). Any other data and code related to

reproducing the results will be provided promptly upon request.
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