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Abstract

Conjugated polymers (CPs), characterized by alternating σ and π bonds, have attracted

significant attention for their diverse structures and adjustable electronic properties. However,

predicting the optical band gap (Eexp
gap) of CPs remains challenging. This study presents a

rational model that integrates density functional theory (DFT) calculation with a data-driven

machine learning (ML) approach to predict the experimentally measured Eexp
gap of CPs, using

1096 data points. Through alkyl side chain truncation and conjugated backbone extension, the

modified oligomers effectively capture the electronic properties of CPs, significantly improving

the correlation between the DFT-calculated HOMO-LUMO gap (Eoligomer
gap ) and Eexp

gap (R2=0.51)

compared to the unmodified side-chain-containing monomers (R2=0.15). Moreover, we trained

six ML models with two categories of features as input: Eoligomer
gap to represent the extended

backbone and molecular features of unmodified monomers to capture the alkyl-side-chain effect.

The best model, XGBoost-2, achieved an R2 of 0.77 and an MAE of 0.065 eV for predicting

Eexp
gap , falling within the experimental error margin of ∼0.1 eV. We further validated XGBoost-2

on a dataset of 227 newly synthesized CPs collected from literature without further retraining.

Notably, XGBoost-2 exhibits both excellent interpolation for BT-, BTA-, QA-, DPP-, and

TPD-based CPs, and exceptional extrapolation for PDI-, NDI-, DTBT-, BBX-, and Y6-based

CPs, which are attributed to the integration of DFT methods with rationally designed oligomer

structures. For the first time, we demonstrated a novel and effective strategy combining quantum

chemistry calculations with ML modeling for accurate and efficient prediction of experimentally

measured fundamental properties of CPs. Our study paves the way for the accelerated design

and development of high-performance CPs in photoelectronic applications.
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1 Introduction

Conjugated polymers (CPs) are organic macromolecules composed of electron donor and electron

acceptor units linked by carbon-carbon bonds. The alternation of σ and π bonds along the backbone

chain of CPs enables the delocalization of π-electrons, forming a semiconductor band structure and

thus endowing CPs with exceptional optical and electronic properties.[1–3] These characteristics can

be effectively tuned through a variety of material engineering strategies, such as the combination of

various electron donator and electron acceptor aromatic units,[4, 5] halogenation,[6] the introduction

of non-covalent intra- and inter-molecular interactions,[7, 8] and modifications to alkyl side chains.[9]

Owing to their structural diversity, facile synthesis, ease of chemical modification and functionaliza-

tion, excellent photo-physical properties, and relatively low cost, CPs have been extensively explored

for a wide range of applications in optoelectronic devices, electrochemical sensors and transistors,

drug delivery systems and bio-medical applications.[10–13] So far, hundreds of thousands of CPs are

available, but the scientific community predominantly relies on a laborious trial-and-error approach

for the discovery, design, and optimization of CP materials, resulting in a substantial number of un-

explored structures. The relationships between the structures of CP materials and their electronic

properties are complex and not well understood.

The optical band gap is one of the most essential electronic properties of CP materials for their

use in photonic and electronic devices, such as organic solar cells (OSCs), organic light-emitting

diodes, and organic field-effect transistors.[14] Quantum chemistry simulations, particularly Den-

sity Functional Theory (DFT) and Time-Dependent DFT (TDDFT), are indispensable in polymer

science for predicting and rationalizing the properties of polymeric materials.[15, 16] These meth-

ods offer insights into molecular properties across both ground and excited states and facilitate

the prediction of optical gaps. While these simulations can handle sizeable molecular systems ef-

ficiently, the correlation between experimental measurements and DFT/TDDFT calculated values

often remains weak for several reasons.[17, 18] The optical band gap is the energy required for a

photon to excite an electron from the ground state to the first excited state, typically measured

using UV-Vis absorption or photoluminescence spectroscopy. These measurements incorporate all

physical effects presented in the system, such as solvent effects, vibronic coupling, and other fine

details of the electronic structure. In contrast, the DFT-calculated HOMO-LUMO gap measures

the energy required to move an electron from the highest occupied molecular orbital (HOMO) to

the lowest unoccupied molecular orbital (LUMO), ignoring the Coulombic interactions between the

excited electron and the hole, which are involved in the optical band gap. Also, the HOMO-LUMO

gap represents a vertical electronic transition and misses the relaxation transition due to interactions

of the excited states with the surrounding environment. On the other hand, the TDDFT method

calculates excited state energies based on the time-dependent response of the electronic system to

an external perturbation. The lowest excited state in TDDFT corresponds to the energy required to

promote an electron from the ground state to the first excited state, including excitonic effects and
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accounting for the dynamic response of the electrons. This provides a more accurate description of

excitation energies compared to static DFT. The accuracy of both DFT and TDDFT depends on

the choice of exchange-correlation (xc) functional, with hybrid functionals generally yielding better

results. However, discrepancies can still arise due to functional approximations and the lack of con-

sideration for experimental conditions. Moreover, higher-level quantum mechanical theories, such

as GW method coupled with Bethe-Salpeter equation, which might offer improved accuracy, are

impractical for large systems such as CPs due to their computational demands.[19]

Data-driven machine learning (ML) approaches are powerful tools for the rapid property pre-

dictions and virtual structure screening of organic molecules and CP materials, offering substantial

time and cost advantages over traditional experimental and computational methods.[17, 20–22] The

effectiveness of ML models depends crucially on the availability of adequate and reliable training

data, as well as the selection of appropriate descriptors that capture the structural and physicochem-

ical properties of CPs. These descriptors include topological, electronic, geometrical, and molecular

fragment attributes.[23, 24] Previous studies indicate that different ML algorithms trained with

identical descriptors often yield similar accuracy. However, descriptor selection significantly impacts

model performance, underscoring its dominant role in determining prediction accuracy.[25] So far,

ML methods are increasingly used to predict the electronic properties of CPs and their derivatives,

with most studies focusing on small molecules. The unique complexities of CP systems remain less

explored, resulting in a scarcity of robust models that accurately reflect the behavior of these poly-

mers. Additionally, many studies utilize DFT-calculated HOMO-LUMO gaps (EDFT
gap ) as reference

data, which are generally less correlated with experimentally measured optical gaps (Eexp
gap) of CPs.

Some studies incorporate Eexp
gap data from small CP datasets,[26] but these models generally show

low performance and debatable robustness and transferability. Furthermore, due to the absence of

underlying physical principles and the use of obscure descriptors, even well-trained ML models for

interpolation struggle with robust performance when extrapolating to new CP design spaces.[20] To

the best of our knowledge, there remains a significant gap in the development of well-established

ML models that can predict the experimentally measured optical gap of CPs with high accuracy

and transferability.

In this study, we developed a sophisticated approach that combines DFT calculations and data-

driven ML models to accurately predict the Eexp
gap values of CPs. We demonstrated that by modifying

oligomer structures—specifically, removing alkyl side chains and extending conjugated backbones—

we can effectively capture the electronic properties of CPs. This modification significantly improved

the correlation between EDFT
gap and Eexp

gap , achieving an R2 value of 0.51, while also considerably

reducing computational time consumption. In contrast, unmodified monomer structures yielded a

notably low R2 value of 0.15. To further enhance the prediction accuracy of Eexp
gap , we trained a variety

of ML models using both EDFT
gap and conventional molecular representations as inputs. Compared

to the baseline model trained with only molecular representations, incorporating EDFT
gap of modified

oligomers not only improves prediction accuracy—reflected by an R2 of 0.77 and a mean absolute

error (MAE) of 0.065 eV achieved by XGBoost—but also enhances the models’ transferability in

predicting the optical gaps of new polymers outside the design space of the training dataset. Our

work outlines a rational strategy for predicting fundamental properties of polymers by segmenting
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them into different substructures. These substructures are then characterized using different levels of

theoretical or methodological approaches based on how well they correlate with the target properties.

This methodological framework provides a robust basis for enhancing the predictive capabilities of

computational models in polymer science.

2 Computational Details

2.1 Dataset

The original dataset with 1203 data points was adopted from Saeki et al’s work,[27] in which ex-

perimentally measured data of synthesized polymers for OSC applications were manually collected

from 503 literatures. For each polymer, the simplified molecular input line entry system (SMILES)

string of its repeating unit was provided, together with a list of experimental parameters, including

HOMO, LUMO, and Eexp
gap . We removed 88 duplicate entries based on the SMILES strings and

18 non-conjugated polymer structures containing sp3-hybridized N atom along backbone chain (see

Figure S1). An extra polymer containing Tellurium atoms was also excluded due to being out of the

applicable range for the 6-31G* basis set in DFT calculations. Therefore, the final dataset comprised

1096 unique CPs. The distribution plots and statistical analysis of HOMO, LUMO, and Eexp
gap values

are presented in Figure S2 and Table S1.

2.2 DFT calculations

All the DFT and TDDFT calculations were performed with Gaussian 16 package.[28] The B3LYP

hybrid functional[29–31] together with D3 dispersion correction[32] and 6-31G* basis set were em-

ployed for both geometry optimization and electronic property calculations. The maximum force

tolerance is 0.02 eV/Å. The initial xyz coordinates of polymers were generated from the SMILES

strings with OpenBabel package.[33] Before geometry optimization with DFT, we manually adjusted

the oligomer backbone to be coplanar using the Avogadro package[34] to more closely resemble a

realistic configuration, as high planarity is favored in experiments to promote the performance of

polymer-based electronic devices.[35]

2.3 Molecular Features

The chemical structures of CPs were represented with SMILES strings. RDKit library[36] was used

to convert SMILES strings into three types of molecular features (MFs), including RDKit Descrip-

tor,[37] molecular access system (MACCS),[38] and extended connectivity fingerprints (ECPF6).[39]

RDKit Descriptor consists of the 209 molecular properties calculated by RDKit package, covering

structural connectivity, geometry, electronic properties, and chemical composition. MACCS is a pre-

defined fragment library with a subset of 166 keys which counts the presence of 166 various chemical

fragments, such as S-N and alkaline metal, whereas one extra key with zero value is added as a

consequence of Python’s array-indexing-by-zero convention, resulting in a 167-bit vector. ECFP6, a

flavor of Morgan fingerprints, considers the neighboring connectivity of atoms with 1024 keys, which
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was generated by selecting the maximum diameter of the circular atom neighborhood to be six. We

performed feature selection on 209 RDKit descriptors to eliminate irrelevant or redundant features,

with the details presented in Note S1.

2.4 Machine Learning Models

We employed six conventional ML algorithms: Hist Gradient Boosting regression (HGBR),[40] Gra-

dient Boosting Regression (GBR),[41] LightGBM regression (LGBM),[42] Extreme Gradient Boost-

ing regression (XGBoost),[43] AdaBoost regression (AdaBoost),[44] random forest (RF).[45] These

models are widely used in materials science and chemistry to uncover structure-property relation-

ships.[46, 47] ML model training was performed with Scikit-learn library.[48] The details of the

training process can be found in Note S2. Performance metrics, including coefficient of determina-

tion (R2), Pearson correlation coefficient (r), Root mean square error (RMSE), and mean absolute

error (MAE), were defined in Note S3.

3 Results and Discussion

3.1 Rational Design of Oligomer Model

CPs adopt a one-dimensional periodic structure, consisting of a conjugated backbone and various

lengthy alkyl side chains. This periodicity and the lengthy side chains present significant challenges

in modeling CP systems accurately and efficiently. CPs feature an extended backbone, but their

poor crystallization results in an ill-defined lattice, complicating the construction of a periodic

model for simulation. Furthermore, using a monomer—a single repeating unit—to represent a

CP, fails to effectively capture the characteristics of π-electron delocalization in CP structures.

Here, we employed monomer structures to calculate the EDFT
gap values at the B3LYP level, denoted

as Emonomer
gap . As shown in Figure 1b, Emonomer

gap show no linear relationship with Eexp
gap of the

corresponding CPs, as evidenced by a markedly low R2 value of 0.15. This weak correlation is

attributed to both the intrinsic limitations of the DFT method for predicting optical gaps[16, 49]

and the inadequacy of monomer models in accurately representing the properties of CPs.

In this study, we rationally designed an oligomer model to represent CP materials based on their

fundamental characteristics. The two-step procedure to construct the oligomer structure is depicted

in Figure 1a with polymer PTB7 as an example. In the first step, we replaced the long alkyl side

chains with methyl groups since alkyl side chains primarily affect solubility. This substitution enables

efficient computational simulations while maintaining similar electronic and optical properties.[50,

51] As the conjugated backbone contributes most to the electronic properties of CPs, following

side chain truncation, we replicated the monomer to form an oligomer structure, such as dimer

or trimer. Previous studies suggested that using oligomer structures—such as a dimer, trimer,

or tetramer, which extends the conjugated backbone chains to capture the characteristic of π-

electron delocalization—enhances the predictive accuracy of DFT methods for experimental gaps,

compared to employing monomer.[52] Given the limited understanding of the correlation between the

conjugation length of backbone chain and the electronic properties of CPs, we tested various polymer
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structures and established two guidelines for constructing oligomers (see Note S4 for details): (1)

the oligomer should contain at least four aromatic blocks linked by C-C single bonds along the

backbone chain; (2) the oligomer should consist of at least six aromatic rings. Additionally, after

side chain truncation, the obtained monomer can be regarded as an oligomer if it simultaneously

contains more than four aromatic blocks and more than eight aromatic rings.

To validate the effectiveness of the simplified oligomer in capturing the electronic properties of

CPs in comparison with the monomer, we also calculated the EDFT
gap values with oligomers at the

B3LYP level, denoted as Eoligomer
gap . Other xc functionals, including PBE,[53] ωB97XD,[54] and

CAM-B3LYP,[55] exhibit high linear correlations with B3LYP for HOMO-LUMO gap calculations,

achieving Pearson correlation coefficients above 0.96 among each other (see Note S5). As shown in

Figure 1b, the modified oligomers exhibit a significant improvement in correlating DFT-calculated

and experimental gap values compared to the monomers, with the R2 value increasing from 0.15 to

0.51. This substantial enhancement underscores the importance of selecting appropriate configura-

tions to accurately represent the fundamental characteristics of CP materials. On the other hand,

our results suggest that ML models trained with DFT-calculated HOMO-LUMO gaps of monomers

as reference data may not effectively predict experimental optical gaps of CPs due to the poor

correlation observed.

Besides accuracy improvement, our two-step simplification procedure also significantly reduces

computational demands by decreasing the number of atoms in CPs. Figure 1c illustrates the his-

togram distributions of atom counts for monomer and oligomer structures. Around 80% of the

monomers, originally with atom counts ranging from 107 to 232, were reduced to between 78 and

156 atoms. Particularly, the largest monomer, which contains 494 atoms, is reduced to 200 atoms in

its oligomer form, while the smallest with 33 atoms increases to 68 in the oligomer. This reduction is

primarily achieved through the truncation of long alkyl side chains, while the increase in the number

of atoms is due to the extension of the backbone chains. These two modifications synergistically

lead to an overall decrease in system size for the majority of CPs.

CPs are composed of electron donor and acceptor units as building blocks linked by C-C single

bonds. These donor and acceptor units are crucial for tuning the electronic properties, particu-

larly the optical band gap.[56–58] Donor units donate electron density to the polymer backbone,

raising the HOMO level, while acceptor units withdraw electron density, lowering the LUMO level.

Thus, combining donor and acceptor units creates a push-pull effect, significantly narrowing the

band gap and enhancing charge transport. By strategically incorporating donor and acceptor units

into the polymer backbone, a variety of CPs can be designed with tailored electronic properties for

specific applications. Given the importance of donor and acceptor units in determining the exper-

imental optical gap, we aimed to investigate the effectiveness of our oligomer model in capturing

the electronic properties of various donor and acceptor units. We categorized the 1096 CPs in our

dataset based on donor or acceptor unit types. Figure 2c,f show the chemical structures of four

commonly used donor and acceptor units. The categorization follows a specific order from D1 to

D4, with polymers containing multiple donor types assigned to the latter type in the search order

(e.g., D4 if containing both D1 and D4). D1 represents benzodithiophene and its derivatives with

S atoms replaced by O and Se. D2, D3, and D4 represent carbazole, dithieno[3,2-b:2’,3’-d]pyrrole,
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and pyrroloindacenodithiophene, respectively, along with their derivatives where N is substituted

by C, Si, O, S, and Se.[56] Polymers lacking these donor units are grouped as “Others”. The same

approach was applied for acceptor units. A1 represents the benzazole series, encompassing ben-

zothiadiazole (BT), benzotriazole (BTA), benzoxazole, and related derivatives.[57] A2, A3, and A4

denote diketopyrrolo[3,4-c]-pyrrole-1,4-dione (DPP), quinoxaline (QA), and thieno[3,4-c]pyrrole-4,6-

dione (TPD), respectively.[56] Based on the percentage distributions (see Table S8), D1 and A1 are

the predominant donor and acceptor units, with ratios of 46.7% and 32.8%, respectively. As shown

in Figure 2b,e, oligomers in each CP group exhibited significantly improved R2 values compared to

monomers (Figure 2a,d), reinforcing the widespread efficacy of our two-step approach in capturing

the electronic properties of copolymers via modified oligomer structures, regardless of the specific

donor and acceptor types.

3.2 Effect of Alkyl Side Chains

As demonstrated above, our two-step procedure for oligomer model construction through side chain

truncation and backbone extension significantly improves the linear correlation between EDFT
gap and

Eexp
gap , increasing the R2 value from 0.15 to 0.51 (see Figure 1b). Particularly, side chain truncation

largely reduces computational cost, which is beneficial for high-throughput screening. Although less

impactful on electronic properties than the conjugated backbone, alkyl side chains still require con-

sideration in order to further improve the prediction accuracy of experimentally measured optical

gaps. Consequently, we applied two categories of descriptors for ML modeling: DFT calculated

HOMO-LUMO gaps of modified oligomers to represent the extended backbone, and molecular fea-

tures from SMILES strings of monomers to capture the effect of alkyl side chains.

In this study, we evaluated the effectiveness of three types of MFs for capturing the impact of

alkyl side chains on the optical gaps of CPs: RDKit Descriptors, MACCS, and ECFP6 fingerprints,

which were calculated from the SMILES strings of monomer structures containing alkyl side chains

as detailed in the Methods section. Previous studies have shown these MFs are effective for training

ML models to predict the photo-electronic properties of CP-based OSCs.[27, 59] The workflow for

database preparation, feature engineering, model training, and transferability test is summarized in

Figure 3. We trained six ML algorithms that were commonly used in materials sciences, including

HGBR, LGBM, GBR, XGBoost, AdaBoost, and RF, using EDFT
gap combined with different types of

MFs as input parameters to predict Eexp
gap . Performance metrics, including R2, r, RMSE, and MAE,

were detailed in Table S9-S11. Notably, the prediction accuracy of optical gap values is significantly

enhanced, with the R2 value increasing from 0.51 to as high as 0.77, by incorporating information

from both the conjugated backbone (captured by Eoligomer
gap ) and the side chains (captured by MFs).

Particularly, ECFP6 combined with Eoligomer
gap consistently achieved the highest prediction accuracy

across all ML models, demonstrating its superiority in capturing the side chain information of CPs

compared to RDKit and MACCS.

To further investigate the impact of Eoligomer
gap on optical gap prediction, we summarized the R2

and MAE values for the six ML models trained using ECFP6 alone and in combination with Eoligomer
gap

in Figure 4. All models achieved higher accuracy using Eoligomer
gap and ECFP6, with R2 values
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over 0.62, compared to 0.51 for a simple linear regression model (Figure 1c). Notably, XGBoost

emerged as the top performer with an R2 of 0.77 and MAE of 0.065 eV. This level of accuracy falls

within the experimental error margin of approximately 0.1 eV. For instance, polymer P3HT has an

Eexp
gap between 1.9 and 2.14 eV,[60–63] while PDB7 ranges from 1.6 to 1.7 eV,[64–66] influenced by

molecular weight, regioregularity, and processing conditions.[67] In addition, when retrained with

only ECFP6, all models had lower accuracy; for example, the XBGoost model achieved an R2 of 0.7

and MAE of 0.075 eV.

In summary, descriptors are essential for ML models to capture critical information influencing

targeted properties and learn structure-property relationships effectively. DFT-calculated HOMO-

LUMO gaps of modified oligomers and ECFP6MF derived from unmodified monomers can effectively

capture fundamental characteristics of both the extended backbone and alkyl side chains, enabling

accurate and efficient prediction of Eexp
gap values.

3.3 Model Transferability

We have demonstrated that ML models can leverage rationally designed Eoligomer
gap and MFs to

improve the prediction accuracy of experimental optical gaps. Beyond accuracy, it is essential to

validate the model’s robustness and transferability with new datasets which have not been used in

the ML model training process. In this study, we manually collected 227 newly synthesized CP

structures from the literature, categorizing them into two groups based on their electron acceptor

units. As shown in Figure 5a, CP structures from group 1 contain at least one of the five accep-

tor units which were included in the training set; for example, BT and BTA units belong to A1

type (see Figure 2f). This subset of CP structures is applied to evaluate the interpolation perfor-

mance of the trained ML models considering the close similarity of this subset of CP structures

as compared to the training set. In contrast, group 2 contains five acceptor units which have not

been seen in the training set (see Figure 5b), including Perylene Diimide (PDI),[68] naphthalenedi-

imide (NDI),[69] dithieno[3’,2’:3,4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT),[70] benzobisoxa-

zole (BBX),[71] and Y6.[72] These acceptor units are important components of electron-accepting

semiconductors for organic photovoltaic applications. For example, the Y6-based small molecule,

first announced in 2019, achieved a record power conversion efficiency of 15.7% as an acceptor in

OSCs.[73] In 2020, the first Y6-series-based polymer acceptor was reported, and since then, these

acceptors have been recognized as the best n-type materials.[74] Additionally, Ding et al. intro-

duced a novel family of polymer donors named D18 based on DTBT and fluorinated BDTT in 2020,

achieving the first single-junction OSC with an efficiency of over 18% when blended with Y6 small

molecule.[75] The CP structures from group 2 containing one of these five acceptor units are used

to assess the extrapolation performance of the trained ML models.

For both group 1 and group 2 CP structures, we constructed the modified oligomers using the

two-step procedure (see Figure 1a) to obtain the Eoligomer
gap values and converted the SMILES strings

of the alkyl-side-chain-containing monomers into ECFP6 features. Then, we applied the XGBoost

models previously trained with the 1096 dataset to predict the Eexp
gap of both groups without further

retraining. The performance metrics are presented in Table 1. XGBoost-2, trained with Eoligomer
gap
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and ECFP6, accurately predicted the optical gaps of group 1 CPs with most MAEs below 0.1 eV,

demonstrating excellent interpolation performance. Interestingly, XGBoost-1, trained with only

ECFP6, also showed superior interpolation performance, resulting in lower RMSE and MAE than

XGBoost-2 across all CP types in group 1. These results suggest that ECFP6 effectively captures

the electronic properties of similar CPs within the same chemical design space. In fact, ECFP6 has

been widely used to measure the similarities of various organic molecules in previous studies.[76]

We then assessed the extrapolation performance of both models with group 2 CPs. As shown in

Table 1, XGBoost-2 significantly outperformed XGBoost-1, yielding substantially lower RMSE and

MAE values across all CP types. For example, the MAE for Y6 based CPs decreases from 0.418

eV to 0.211 eV with XGBoost-2. Previous studies have also shown that conventional ML models

trained with molecular descriptors may perform well in the chemical structure space similar to the

training set, whereas the extrapolation to the new structure space is challenging due to the lack

of physical/chemical insight from the input descriptors.[77, 78] Our results demonstrate that the

XGBoost-2 model, trained with both Eoligomer
gap and ECFP6, excels in both high interpolation and

extrapolation performance. This superior transferability is originated from the excellent robustness

of DFT methods and rationally designed oligomer structures, effectively capturing the electronic

properties of the CPs. Indeed, as shown in Figure 5c,d, Eoligomer
gap are highly correlated with Eexp

gap

for both group 1 and group 2 CPs.

3.4 Further Discussion

As detailed above, the XGBoost-2 model, trained with 1096 CPs, demonstrated the superior trans-

ferability on a new dataset of 227 CPs. It is well acknowledged that conventional ML models such as

XGBoost can benefit from larger datasets to further improve prediction accuracy.[79, 80] Therefore,

we selected one structure with the highest prediction error from each category in group 1 and group

2, forming a new test set of 10 CP structures (see Figure S7). The remaining 217 data points were

combined with the original 1096, creating a new training set of 1313 structures, thus augmenting

the training set by around 20%. We retrained a new XBGoost model (labeled as “XGBoost-2-plus”)

with 10-fold cross-validation on 1313 data points and calculated the average RMSE and MAE for

predicting the Eexp
gap of 10 CPs in the new test set. As shown in Table S12, XGBoost-2-plus achieved

enhanced prediction accuracy, with a lower RMSE of 0.241 eV and MAE of 0.213 eV compared to

XGBoost-2 (0.333 eV and 0.3 eV, respectively). Particularly, the prediction errors of the XGBoost-

2-plus were significantly reduced for each polymer in the test set, demonstrating the effectiveness

of data augmentation in improving model performance. It is important to note that experimentally

measured optical gap values for CPs can vary across different labs and experiments, introducing po-

tential inconsistencies and errors. Factors such as processing conditions, solvents, additives, and film

morphology can influence these measurements.[81] Utilizing larger and more accurate experimental

datasets can enhance the predictive accuracy of ML models for optical gaps.

In addition to predicting optical gaps, our training strategy, which combines quantum chemistry

calculations and MFs, extends to predicting other fundamental properties of CPs such as HOMO and

LUMO levels, which are also vital for their applications in electronics and solar cells.[82, 83] In our
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dataset of 1096 structures, HOMO levels were measured via cyclic voltammetry, while LUMO levels

were derived from substituting optical gap values with HOMO values. Following the methodology

detailed in the Methods section, we retrained the XGBoost model and presented the performance

metrics in Table S13. Notably, XGBoost-2-H trained with DFT-calculated HOMO values of modified

oligomers and ECFP6 exhibits higher accuracy in predicting experimentally measured HOMO values,

achieving an R2 of 0.5 and an MAE of 0.109 eV. Similarly, incorporating DFT-calculated LUMO

levels enhances the accuracy of XGBoost-2 in predicting LUMO levels, with an R2 of 0.6 and an

MAE of 0.112 eV.

Conclusions

In this study, we introduced a model that combines DFT calculations with a ML approach to ac-

curately predict the experimentally measured optical band gaps of CPs, utilizing a dataset of 1096

data points. We first proposed a two-step modification procedure for constructing oligomers to effec-

tively capture π-electron delocalization in CPs: alkyl side chain truncation and conjugated backbone

extension. This approach significantly improves the correlation between the DFT-calculated HOMO-

LUMO gaps and experimental gaps (R2=0.51) compared to the unmodified side-chain-containing

monomers (R2=0.15). Subsequently, we incorporated both conjugated backbone characteristics,

derived from quantum chemistry, and the alkyl-side-chain effects, represented by molecular de-

scriptors, into ML modeling to enhance prediction accuracy. Employing the Eoligomer
gap of modified

oligomers and ECFP6 MF derived from side-chain-containing monomers as input, the resulting

model, XGBoost-2, effectively elucidated the structure-property relationship of CPs, achieving an

R2 of 0.77 and an MAE of 0.065 eV. To further assess its robustness and transferability in predict-

ing new CP structures beyond the chemical design space of the training set, we manually collected

227 newly synthesized CPs from the literature, categorizing them into two groups based on their

electron acceptor units. Group 1 CP structures contain at least one of the five acceptor units ex-

isting in the training set, allowing for the evaluation of interpolation performance, while Group 2

structures contain at least one of the five acceptor units not present in the training set, aiming

for extrapolation performance test. Notably, XGBoost-2 demonstrates excellent interpolation and

extrapolation, which stem from the combination of DFT methods and rationally designed oligomer

structures that effectively capture the electronic properties of CPs. This study represents the first

successful combination of quantum chemistry calculations with ML modeling to accurately predict

experimentally measured fundamental properties of CPs (e.g., HOMO, LUMO, and optical gap),

facilitating the design and development of next-generation high-performance CPs in photoelectronic

and energy conversion applications.
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Figure 1: (a) Scheme of converting the monomer structure of PTB7 into a modified oligomer with
a two-step procedure, namely, alkyl side chain truncation and conjugated backbone extension. (b)
The parity plots of DFT calculated HOMO-LUMO gaps (EDFT

gap ) based on monomer and modified
oligomer structures versus experimentally measured optical gaps (Eexp

gap). The black dashed lines
correspond to linear fitting. (c) The distributions of atom counts in the monomers and modified
oligomers.
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Figure 2: The linear correlation between DFT-calculated HOMO-LUMO gaps (EDFT
gap ) and experi-

mental optical gaps (Eexp
gap) for different groups of conjugated polymers categorized based on donor

and acceptor units, respectively. The EDFT
gap is calculated from (a,d) monomers with alkyl side chains

and (b,e) modified oligomers after two-step procedure shown in Figure 1a. The black dashed lines
correspond to linear fitting. (c,f) The chemical structures of four donor and acceptor units. X or X’
denotes O, S, or Se atom, and Y represents C, N, O, Si, S, or Se atom.
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Figure 3: The workflow for the machine learning model training procedure to predict the experi-
mentally measured optical gaps of conjugated polymers (CPs).

Figure 4: (a) R2 and (b) mean absolute error (MAE) (eV) of six machine learning models for
predicting experimental optical gaps of conjugated polymers with different descriptors as input.
Eoligomer

g is HOMO-LUMO gap calculated from modified oligomer structures.
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Figure 5: The chemical structures of (a) five acceptor units exiting in the training set and (b) five
acceptor units not existing in the training set. (c,d) The linear correlation between DFT-calculated
HOMO-LUMO gaps (EDFT

gap ) with modified oligomer structures and experimental optical gaps (Eexp
gap)

for (c) group 1 and (d) group 2 conjugated polymers. The black dashed lines correspond to linear
fitting.
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Table 1: The performance metrics of XGBoost-1 and XGBoost-2 in predicting the experimental
optical gaps of conjugated polymers categorized by various acceptor units. Group 1 acceptor units
are included in the training set, whereas Group 2 units are not. Chemical structures are illustrated in
Figure 5. XGBoost-1 is trained using ECFP6 alone, while XGBoost-2 is trained with both Eoligomer

gap

and ECFP6. Both root mean square error (RMSE) and mean absolute error (MAE) are measured
in eV.

XGBoost-1 XGBoost-2

Acceptor unit #Data points RMSE MAE RMSE MAE

Group 1

BT 21 0.073 0.052 0.085 0.069
BTA 20 0.106 0.085 0.112 0.099
QA 23 0.075 0.063 0.114 0.092
DPP 19 0.068 0.054 0.133 0.102
TPD 20 0.077 0.063 0.09 0.068

Group 2

PDI 28 0.181 0.158 0.189 0.147
NDI 26 0.262 0.211 0.126 0.094
DTBT 20 0.157 0.135 0.059 0.041
BBX 21 0.583 0.49 0.338 0.253
Y6 29 0.427 0.418 0.217 0.211
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