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Metal hydrides are important across diverse applications such as hydrogen storage, batteries, gas
sensors, nuclear reactions and high-temperature superconductivity. Previous computational studies
of metal hydrides under extreme pressures, e.g., O(102) GPa, usually treat them as stoichiometric
compounds without considering interstitial lattice disorder. As pressures become more moderate in
the O(100) GPa and below range, hydrogen disorder at interstitial lattice sites becomes prominent,
e.g. in the N-doped Lu hydride that was recently claimed superconducting near 1 GPa. Further
adding compositional complexity from alloying and/or multi-element interstitial occupation makes
elucidating pressure- and temperature-dependent observables intractable by first-principles calcu-
lations alone. We therefore propose a lattice graph neural network surrogate modeling approach
to predict configuration- and pressure-dependent equation-of-state properties. Their efficiency per-
mits Monte Carlo simulations to calculate Gibbs energies and pressure-dependent phase diagrams,
thereby revealing insights into the synthesis conditions required for achieving desired phase equilib-
ria. We demonstrate this concept for the compositionally complex cubic Lu(H,N,Va)3 system where
three constituents (hydrogen, nitrogen and vacancy) have disordered multi-element interstitial oc-
cupancies and insights into pressure-dependent phase equilibria are critically needed, e.g., N-doping
levels can significantly lower dehydrogenation temperatures and provide a new strategy to optimize
hydrogen-storage alloys. This work can improve the thermodynamic understanding of the Lu-H-N
system and help rational synthesis of N-doped Lu hydrides, but more generally demonstrates an
efficient approach to model pressure-dependent thermodynamics of multi-component solid solutions.

INTRODUCTION

Enormous progress has been made in recent years
in the pursuit of room-temperature superconduc-
tors, mainly driven by metal hydrides. Near-room-
temperature superconductor was predicted [1, 2], synthe-
sized [3], discovered [4] and subsequently confirmed [5] in
the La-H system for the first time. In addition, the same
theoretical techniques that led to the discovery of super-
conductivity in LaH10 predict even higher-temperature
superconductors such as Li2MgH16 with Tc as high as
∼470 K at 250 GPa [6]. However, creation of these super-
hydrides requires megabar (> 100 GPa) pressure, which
is a significant hurdle for large-scale synthesis. There-
fore, lowering the pressure for synthesizing these novel
materials is a crucial milestone in the pursuit of prac-
tical room-temperature superconductivity [7], with sev-
eral approaches proposed, including optimized chemical
precompression [8], impurity doping in hydrides [9–12],
and combining multiple stimuli (e.g., pressure and elec-
trochemical potential) [13, 14]. An especially remarkable
report was the claim of room-temperature superconduc-
tivity at near-ambient pressures in N-doped Lu hydrides
[15], which subsequently stimulated a rush [16–25] try-
ing to clarify and reproduce the superconducting phase
whose structure is reported to have a fcc Lu lattice but
with undetermined stoichiometry and atomic positions of
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H and N. However, these verification efforts, no matter
experimental or computational, have not reproduced the
claim and the original study has since been retracted.

Nonetheless, the open question of how N, along with
H, is incorporated into the interstitials of the Lu FCC
lattice remains. Specifically, the pressure-composition-
temperature (PCT) phase behavior of the Lu-N-H sys-
tem has yet to be predicted, i.e., the expected N and H
concentrations as a function of N and H chemical poten-
tials (temperatures and partial pressures). More gener-
ally, quantitative prediction of PCT behavior [26–28] is
difficult due to the computational cost of density func-
tional theory (DFT) and the required high-throughput
sampling of the potential energy surface of hydrogen
and metal alloy interactions; nonetheless, tractability has
been demonstrated for simpler metal hydride systems at
near ambient pressures by combining machine learning
surrogate models for DFT and first-principles thermo-
dynamics [29]. However, PCT prediction becomes even
more difficult if a metal or alloy is open to multiple
species that can populate its interstitials (i.e., H and N)
or if the pressure range to be modeled is sufficiently high
that the pressure contribution to the enthalpy is non-
negligible.

Our goal is therefore to generally address both chal-
lenges in a unified computational workflow so that PCT
behavior of high-pressure, multi-element interstitial hy-
drides can be more rapidly predicted. We will demon-
strate this for the cubic Lu(H,N,Va)3 system, but ex-
pect its applicability to translate to other materials sci-
ence domains relying on (high-pressure) interstitial in-
corporation in intermetallic alloy lattices. Modern ma-
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chine learning techniques offer the ability to accurately
approximate high dimensional functions [30], opening up
new possibilities for solving “curse of dimensionality”,
a key challenge in materials science. We propose the
use of graph neural networks (GNNs) [31–33] as surro-
gate models to directly predict computationally expen-
sive DFT-relaxed properties from an unrelaxed crystal-
lographic representation [29, 34, 35], specifically the zero-
pressure relaxed formation energy, Ef,0, and specific vol-
ume, ν0, using just the idealized (i.e., un-relaxed) FCC
crystallographic lattice and coordinates as inputs. With
a sufficiently accurate model for Ef,0 and ν0 trained on a
reasonable number (∼1,000) of DFT relaxations, the sur-
rogate model used for the extensive sampling required by
lattice model Monte Carlo to estimate free energies de-
pendent on composition, pressure and temperature, from
which different types of phase equilibria and thermody-
namic properties can be calculated. Additionally, we pro-
pose a new doping strategy to optimize hydrogen-storage
alloys based on thermodynamic modeling. By facilitat-
ing the assessment of thermodynamic stability of high
H-content hydrides, we anticipate this general approach
will help with future rational design strategies to reduce
the extreme pressures needed for their synthesis, as well
as provide an efficient approach for thermodynamic mod-
eling of multi-component solid solutions as an alternative
to the conventional method based on cluster expansion
(CE). Finally, we conclude with some insights into cur-
rent limitations and the promising opportunities for ex-
tending this work in the future.

RESULTS AND DISCUSSION

Our workflow for computing pressure-dependent ther-
modynamics in compositionally complex solid solutions
is graphically summarized in Figure 1 and discussed in
detail below. The major steps consist of the following:
(a,b) high-throughput sampling and first principles cal-
culations of solid solution configurations are used to fit
equation-of-state parameters, (c) GNN training to pre-
dict these configuration-dependent parameters using the
idealized starting structure as input, (d) Monte Carlo
simulations of pressure-dependent enthalpies, (e) calcu-
lation of Gibbs energies and phase diagrams.

High-throughput sampling of Lu-N-H system

First we generate 1,179 2x2x2 ideal FCC supercell con-
figurations, XFCC, of Lu(H,N)3–x . Each initial config-
uration, consisting only of Lu at each packing site, dif-
fers only by the identity (N, H, or Va) of the octahe-
dral and tetrahedral interstitials. For each initial con-
figuration, we relax the structure at zero-pressure and
zero-temperature to obtain Ef,0 and ν0, after which en-
ergy vs. volume calculations are used to fit the Rose-
Vinet equation of state [36] and obtain the bulk modu-

lus and pressure derivative of the bulk modulus, B and
B′, respectively. Each calculation, especially the fitting
of B and B′, and time-intensive and there are nomi-
nally 312 ≈ 500k possible assignments of (H,N,Va) to
the interstitial sites in the 1x1x1 FCC unit cell alone,
let alone the 3(12·8) possible assignments in the 2x2x2
supercell. An efficient surrogate model for the equation
of state parameters of a given configuration, coupled to
Monte Carlo simulations, are therefore clearly needed to
effectively sample phase space for phase diagram con-
struction. The brute-force DFT-sampled potential en-
ergy landscape from the ∼1200 configuration training
data is shown in Figure 2(a) as a function of xH and
xLu. To construct Figure 2(b), we compute the stan-
dard deviation, σ, of a configuration’s nearest neighbor
Lu-Lu interatomic distances, then summarize the data as
a box-and-whisker plot, grouping configurations by xN.
This indicates that, as expected, higher N concentrations
are more likely than higher H concentrations to introduce
larger structural distortions to the idealized FCC lattice
where σ = 0.

GNN surrogate model validation

Figure 3’s top and bottom rows summarize the per-
formance of our trained GNN models on the Ef,0 and v0
prediction tasks, respectively. For each prediction target,
three versions of parity plot for the combined K = 10-
fold test set predictions are differentiated by color-coding
either H content (xH/xLu), N content (xN/xLu), or the
data density. The parity plots immediately reveal that
low Ef,0 is correlated with high N content. Additionally,
we plot the expectation mean absolute error (MAE) and
R2 across K-fold test sets, ⟨MAE⟩K and ⟨R2⟩K , respec-
tively, as a function of xN/xLu where any configurations
with a higher N content are excluded from performance
metric. This reveals critical insight into model perfor-
mance: for xN/xLu < 0.5 we can achieve expected MAE
of < 40 meV/atom and R2 > 0.9 but performance starts
to deteriorate for xN/xLu > 0.5. This generally arises be-
cause high N content configurations undergo significant
distortion from the ideal FCC lattice and interstitial ge-
ometry (Figure 2b), meaning the actual structure devi-
ates further from the idealized lattice that must be used
as input to the ML model. Note that increasing MAE
with increasing xN/xLu is due to a relative error increase
as well since R2 also begins to drop for higher N content
configurations. This insight bounds the expected accu-
racy of the subsequent phase diagram predictions as a
function of N content. Finally, we were unable to train a
sufficiently accurate model for B or B′ to be useful in any
predictive capacity. However, we hypothesize this could
be possible in the future with additional training data
and/or more advanced (equivariant) model architectures
since, for example, full elasticity tensors be predicted, al-
beit within a more diverse chemical and structural space
[37].
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FIG. 1. Graphical summary of the machine learning-accelerated workflow for calculating pressure-dependent thermodynamics
of compositionally complex solid solutions. (a) Solid solution configurations on an idealized lattice, XFCC, are first generated
by sampling different end member and intermediary compositions. (b) Configuration-dependent energy and pressure vs. volume
curves are fit to an equation of state to extract a set of 4 parameters, P: zero-pressure formation energy (Ef,0), zero-pressure
volume (ν0), bulk modulus (B), and pressure-derivative of bulk modulus (B′). (c) GNN surrogate models are trained to predict
these properties using XFCC as input. (d) A multitude of lattice Monte Carlo simulations across fixed composition, temperature,
and pressure are performed using the GNN models. (e) Gibbs free energies as a function of composition, temperature, and pres-
sure are computed, from which relevant macroscopic properties can be computed (which may be complicated to experimentally
extract), such as expected composition as a function of chemical potentials, ⟨xN⟩, ⟨xH⟩(µN, µH), or the temperature-dependent
equilibrium hydrogen pressure as a function of concentrations, PH2(xH; T, xN).
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FIG. 2. (a) The DFT calculated formation energies of train-
ing configurations as a function of xH/xLu and xN/xLu. (b)
For each configuration, the standard deviation of all nearest
neighbor Lu-Lu interatomic distances, σ({dLu−Lu}), is com-
puted and summarized as a box-and-whisker by grouping con-
figurations for a given xN/xLu.

Gibbs energies and phase equilibria of cubic
Lu(H,N,Va)3

The Monte Carlo (MC) simulations were employed to
calculate Gibbs energies at a fixed chemical composition,
temperature and pressure. The enthalpy is obtained by

H =
∑
α

(Eα + PVα) ρα (1)

where Eα and Vα is energy and volume of a sampled
configuration α respectively, P is pressure, and ρα is the
frequency of the configuration α appearing in the simu-
lation. We have the exact differential

d(βG) = d(β(H− TS)) = Hdβ + βVdP (2)

where G is the Gibbs energy, β = 1/kBT, kB is
Boltzmann constant, and T is temperature. Using
limβ→0βG = Σcilnci, where ci is the site fraction of
species i (i=H, N, Va) in the interstitial sites, the Gibbs
energy at temperature T, pressure P and compositions
xH and xN can be calculated as

βG(T,P, xH, xN) = Σcilnci +

∫ β

0

H(β′,P, xH, xN)dβ
′.

(3)
Gibbs energies of the cubic Lu(H,N,Va)3 solid solution
under three pressures (0, 1, 2 GPa) and two tempera-
tures (273, 1273 K) are shown in Figure 4. More de-
tails including site occupancies of each species, the MC-
sampled distribution of enthalpies of configurations and

https://doi.org/10.26434/chemrxiv-2024-6g37p ORCID: https://orcid.org/0000-0002-4484-3216 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-6g37p
https://orcid.org/0000-0002-4484-3216
https://creativecommons.org/licenses/by-nc/4.0/


4

FIG. 3. Model validation for (a,b)Ef,0 and (c,d) ν0 predictions. Parity plots (a,c) correspond to the combined K = 10-fold test
set predictions, differentiated by color-coding H content (xH/xLu), N content (xN/xLu), or the data density. (b,d) show expected
(K-fold averaged test set) MAE R2 in purple and orange, respectively, as a function of the maximum xN/xLu considered.

plots of Gibbs energies as functions of temperature can
be found in the Supplementary Information. The Gibbs
energies are most sensitive with respect to xN, most neg-
ative when xN/xLu ∼ 1, and increase drastically when
xN further increases. Notably, the Gibbs energy surfaces
are non-convex, with multiple local minima, indicating
immiscibility between the three constituents H, N and
vacancy within the interstitial sites. The temperature
and pressure up to 2 GPa have an effect on, but do not
majorly alter, the features of the Gibbs energy surfaces
fundamentally.

Based on the calculated Gibbs energies, the ternary
phase equilibria of cubic Lu(H,N,Va)3 are computed and
shown in Figure 5 for different combinations of temper-
atures and pressures. Instead of compositions, chemical
potentials (µH and µN) are chosen as the diagram axes
since they are control variables for H and N more fre-
quently in experiments and can be tuned via tempera-
ture and partial pressure when these components are in
a vapor state. However, it should be noted that here
the phase equilibria are calculated for the cubic Lu-H-
N phases only without assuming a solid-vapor equilib-
rium, otherwise the total four conditions (T, P, µH, and
µN) cannot be varied independently according to the
phase rule. Within the range of conditions shown in
the figures, there are four phase regions, i.e., LuH3−xNy,
LuH2±xN1−y, LuH0.7±xN1±y and LuH0.5±xN1±y. The
composition changes discontinuously across the phase

boundaries, while it changes gradually within each sin-
gle phase region. Due to the fact that the GNN energy
model has increasing errors when xN/xLu > 1 and the
high sensitivity of calculated phase boundaries with re-
spect to Gibbs energy errors, it is possible that the rel-
atively small composition discontinuity between the two
H-poor phases LuH0.7±xN1±y and LuH0.5±xN1±y may be
artifacts and they belong to the same continuous solid
solution. With temperature increasing, LuH0.7±xN1±y

has a larger phase region, mainly due to its larger con-
figurational entropy since it has more equal fractions of
H, N and vacancy compared with the other phases. A
decreasing H stoichiometry with increasing temperature
is observed for the LuH3−xNy phase, due to the en-
tropy effect similarly. With pressure increasing, both H-
rich LuH3−xNy and N-rich LuH0.7±xN1±y have expanded
phase regions, while the LuH2±xN1−y phase with signif-
icant fractions of both H and N shrinks, indicating the
larger immiscibility between H and N under pressure.

An important conclusion from Figure 5 is that it
is difficult to achieve significant N-doping levels in
the LuH3−xNy phase under thermodynamic equilibrium,
which agrees with some experimental works where no or
low N content (xN/xLu ≤ 0.02) were detected [25, 38].
Evidently, equilibrium N concentration in LuH3−xNy is
significant only at near-ambient pressures with µH > 0.7
eV and µN > −0.7 eV and µH much larger than µN, a re-
gion close to the LuH3−xNy/LuH2±xN1−y phase bound-
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FIG. 4. Gibbs energies of the cubic Lu(H,N,Va)3 solid solution under different pressures and temperatures. The reference
states are the elements at their standard states.

ary. However, providing such a high H chemical potential
at near-ambient pressures is quite difficult using conven-
tional methods, although non-conventional methods such
as the pressure-potential approach introducing electro-
chemical driving force have been proposed for this pur-
pose [13, 14]. For H2 in equilibrium with the hydrides,
increasing pressure can increase µH, but lower equilib-
rium N solubility in LuH3−xNy at the same time. Despite
this, it is noted that there have been other experimental
studies reporting successful synthesis of Lu hydrides with
a significant N content under high pressures [18, 19]. In
the work by Xing et al. [19], the averaged nitrogen con-
tent was 0.84 wt.%, i.e., xN/xLu = 0.11. If the presence
of N is not due to incorporation of secondary phases,
then it is very likely that the reported samples are non-
equilibrium phases with supersaturated N solutes, based
on the present calculations.

Para-equilibrium of cubic Lu(H,N,Va)3 at fixed
N-doping levels

When there is a large difference in mobility of different
components in a solid solution, instead of a full equi-
librium, a temporary para-equilibrium state may occur,

where rapidly diffusing elements reach equilibrium while
slowly diffusing elements are treated as as immobile [39].
In a para-equilibrium, the ratios of molar fractions of im-
mobile components are the same in all phases. The con-
cept of para-equilibrium has been applied in hydrogena-
tion of alloys, where metal atoms were treated as immo-
bile and H atoms were treated as mobile [40]. Here, based
on the fact that the diffusivity of H in metals is much
higher than that of heavy interstitials like O and N [41],
we calculate para-equilibrium of the cubic Lu(H,N,Va)3
solid solution by assuming: (1) the diffusion of N atoms
can be ignored and (2) H atoms are mobile enough to
reach equilibrium between different phases. Such para-
equilibrium can be obtained from minimization of Gibbs
energies at fixed N-doping levels. In addition, we assume
the Lu-H-N solids are in equilibrium with a H2/N2 fluid
phase, thus we can include partial pressures as condition
variables. We are most interested in low N compositions,
which indicates that µH needs to be much larger than
µN based on Figure 5 and therefore the fluid phase pres-
sure is dominanted by H2 with P ≈ PH2

, where PH2
is

partial pressure of H2. The following equation is used to
correlate chemical potential and partial pressure of H2:
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µH2
(T, PH2

) = µH2
(T, P0)+kBT ln

(
PH2

P0

)
+kBT ln γH2

.

(4)
We choose 1 bar (0.1 MPa) for the reference hydrogen
partial pressure P0, and kB is the Boltzmann constant.
γH2

is the fugacity coefficient of H2, and is calculated us-
ing the model of Joubert [42]. µH2

(T, P0) can be written

as

µH2(T, P0) = EH2(P0) + ∆µH2(T, P0), (5)

where EH2
(P0) is the DFT-computed energy of a H2

molecule at reference pressure, while ∆µH2
(T, P0) is the

finite-temperature contribution. In the present work,
∆µH2

(T, P0) = −∆S0
fT with ∆S0

f = 136 J/mol/K is

used [43]. This term describes the finite-temperature
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FIG. 7. Temperature-dependent para-equilibrium H composition of the cubic Lu(H,N,Va)3 solid solution at fixed N-doping
levels under different pressures.

part of standard Gibbs energy change of LuH2=Lu+H2

in 565-950 ◦C range quite well. By this we implicitly
consider the vibrational contributions to Gibbs energies
of solids in an approximate way.

The para-equilibrium pressure-composition-
temperature (PCT) isotherms of the cubic Lu(H,N,Va)3
solid solution at several fixed N-doping levels under
near-ambient pressures are shown in Figure 6. These
PCT isotherms all show plateau pressures within certain
composition ranges due to equilibrium between an H-
poor phase and an H-rich phase, which is a usual feature
of metal-hydrogen systems. To our best knowledge,
the only available experimental PCT data within the
whole Lu-H-N system are those measured for the binary
Lu-H system in the temperature range 824-950 ◦C [43].
The agreement between the present calculations and
the experimental data is quite good, demonstrating the
validity of our approach. It is evident that, regardless
of the N-doping level and within near-ambient pressures
(<1000 atm), synthesizing a cubic Lu(H,N,Va)3 phase
with x ≳ 2.5 by pure chemical hydrogenation using fluid
H2 is quite challenging, which necessitates introducing
pressures in the GPa level by other driving forces.
Remarkably, the N-doping level can significantly change
the PCT isotherms. A higher N-doping level leads
to orders of magnitude higher plateau pressures, only
slightly smaller maximum H capacities, and steeper
shapes of the PCT isotherms.

The temperature-dependent para-equilibrium H com-
positions of the cubic Lu(H,N,Va)3 solid solution at sev-
eral fixed N-doping levels are shown in Figure 7. The
general trend under different pressures is the decrease
of H composition with increasing temperature, regard-
less of the N-doping level. At PH2

= 1atm, a phase
transition between H-rich and H-poor occurs at a criti-
cal temperature Tdehyd, which corresponds to the hydro-
genation/dehydrogenation temperature. Clearly, Tdehyd

is very sensitive with respect to the N-doping level. Com-
pared with the undoped Lu-H phase, a N-doping concen-

tration of xN/xLu = 1/3 can lower Tdehyd by more than
600 K, although the maximum H capacity is also lowered
at the same time as discussed above. At PH2

= 1 GPa
and PH2

= 2 GPa, no transition to a H-poor phase is
observed up to 1473 K within the studied temperature
range.
The remarkable effects of the N-doping level on the

PCT isotherms and Tdehyd imply an anion-doping strat-
egy to optimize thermodynamic behaviors of metal hy-
drides. A major problem for some of the highest capac-
ity hydrogen-storage alloys, such as Mg-based alloys [44]
or refractory metal-based high entropy alloys [45, 46],
is their high Tdehyd. Doping is well-known to destabi-
lize metal hydrides [47], but previous efforts mainly fo-
cused on cation-doping, which may be subjected to some
limitations like cost of the dopants and weight increase.
If this strategy can be generalized to those materials
systems, i.e., a moderate anion-doping can significantly
lower Tdehyd with a small trade-off in maximum H capac-
ity, superior hydrogen-storage alloys can be made. We
note that the complex hydrides also feature incorporation
of N or B, but in a much larger amount. One disadvan-
tage of complex hydrides is the great difficulties in revers-
ing the hydrogen release reaction, while the anion-doping
strategy may circumvent such drawback. Although one
possible hurdle for applying the new strategy may be
synthesizing a hydrogen-storage alloy/hydride with su-
persaturated N solutes without N-rich secondary phases,
some experimental studies have reported successful high-
pressure synthesis of Lu hydrides with significant N-
doping [18, 19]. Experimental explorations are desirable
for verifying the anion-doping strategy, which may lead
to hydrogen-storage alloys with superior performance.

CONCLUSIONS

In conclusion, we developed an ab initio thermody-
namic approach by combining Monte Carlo simulation
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and GNN models trained on first-principles data. This
approach can be used to predict pressure-dependent ther-
modynamics and phase equilibria of multi-component
solid solutions, as exemplified by the cubic Lu-H-N
phases. An integral expression is formulated to calcu-
late pressure-dependent Gibbs energies from enthalpies,
which can be obtained from MC simulations. The MC
simulations use a potential energy model based on a GNN
(instead of the conventional CE approach) which achieves
chemical accuracy in cross-validated relaxed energy and
volume test set predicitions using the idealized fcc lattice
structure as input.

Based on the calculated Gibbs energies, phase equilib-
ria of cubic Lu-H-N phases are predicted under different
pressures and temperatures. Under full thermodynamic
equilibrium, N solubility in LuH3−xNy is quite small,
which leads to a hypothesis that the experimentally re-
ported N-doped Lu hydride samples are likely to be non-
equilibrium phases with supersaturated N solutes or con-
tain secondary N-rich phases. Considering the large dif-
ference between interstitial H and N mobilities, para-
equilibrium of cubic Lu(H,N,Va)3 at fixed N-doping lev-
els are calculated, showing good agreement with exper-
imental data. N-doping levels can significantly modify
thermodynamic properties, such as the dehydrogenation
temperature, indicating a potential anion-doping strat-
egy to optimize performances of hydrogen-storage alloys.

We expect this work to provide a general approach to
model thermodynamics of multi-component solid solu-
tions efficiently, which will be especially useful for com-
positionally complex materials such as high-entropy al-
loys, high-entropy ceramics and mixed-anion compounds.
It also offers a first-principles method that can be inte-
grated into semi-empirical frameworks of thermodynamic
modeling like CALPHAD (CALculation of PHAse Dia-
grams) [48–50] and its deep learning counterpart [51].
The approach can be further extended to systems with
lower dimension like surfaces, with applications in high-
entropy catalysts [52, 53]. The approach can be also fur-
ther accelerated by introducing other machine learning
techniques such as active learning [54, 55] for labeling
the data needed for training the GNN model.

METHODOLOGY

First-principles calculations

All DFT calculations were done with the
Perdew–Burke–Ernzerhof (PBE) [56] exchange correla-
tion functional using the Quantum Espresso software.
A plane wave basis expanded up to 42 Ry is used for
the representation of electronic wavefunctions, and a
k-point density of larger than 20 Å in reciprocal space
was used in each dimension. For each structure, the
geometry is relaxed to satisfy the convergence criterion
that all components of all forces are smaller than 0.001
a.u. and the total energy changes less than 0.0001 Ry.

For the solid phases, the Gibbs energies include 0 K
total energies and contributions from pressure, while
the finite-temperature vibrational contributions are
not explicitly calculated. For each pressure, a Vinet
equation of state is fitted to find the equilibrium volume
that minimizes the Gibbs energy, and the corresponding
Gibbs energy is also determined simultaneously.

Monte Carlo simulations

The MC simulations were run at a series of temper-
atures 5000/i K (i = 1, 2, 3, ...) and at three pressures
0, 1 and 2 GPa. To sample the composition triangle of
Lu(H,N,Va)3, the sampling step along the site fraction
of each species (H,N or Va) is 1/18, which leads to 190
sampled compositions in total. For simplicity, the vol-
ume fluctuation around the equilibrium value for each
configuration is neglected. The average energy in each
MC simulation is converged to 0.001 eV. The enthalpy of
the solid solution phase can then be calculated from the
ensemble average using Equation 1, which can be used
to calculate Gibbs energy based on Equation 3.

Graph neural network models

We train a GNN, parameterized by model weights, θ,
to predict DFT-computed Vinet equation of state param-
eters, P , for a given solid solution configuration from its
ideal (unrelaxed) FCC crystal structure representation,
XFCC,

{P} = fGNN(XFCC; θ). (6)

Any input structure therefore has identical lattice vectors
and metal/interstitial site coordinates, while the only dif-
ference between them is the population or absence of N
or H at the possible octahedral or tetrahedral interstitial
sites. Here, the fitted parameters we wish to predict are
P = {E0, V0, B,B′}, which correspond to the energy at
zero pressure, the volume at zero pressure, the equilib-
rium bulk modulus, and its pressure derivative. To aid
in model training we convert E0 to the formation energy
at zero pressure, Ef,0 and convert V0 to the volume per
atom at zero pressure ν0.
While a plethora of increasingly complex and accu-

rate GNN methodolgies [31–33] have been proposed for
materials science applications in recent years, we uti-
lize here the cystal graph convolutional neural network
(CGCNN) formalism [31] since it facilitates training in
low data regimes (∼ 103 or less training examples) by
maintaining sufficiently expressive models with low pa-
rameter complexity. The method is re-summarized here
with the minor modifications made for the GNNs trained
in this work.

1. The idealized crystal structure XFCC is con-
structed as a graph with nodes corresponding to
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atoms and edges representing connections between
neighboring atoms with distance less than a cutoff
radius, rc = 4.5 Å.

2. The initial node feature vector of atomic site i,

v
(t=0)
i , is generated by one-hot encoding its atomic

number. Initial edge features between neighbors
i and j, bij , are encoded by two-body symmetry
functions [57] of the bond distance according to a
set of Gaussian widths (η), centers (Rs), rc, and a
cutoff function, fc:

bij = {exp
[
−η(rij −Rs)

2
]
fc(rij)}. (7)

Here we use η = {0.5, 1.0, 1.5}, Rs =
{1.0, 2.0, 3.0, 4.0, 5.0}, and

fc(rij) =


(
cos

(
πrij
rc

)
+ 1

)
/2 for rij ≤ rc

0 for rij > rc

(8)

3. At each convolution layer, t, node feature vectors
are updated according to the following filter:

v
(t+1)
i = g

v
(t)
i +

∑
j

σ
(
z
(t)
ij W

(t)
1 + b

(t)
1

)
⊙

g
(
z
(t)
ij W

(t)
2 + b

(t)
2

) .

(9)

Here zij = vi ⊕ vj ⊕ bij is the concatenation of
features between connected nodes in the graph,
W1,W2 and b1, b2 represent weights and biases of
different learnable weight matrices (i.e., fully con-
nected neural network layers), σ denotes a sigmoid
activation function, g denotes a softplus activation,
and ⊙ denotes element-wise multiplication.

4. Following T convolution layers, node feature vec-
tors for all N atoms in the crystal are pooled
to compute a global crystal feature vector, vc =

Pool
(
v
(T )
0 ,v

(T )
1 , . . . ,v

(T )
N

)
.

5. Finally, nh fully connected hidden layers are uti-
lized to predict the relaxed formation energy of the
crystal structure, Ef .

All GNN models were constructed and trained with
the architecture and hyperparameters in Table I.

DATA & CODE AVAILABILITY

FCC Lu-N-H DFT training data is included in the
Supplementary Information, which provides cif files of
the idealized FCC geometry and equation of state pa-
rameters for each configuration (the zero-pressure for-
mation energy, the zero-pressure volume per atom, the

Hyperparameter Value

Node feature vector dimensionality v
(t)
i ∈ R8

Number of convolution steps T = 3
Crystal feature vector dimensionality vc ∈ R8

Number of feed forward layers post-convolutions nh = 2
Training epochs 1000
Learning rate 0.05
Optimizer Adam

TABLE I. Architecture and training hyperparameters used
for all models in this study.

bulk modulus, and the pressure derivative of the bulk
modulus). The CGCNN code was used to train the lat-
tice GNN models in this study (https://github.com/
txie-93/cgcnn). The ASE code was used to create a
calculator object for the trained GNN models, which are
called by the Monte Carlo simulations performed using
the ASAP code (https://gitlab.com/asap/asap).
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