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Abstract

Macromolecular crowding in the cellular cytoplasm can potentially impact diffusion

rates of proteins, their intrinsic structural stability, binding of proteins to their corre-

sponding partners as well as biomolecular organization and phase separation. While

such intracellular crowding can have a large impact on biomolecular structure and

function, the molecular mechanisms and driving forces that determine the effect of

crowding on dynamics and conformations of macromolecules are so far not well un-

derstood. At a molecular level, computational methods can provide a unique lens to

investigate the effect of macromolecular crowding on biomolecular behavior, providing

us with a resolution that is challenging to reach with experimental techniques alone.

In this review, we focus on the various physics-based and data-driven computational

methods developed in the last few years to investigate macromolecular crowding and
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intracellular protein condensation. We review recent progress in modeling and simu-

lation of biomolecular systems of varying sizes, ranging from single protein molecules

to the entire cellular cytoplasm. We further discuss the effects of macromolecular

crowding on different phenomena, such as diffusion, protein-ligand binding, and their

mechanical and viscoelastic properties, such as surface tension of condensates. Finally,

we discuss some of the outstanding challenges that we anticipate the community ad-

dressing in the next few years in order to investigate biological phenomena in model

cellular environments by reproducing in-vivo conditions as accurately as possible.

Introduction

While computer simulations to investigate biomolecular behavior are usually performed in

model in-vitro conditions, biological phenomena happen inside a more complex environment,

the cellular cytoplasm. The cell is densely packed with diverse macromolecules, including a

wide variety of proteins and nucleic acids, which act as crowders and can reach intracellular

concentrations as high as 300 g/L.1 Such crowders exert influence via volume exclusion

and specific weak and transient interactions with other macromolecules, known as soft or

quinary interactions.2,3 Additionally, the presence of large immobile macromolecules and

membranes can lead to physical boundaries and confinement. Notably, a major consequence

of the crowded environment inside living cells is the formation of intracellular mesoscale

membraneless bodies, also known as biomolecular condensates. Emerging evidence from

recent studies indicates that biological molecules, such as proteins and nucleic acids, undergo

spontaneous demixing and phase separation, which allow cells to achieve high degree of

spatiotemporal control over the organization of their internal content.4 Examples of such

protein and nucleic acid rich condensates are as varied as P-bodies and stress granules in

cytoplasm, and nuclear condensates such as nucleoli and DNA repair foci.5 Apart from

achieving controlled organization, these condensates play functionally instrumental roles in

a range of biological pathways, such as ribosome biognesis, gene expression, cellular stress
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response and modulation of cellular signalling pathways. Most importantly, the formation

of dysfunctional condensates, especially in their amorphous, solid-like phases, is frequently

associated with neurodegenerative disorders6 and various types of cancer.7

Recent advances in experiments and simulations are paving the way toward a future where

simulating cellular environments is feasible. From the experimental side, proteomics data

provide detailed information about the types of macromolecules and their abundance inside

prokaryotic and eukaryotic cells, while techniques such as cryo-electron tomography (cry-

oET) and cryo-electron microscopy (cryoEM) allow the elucidation of the structure of large

macromolecular complexes. On the computational front, AlphaFold28,9 and AlphaFold310

have demonstrated the potential to accurately model proteins and protein complexes without

the need for experimental structures. Additionally, the advent of graphics processing units

(GPUs) has significantly boosted computational power, enabling the simulation of larger

and more heterogeneous systems. Recent works have highlighted how data from electron

microscopy and other experiments can be combined with AI-based structure prediction tools

to obtain information about proteins in the cellular environment, thereby providing new

insights about intracellular spatial organization and native interactions.11,12

Over the last three years (2021 onwards), the period of focus of this review, numerous

computational strategies have been developed by various research groups to model and sim-

ulate crowded cellular environments and biomolecular phase separation and condensation

inside cells. These models vary significantly in scale, ranging from single-protein systems to

multicomponent ones, leading up to models encompassing all the biomacromolecules within

a bacterial cytoplasm. Our goal with this review is to compile those computational methods

which have been developed in the last few years for simulating biomolecular crowding and

condensation in cellular environments. We aim to encourage progress towards a future where

these methods can be collectively implemented to simulate systems that mimic cellular envi-

ronments as closely as possible. This approach could lead to a deeper understanding of how

crowding and the dense cellular medium influence biomolecular events. With this aim in
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mind, we have described in this review the models and systems used to investigate cellular

crowding and condensation, the computational methods employed to simulate these systems,

and the key mechanistic insights gained from these models and simulations.

In this brief review, it is not possible to describe in detail all the computational methods

and the systems to which such methods were applied. We refer the reader to a few of

the reviews which have been published in the last few years with a detailed discussion

on crowding, biomolecular condensates and computational methods to investigate crowded

cellular environments and condensates.4,13–20 Here, we have dedicated two separate sections

to the modeling and simulation of intracellular crowding and protein phase separation and

condensation inside cells. While both topics constitute the subject of biomolecular crowding

within cells, we chose to separate them to discuss the specific modeling and simulation

methods developed for each type, as these fields have evolved rather independently over the

years. By addressing these two areas together in this review, we aim to encourage a holistic

approach to modeling of intracellular crowding.

Cellular and crowded environments

Structural models

In this section we discuss the recent works which have developed methods to model biomolec-

ular crowding and crowded cell-like environments. The models vary from simple systems,

with one type of protein crowder, up to large, heterogeneous systems containing all the

elements of a prokaryotic cell, as summarized in figure 1.

At a fundamental level, the effect of the complex and heterogeneous cellular environment

can be loosely mimicked by constructing models of simple crowded systems, with high con-

centrations (tens to hundreds of g/L) of one type of crowding agent. In this direction, the

simplest in-silico models have used synthetic, non-biological crowders like polyethylene gly-

col (PEG), Ficoll or fullerene molecules.21–25 These crowders reproduce the effect of volume
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Figure 1: Macromolecular crowding within cells dictates various cellular functions, including
protein diffusion, protein-protein interactions, protein-ligand association/dissociation, and
protein phase separation or condensation. This review explores the molecular modeling
and simulation methods developed in last few years to study the effects of macromolecular
crowding across various spatio-temporal scales. These methods range from modeling the
effect of crowding on protein multimers (a), understanding molecular mechanism of protein
condensate formation to simulating the cytoplasms of multiple organisms (b) and developing
structural models of entire cells (c).

exclusion, as can be expected with biomolecules that contribute to intracellular crowding.

However, since they are mostly chemically inert in nature, the auxiliary effects caused by

soft interactions between crowders and a test protein are usually cannot be captured in this

case. Although, a very recent work22 has challenged this hypothesis and proposed that there

are specific chemical interactions between PEG and proteins, which should be considered to

understand the molecular level effect of PEG-induced crowding.

Nevertheless, to represent both volume exclusion and soft interactions induced in a

crowded environment, protein crowders are used more commonly. Proteins such as bovine

serum albumin or hen egg white lysozyme26,27 are typically used due to the availability of

experimental data, since these proteins can be easily extracted in high concentration, which

is required for an experimental set up. Studying crowding using only one kind of protein

crowder offers the advantage of system simplicity and the possibility to gain detailed mech-

anistic insights. However, since these systems contain only a single type of crowder and,
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therefore, a limited variety of soft interactions with the test protein, they do not constitute

a true depiction of in-vivo conditions.

Due to these reasons, attempts have been made to increase system complexity further

by constructing heterogeneous crowded environments, by adding different protein crowders,

in order to replicate the cytoplasm of different cell-types as closely as possible.28,29 The E.

coli cytoplasm has been a popular model system in this regard, due to the availability of

many experimental data, like crystal structures of proteins, proteomics studies and diffusion

rates.30 The pioneering work by McGuffee and Elcock28 was the first one to propose a fully

atomistic model of the E. coli cytoplasm, where the system was composed of 50 types of

protein, which led to a macromolecular concentration of 275 g/L. This model has since been

adopted by many crowded environment studies. In a more recent study, Rickard et al.29

have developed a simplified atomistic model of the E. coli cytoplasm, using single copies of

12 types of proteins as crowders. They have employed this model to investigate the effects

of a crowded cytoplasm on the conformations of ATP molecules, a key metabolite present

in high concentrations within cells. In a similar work, Timr et al31 have used coarse-grained

simulations to develop a heterogeneous model of E. coli cytoplasm with 35 protein families

and a total of 197 proteins in order to investigate the effect of crowding on the thermal

stability of proteins.

With the advent of more powerful computational resources, the scientific community

has made significant progress toward constructing more realistic computational models of

intracellular crowded environments. As a latest part of the progress, structural models of

entire cells are being developed. At this stage, most of the models are restricted to prokaryotic

organisms. In fact, the most popular organism adopted as a model system for complete cells

is the Mycoplasma genitalium, due to the small cell size and limited number of proteins.32–34

A pioneering work in this direction has been done by Maritan et al,34 who have built the

first structural model of the entire cell of Mycoplasma genitalium using a combination of

macromolecular modeling and visualization softwares designed specifically for proteins, lipids
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and nucleic acids, such as, CELLPACK , LatticeNucleiod, LipidWrapper and Mesoscope.35,36

The authors have first constructed a coarse-grained (CG) model of the Mycoplasma cell,

followed by which the atomistic coordinates of the biomolecules have been mapped on to

the corresponding CG beads to build a holistic, atomistic bacterial cell model.34 The first

minimal synthetic bacterial cell, JCVI-syn3.0, a derivation from Mycoplasma, is also being

used for 3D cell modelling studies.37,38 A representative CG model of the JCVI-syn3.0 cell,

composed of all the subcellular compartments, has been developed by Stevens et al using

CG-based modeling tools like Bentopy,37 Polyply39 and TS2CG40 of the Martini modelling

ecosystem.37 It should be noted, however, that these models of entire cells have not been

simulated so far due to the challenges that the current simulation tools encounter while

dealing with large system size, as discussed by Stevens et al.37

While most models available so far are for prokaryotic cells, some models of more complex

eukaryotic cells are also available. A human cytoplasmic system made of 10 protein families

was constructed by Russel et al to study macromolecular dynamics in cells.41–43 The main

goal of these studies is to build initial structures of cells or portions of the cytoplasm, which

can be used later to study the dynamics of proteins of interest in native cellular environments

as well as characterize the complex molecular interactions that drive different biochemical

processes within cells. The key challenges still lie in the lack of visualization, simulation and

characterization methods of such large, dense and complex models.

Computational methods

The models of cellular cytoplasms and crowded environments described in the previous

section, in combination with simulations, have been used to provide mechanistic insights

about the effects of crowding over biological phenomena. However, due to the challenges in

the simulation of large and heterogeneous environments, different studies have focused on

distinct aspects of crowding effects, using different system sizes and levels of resolution. On

one hand, atomistic simulations provide in-depth molecular-level insights into conformational
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dynamics and interactions of proteins in crowded environments. On the other hand, lower

resolution simulation techniques, from coarse-grained simulations to Brownian dynamics or

Monte Carlo simulations, allow the investigation of longer timescales, while compromising

on the smaller details. Here, we briefly introduce and discuss the applications of different

simulation techniques in recent years which are also summarized in Table 1.

Monte Carlo simulations

Monte Carlo (MC) simulations provide analytical solutions for the calculation of the dynamic

properties of biomolecules by implementing a mathematical interpretation of the crowded

environment. In MC simulations, the crowders can be either considered inert, or can be

assumed to have interactions with a previously set affinity towards the target protein.44–46

Inert crowders have only a steric effect, which was shown by Wang et al to be a major

contributor in the polymerization process. The authors compared MC simulations of the

bacterial tubulin proteins BtubA and B in the presence of sticky and non-sticky crowders,

and postulated that exogenous proteins could also function in cells even though the local

tertiary interactions changed due to the volume exclusion effects of crowders.45 In a different

study, the presence of protein-crowder interactions significantly reduced the time needed for

a DNA-binding protein to locate its target DNA sequence, as compared to the time needed

in the presence of inert crowders.46

The MC simulations are useful for combining available theoretical models for assessing

the dynamics of monomers, polymers and crowders by manipulating properties such as affin-

ity between particles easily, and testing for occurrence of events like polymerization and

successful target search at greatly reduced computational demand. For example, using a

lattice based MC model in which the size of the crowders could be changed, a simulation of

2000 proteins with 40000 crowders for 200 seconds was performed by Basu et al.44 However,

the drawback is that there are no structural insights derived from this method.
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Brownian dynamics simulations

A popular mesoscopic method to study crowded environments is Brownian Dynamics (BD)

simulations, where the motion of particles is described by overdamped Langevin dynamics,

and a stochastic force is used to represent collisions with water, which is represented im-

plicitly. This method is very versatile in terms of biomolecule representation, and number

and type of crowders.47 Several softwares have been developed to help prepare systems, sim-

ulate and analyze BD simulations, as summarized in a previous review.48 BD simulations

allow for large time steps (around picoseconds) to be used to propagate motion, at the ex-

penses of using implicit solvation and removing the internal motion of molecules. It is thus

useful to achieve large simulation timescales (up to several microseconds). If the currently

available BD simulation softwares are further modified to integrate with GPU-accelerated

parellel computing resources, BD simulations will have the potential to achieve even longer

timescales. These simulations are helpful to record bulk properties such as diffusion, protein

association and aggregation, which are hard to observe in classical MD simulation timescales,

since the time step of the latter is usually shorter, 1-2 femtoseconds.

Using the software ReaDDy, a particle-based reaction-diffusion simulator,49,50 and a sys-

tem with 5 copies of a single crowder protein and 2 copies of the target protein GB1, all

represented using single beads, BD simulations revealed that, while inert crowders could

promote dimer association, attractive crowders with affinity for GB1 could disrupt the pro-

cess.51 Other examples of application of BD simulations include the use of the software

Smoldyn, a program for cell-scale biochemical simulations,52 to investigate protein diffusion

rates in the E. coli cytoplasm,53 using a system with up to 500 spherical particles to rep-

resent cytoplasmic proteins. Geom3D54 was used to investigate substrate association in a

system with 2 enzymes, their substrate and 19 inert crowders. The simulations showed that

crowding reduced the diffusion rates, thereby increasing the enzyme-substrate association

rates.55 In another example, Simulation of Diffusional Association (SDA)56–58 was used to

simulate large systems, such as a system with 80 small molecules and 440 protein crow-
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ders, which was used to study the diffusion rates of 4 different small molecules in the same

crowded environments. The study observed that, contrary to expectations, the diffusion

rates of small molecules could increase in a crowded environment due to reduced aggrega-

tion or surface desorption.26,59 SDA was also used to investigate subdiffusion of proteins

due to crowding.60 The Bd Box software61 was used by Slyk et al. to investigate the ef-

fects of softness and hardness of flexible protein crowders on the diffusion of particles by

modifying the attractive potentials of the crowders.62 Additionally, new techniques such as

‘Doppelganger simulations’63 have been developed to replicate the experimental diffusion of

nanoparticles in crowded environments. By using another technique, reversible association

and dissociation events between particles were simulated to show the improved rebinding

of ligands to target proteins due to the cage effect of crowding, which is characterized by

transient confinement of a particle by its neighboring particles.64

Coarse-grained MD simulations

To gain further molecular insights without demanding high computational resources, coarse

grained (CG) representations of the macromolecules can be used in combination with molec-

ular dynamics (MD) simulations. Here, the crowder proteins, test proteins and water can

be represented by one or more beads. Simulations with a CG force field can achieve long

timescales as compared to atomistic simulations. At a lower resolution, where each protein

is a spherical particle, a longer timestep of 1 ps can be used, allowing one to simulate up to

1.2 millisecond.51 At higher resolution, where every amino acid in a protein is represented as

one bead, the time step is usually shorter, around 1 femtosecond.31,65 In an effort to improve

the performance of large-scale CG MD simulations, a unique domain decomposition scheme

with dynamic load balancing was implemented by Jung et al in the Generalized-Ensemble

Simulation System (GENESIS) software package66–68 as an MD engine called CGDYN.69

The effects of the crowded environment on the stability and folding of proteins,65,70 dimer

formation51 and fold switching71 have been studied using CG force fields like Martini,72
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OPEP31 and SMOG.73 Bazmi et al used potential functions to describe and alter protein-

crowder interactions. Langevin Dynamics combined with coarse-grained models of protein

G and crowders revealed how volume exclusion provides stability to all folded states.71

Additionally, CG MD simulations were combined with enhanced sampling methods to further

explore the effects of crowded environments on protein-ligand binding and protein folding.

For example, to improve sampling of protein dimerization, Pradhan et al used well-tempered

metadynamics simulation combined with the parallel tempering (PTMetaDWTE) method.51

Destabilization of the protein dimers in the presence of lysozyme as protein crowder was

observed.

One of the advantages of CG MD simulations over BD simulations is that protein con-

formational changes can be included in the CG MD simulations. While the dynamics of

proteins can be observed at lower computational demand with CG force fields, detailed

molecular interactions, such as hydrogen bonds, are still missing.

All-atom MD simulations

All-atom (AA) MD simulations have been used to investigate a variety of crowded systems

over a large range of simulation times. While the timescales and system sizes of MD sim-

ulations have increased due to the speed up in calculations provided by GPUs, AA MD

simulations also benefited from the high performance of specialized hardware, such as An-

ton2,74 and specialized software, such as the GENESIS software package.66–68 Kasahara et al

simulated the binding of the Src kinase and its inhibitor in diluted and crowded conditions,

using bovine serum albumin as a protein crowder, for 100 µs with Anton2 supercomputers.27

AA MD simulations were also employed to study the stability of macromolecules and poly-

merization processes in the presence of crowders and osmolytes.25,70,75,76 Timr et al investi-

gated protein thermal stabilization in crowded environments using the OPEP force field and

a hybrid particle–lattice approach called Lattice Boltzmann molecular dynamics (LBMD)

simulation.31 Using a multiscale approach, snapshots of CG MD simulations were used to
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perform AA MD simulations using the Replica Exchange with Solute Scaling2 (REST2)77,78

enhanced sampling method to investigate protein unfolding events.70

Due to the overwhelming amount of data that is generated in such large-scale AA MD

simulations, data analysis becomes a challenge. A set of analysis tools called Spatial decom-

position analysis (SPANA) was recently developed in the GENESIS software package, with

the aim of assisting trajectory analyses of such large-scale simulations.79

The advantages of using AA MD simulations are the higher level of detail in the repre-

sentation of molecular interactions in the systems, conformational changes of molecules are

fully taken into account, and binding events and their intermediate states can be studied in

detail. However, MD simulations of crowded systems with AA representation have a very

high computational cost, and therefore the computational resources required to run such

systems are enormous.

Table 1: Summary of methods, simulation time and timestep, number of crowders or in-
trinsically disordered proteins (IDPs), software, force field and properties investigated in
recent simulations employed to study crowded and cell-like environments and biomolecular
condensates.

Method

of

simulation

Total

simulation

time

(µs)

Simulation

time-step

(ps)

Total

number of

crowders

/ IDPs

a Software Force fieldb
Properties

observed
Ref.c

Crowded Environment

BDd 2x10ˆ6 1.5x10ˆ9 NAe SMOLDYN - Diffusion 53

BD 1200 1 5 READDY - Dimerization 51

BD 10 0.5 111 BD BOX - Diffusion 62

BD 10 0.5 440 SDA7 - Diffusion 26

BD 5 0.5 NA SDA7 - Diffusion 60

BD 3 0.5 19 Geom3d - Diffusion 55

aNumber of crowders are reported for crowded environment simulations and number of intrinsically dis-
ordered proteins (IDPs) are reported for biomolecular condensate simulations

bForce field is only mentioned for coarse-grained and all-atom molecular dynamics simulations.
cReference.
dBrownian Dynamics
eInformation not available.
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BD NA NA NA

MATLAB

custom

script

- Diffusion 63

CG-MDf 20 0.4 5 GROMACS MARTINI Dimerization 51

CG-MD 10 0.2
31,60,

90, 122, 185
GROMACS MARTINI Ligand binding 80

CG-MD
1,

1

0.1,

0.2

9, 64,

45, 209, 209
GROMACS OPEPv7 Protein stability 31

CG-MD,

AA-MD

1,

1

0.1-0.2,

0.02

CG- 9,

64, 45,

209, 209;

MD- 1, 3

GROMACS

OPEPv4,

AMBER99SB-

ILDN

Protein stability 70

CG-MD 0.04 1 64 GROMACS SMOG Protein stability 65

CG-MD NA NA NA
in house

software
- Protein stability 71

AA-MDg 35 0.02 10, 15 NAMD CHARMM36

Protein stability,

domain

motion

43

AA-MD 32 0.02 10, 15 NAMD CHARMM36
Complex

formation

41

AA-MD 30 0.02 10, 15 NAMD CHARMM36
Protein stability,

folding

42

AA-MD 21 0.01 16 NAMD CHARMM36U Small molecule stability 29

AA-MD 1 0.02
2, 4,

2008
GENESIS CHARMM36

Diffusion,

ligand binding

27

AA-MD 1 0.01 3517-316 Desmond
AMBER99SB-

disp

Protein stability,

aggregation

25

AA-MD 0.5 0.01 1,8 GROMACS CHARMM22 Protein stability 75

AA-MD
0.5,

1
0.02 130, 16

NAMD,

OPENMM
CHARMM36

Diffusion,

protein stability

23

AA-MD 0.5 0.02
130,

110

NAMD,

OPENMM
CHARMM36

Diffusion,

protein stability

24

AA-MD 0.25 0.01 NA GROMACS CHARMM36m
Ligand

binding

76

fCoarse-grained molecular dynamics
gAll-Atom Molecular Dynamics
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AA-MD 0.005 0.02
15,

30, 2
NAMD CHARMM27

Diffusion,

polymerization

21

Biomolecular Condensates

CG-MD 27-40 20 1-2 GROMACS MARTINI3
SAXS, PRE,

dimerization

81

CG-MD 2.5-20 20 NA OPENMM COCOMO (LD)

Clustering,

phase

separation

82

CG-MD 12 30 50-672 GROMACS MARTINI2

Surface tension,

shear viscosity,

phase diagram

83

CG-MD 10 20 100 LAMMPS LJ (LD)

Self-assembly,

orientational

order parameter,

disorder to

order transition

84

CG-MD 5 10 100 LAMMPS HPS h (LD)

Diffusion,

second virial

coefficient
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Phase Separation and Biomolecular Condensates

A direct consequence of intracellular crowding is the phase separation or condensation of

biomolecules, resulting in the formation of membraneless organelles with regulated architec-

ture. In fact in recent years, the field of intracellular biomolecular condensation has largely

proliferated, with significant collective efforts being dedicated to understand the molecular

origins of the regulated organization of materials within cells.4,5 This interest has intensified

with the growing recognition of the crucial role these condensates play in human health and

disease. Beyond their biological roles, a strong interest has developed in the community to

explore how these condensates function within the crowded cellular milieu, and to identify

the specific molecular interactions that underlie their dynamic and size-regulated behavior.

A significant challenge in this area is to determine a comprehensive, multiscale view of

the spatial organization and dynamics of protein condensates that would connect to the con-
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Figure 2: Simulation time as a function of the system size (a), statistics of methods (b) and
protein crowders or systems (c) used in recent simulations employed to study crowded and
cell-like environments. Data obtained from the studies reported in Table 1. (a) The graph
shows the log of the number of crowders used in simulations versus the total time of simu-
lations. Smaller systems are typically simulated for longer time scales due to computational
costs. AA-MD: all-atom molecular dynamics; CG-MD: coarse-grained molecular dynamics;
BD: Brownian dynamics. (b) Statistics of methods used by works discussed in the review
in percentage: Monte Carlo (MC), Brownian dynamics (BD), coarse-grained molecular dy-
namics (CG-MD) and all-atom molecular dynamics (AA-MD) simulations. (c) Statistics of
the usage of different types of crowders or systems discussed in the review in percentage.
BSA: bovine serum albumin, PEG: polyethylene glycol.

formational properties and interaction patterns of individual polypeptides within a crowded

environment. Given the extreme structural and dynamic heterogeneity of these condensates,

it is essential to capture the statistical, ensemble-level aspects of how molecules inside the
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condensates are spatially organized. Due to the inherent physical nature of the biomolecu-

lar condensation process, intrinsically complex molecular composition and stoichiometry of

these condensates, molecular modeling approaches have proven to be extremely beneficial

in understanding the underlying physical behavior of the condensate assembly and phase

separation phenomena. Additionally, recent development of the data driven and machine

learning based approaches have been quite successful in predicting the protein structural and

material properties and their role in determining protein condensation behavior.

Recent progress in molecular modeling and simulation techniques has significantly deep-

ened our understanding of the structural properties and dynamics of biomolecules, especially

for those of intrinsically disordered proteins (IDPs) that predominantly constitute biomolec-

ular condensates. These insights have proven to be particularly crucial for understanding

the physical mechanisms underlying protein phase separation and determining their material

and viscoelastic properties. Depending on the scale of resolution, molecular modeling excels

in identifying the residue-specific interaction dynamics within proteins. This allows for the

analysis of how specific intermolecular interactions and molecular composition influence the

structural and dynamical behavior as well as material properties of the protein condensates.

With biomolecular condensates becoming a topic of major interest, molecular simulation

techniques at different resolutions are being developed and corresponding potential energy

functions are being modified, in order to gain access to higher spatiotemporal scales and study

molecular properties and phase separation of IDPs with increasing statistical accuracy. In

this section, we discuss the recent progress made in the past few years in developing com-

putational models and methods to investigate the molecular origins of biomolecular phase

separation and to characterize their intrinsic structural and dynamic behaviors (details of

the data obtained from the simulations of different molecular models are tabulated in Table

1).
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Physics based methods at different levels of resolution

Coarse-grained modeling

Biomolecular condensate assembly and phase separation occurs at a mesoscale level, which

is the scale that straddles the molecular (nanometer) and cellular (micrometer) scales. To

address the challenges posed by large system sizes and long timescales at this scale, im-

plementing coarse-grained (CG) molecular modeling methods emerges as the most effective

strategy. CG modeling is essentially a zoomed out view of atomic resolution of a molecule,

where multiple atoms together are represented as a single CG bead. Over the years, several

strategies have been adopted by different groups in order to design efficient coarse-grained

models of IDPs, thereby reproducing their structural behavior and determining correspond-

ing characteristic mesoscale dynamic and material properties.

One of the most widely used coarse-grained force fields is the Martini, which represents

an average of four atoms into one single interaction site. For the older version of Martini

2,96 each interaction site falls into one of the four bead categories based on the chemical

properties of its constituent atoms, while for the newer and improved version of Martini

3,72 this category is further modified into seven coarse-grained, chemical bead types. In

spite of Martini force field’s success in reproducing lipid bilayers’ properties, biomolecular

simulations using Martini force field encountered several limitations over the years due to

the incorrect representation of intermolecular interactions in this case. In order to accurately

model phase separation of FUS low complexity domain (LCD) using Martini 2.2, Benayad

et al83 effectively rescaled the protein–protein Lennard-Jones (LJ) interactions. With this

readjustment of protein-protein interactions against solvation and entropic contributions,

they could reproduce the experimental excess transfer free energy between the dense and

dilute phases of protein condensates. In a related study, Larsen and colleagues81 found that

the Martini 3 force field tends to underestimate the radius of gyration — a measure of a

protein’s size — for several IDP sequences, including FUS LCD, when compared to the
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corresponding small-angle X-ray scattering (SAXS) data. Rescaling the protein-water LJ

parameters by 10% greatly improved the agreement with SAXS data. They tested the effect

of rescaling further by performing homodimerization simulation of multiple IDP sequences,

and compared the results with paramagnetic relaxation enhancement (PRE) experiments.

The rescaling of the protein-water interaction also greatly improved the agreement with PRE

data. In a very recent study, Wasim et al87 demonstrated that the tuning of the protein-

water LJ parameters (both σ and ϵ) resulted in successful modeling of the phase separation

of α-synuclein (αS), aggregation of which is linked to Parkinson’s disease. To explore how

crowded cellular environment influences the phase separation of IDPs, they incorporated

fullerene-based crowders in order to replicate cellular crowding in vitro. They found that

the addition of crowders led to an upregulation of αS aggregation, which they primarily

attributed to an excluded volume effect.

To accurately characterize the phase separation of IDPs, the modeling needs to incor-

porate multiple IDP chains and faithfully replicate their intermolecular interactions, which

can be computationally demanding. One effective approach towards modeling the assembly

and phase separation of IDPs involves representing each amino acid as a single CG bead

within the IDP chain. Mittal and colleagues have been at the forefront of developing this

class of CG models, where they define the nonbonded interactions between the CG amino

acid beads based on hydropathy scales.97 In a follow-up study, Mittal and colleagues refined

their initial model by adopting the Urry Hydropathy Scale89 instead of the previously used

Kapcha-Rossky (KR) hydropathy scale, which could not accurately predict the experimen-

tally observed phase separation propensities of IDPs upon mutations. In order to validate

the newly optimized model, they compared the coexistence densities of two IDPs, FUS LCD

and DDX4’s N-terminal domain, with experimentally observed values and found very good

agreements. They also investigated the model’s ability to capture the effect of certain bulk

mutations to the IDP sequences, and the changes in phase boundary upon mutation were in

good agreement with experimental observations. They further implemented this model to
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investigate the relationship between sequence patterns in IDPs and their material properties,

e.g., viscosity and surface tension, which were found to be strongly correlated.88 The wide va-

riety of applicability of this model is tested by different studies,86,91 recent examples being the

investigation of the coupling between thermodynamic and dynamic properties of the conden-

sates as a function of IDPs’ amino acid sequence,85 and post-translational phosphorylation

in quality controlling IDP droplets against amyloidogenicity.90 A different version of a simi-

lar model has been constructed in order to achieve chemical accuracy for the intermolecular

behavior of IDPs, particularly for hydrophobic and electrostatic interactions such as π-π and

cation-π 98 which are known to be key drivers in the liquid-liquid phase separation of IDPs.

In a new variant of residue-based CG model COCOMO (Concentration-dependent Conden-

sation Model), developed by Feig and coworkers,82 both amino acid and an RNA nucleotide

are represented as a single spherical bead. The corresponding non-bonded interaction param-

eters are adjusted according to the chemical feature of the respective CG beads. This model

reproduces concentration dependent phase separation behavior of both disordered peptides

and mixtures of peptides and RNA, which are well in agreement with experimental scatter

plot measurements. In spite of their generic architecture, these models have been proven

to be quite successful in predicting condensation of more complex systems, such as nucleo-

porin proteins (FG-Nucleoporins or FG-Nups), which are lined along the central channel of

nuclear pore complexes (NPC),99 and liquid-liquid phase separation (LLPS) of chromatin

driven by the intrinsic nucleosome plasticity.100 The model of FG-Nups99 is designed to be an

implicit solvent model of IDPs, acronymed as 1BPA (one-bead-per-amino-acid), where the

force field includes backbone stiffness of the disordered proteins from experimentally derived

Ramachandran data, and the non-bonded interactions are represented as a combination of

hydrophobic, electrostatic and cation–π terms. In order to explore LLPS propensity of chro-

matin, the oligonucleosome systems are coarse-grained at a resolution of one bead per amino

acid for the protein, and the DNA at a resolution of one bead per base pair. The chemically

specific detail included in this model is found to retain the physicochemical properties of the
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different nucleosome types within chromatin and can take into account the effect of amino

acid point mutation on chromatin organization behavior.100

To explore the physical principles underlying biomolecular condensation process, another

popular approach has been to perform molecular simulations at a phenomenological level.

This class of models take a more minimalist approach by implementing beads-on-a-string

designs that lack chemically specific information about the amino acid residues and are

rather composed of coarse-grained beads with distinct interaction parameters. Dissipative

particle dynamics have been used in multiple studies to understand the fluid network in the

dense phase of model IDPs,101 effect of macromolecular crowding on condensate phase be-

havior and internal structure,102 and membrane curvature sensing behavior and endocytosis

induced by model condensates.103,104 In these studies, the IDPs are represented as linear

polymers composed of different hydrophilic beads, each displaying distinct interaction pat-

terns. In a seperate study, the dynamics of IDP assembly and the transition from disordered

to ordered states in FUS were investigated by coarse-graining its intrinsically disordered

architecture into a cluster of effective interaction sites.84 In this model, the coarse-grained

resolution for the two distinct domains of FUS – prion like domain (PLD) and the RNA

binding domain (RBD) – are chosen to be different. While the 160 residue long PLD of

FUS is modeled through 20 effective interacting beads, the arginine-, glycine-rich region

(RGG) of the RBD is represented at a resolution of 5 amino acids per bead. A similar

model is used to monitor the thermodynamic conditions governing the transition of homoge-

neous FUS condensates to multiphase, heterogeneous assembly. In this case, a 20-bead long

Lennard–Jones (LJ) polymer is designed to represent the FUS architecture, where one bead

is equivalent to approximately 26 amino acid residues.93 This approach is particularly useful

for understanding complex system behavior, such as membrane remodeling by biomolecular

condensates. Primarily designed to replicate in-vitro biophysical experiments, these models

have been effectively implemented to study the onset of endocytosis and exocytosis of model

coacervates.105
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All-atom simulations

While advanced experimental techniques such as NMR spectroscopy, single-molecule FRET,

SAXS, small-angle neutron scattering (SANS) as well as CG molecular modeling are rou-

tinely employed to explore the collective structural and dynamical behavior of IDPs, ac-

curately measuring their molecular motions at an atomic resolution and determining the

conformational heterogeneity associated with their structural disorder continue to pose sig-

nificant challenges. All-atom simulations hold great potential in addressing this issue by

providing the most detailed representation of any molecular systems. However, their imple-

mentation for estimating collective behavior of phase separating IDPs is rather restricted as

the associated large system size and long timescales make these simulations computationally

extremely demanding. Therefore, the use of atomistic simulations for these systems has

been largely limited to generating starting conformations for CG simulations106 or mapping

interaction behavior for designing CG models98 for a long period of time.

Over the past two to three years, there has been an intriguing shift in this approach, as

several research groups started implementing all-atom simulations in order to develop un-

derstanding of various thermodynamic and kinetic aspects of LLPS in IDPs, such as, their

solvation behavior,92 effect of post translational modification on condensate assembly,94 in-

trinsic dynamics of IDPs within phase separated condensates,107 to name a few. In the first

instance, Mukherjee and colleagues estimated how the entropy gain from the water released

during FUS-LCD assembly can thermodynamically drive their phase separation pathway.92

In order to understand the effect of phosphorylation on FUS-LCD oligomerization, Lao

and coworkers performed replica exchange with solute tampering (REST) simulations and

demonstrated that phosphorylation impede FUS dimerization, and potentially disrupts FUS

fibrillar structure.94 While CG models with reduced dimensionality are effective for estimat-

ing mesoscale properties of condensates (e.g., surface tension and viscosity), it is rather chal-

lenging to use the coarse representations of IDPs in order to gain molecular level insight into

the dynamic behavior of IDPs within their phase-separated condensates. In order to address
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this issue, Schuler and colleagues107 conducted massively large-scale all-atom simulations to

study the conformational features of two intrinsically disordered human proteins—histone

H1 and its nuclear chaperone, prothymosin-α (ProTα), which are oppositely charged and un-

dergo phase separation into a protein-depleted dilute phase and a protein-rich dense phase at

high concentration. The analyses from the MD simulations are supported by single-molecule

Förster resonance energy transfer (FRET) measurements, revealing that despite the high

bulk viscosity of the dense phase, proteins within this phase exhibit highly dynamic be-

havior which is characterized by transient multivalent interactions between the oppositely

charged constituents. In a similar study, the dynamic behavior of intrinsically disordered

domain of the nucleoprotein of measles virus NTAIL was explored at an atomic resolution

in its dilute and condensed solution phases respectively.95 The NMR relaxation rates of the

protein were estimated from the corresponding MD trajectories in both the phases at three

different concentrations and were validated against corresponding chemical shifts from NMR

relaxation data. While it was observed that the local conformational sampling of the back-

bone was more or less preserved regardless of the solution density, the backbone dihedral

angle dynamics and collective, chain-like motions of the IDPs were drastically slowed down

in the dense phase. All-atom MD simulations aided with non-boltzmann, biased techniques

also have the potential to determine the full conformational free energy landscape associated

with disordered structure of IDPs. To gain insight into the complex conformational ensem-

ble of unstructured proteins, Li et al.108 utilized multiple enhanced sampling techniques,

including bias-exchange metadynamics and parallel-tempering well-tempered metadynamics

in order to analyze the structural behavior of an archetypal intrinsically disordered protein

(IDP), DHH1. Jung et al used the GENESIS engine to simulate the fusion of IDP droplets,

study the associated shape changes and ’mixing’ of constituents.69
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Data Driven Approaches to Predict Protein Phase Separation

With the emerging application of machine learning and artificial intelligence in life sciences

over the past few years, there has been significant progress in understanding the phase be-

havior of protein condensates through data-driven modeling approaches. One major drive

in this regard has been to develop machine learning based predictor tools in order to predict

phase separation propensity of proteins by utilizing the ideas from their known features. The

importance of amino acid sequence of IDPs in governing their condensate forming tendency

has been widely postulated based on their electrostatic interaction behavior (π-π, cation-π,

hydrophobic interactions) or patterning of their low complexity region. To find a general

rule in this regard, Saar and coworkers developed the algorithm DeePhase109 for predicting

LLPS propensity from the amino acid sequence of IDPs. To develop the algorithm, they

initially gathered data from the publicly accessible LLPSDB database110 and identified a

pattern among proteins with high LLPS propensity, characterized by amino acid sequences

that are hydrophobic and predominantly disordered, with lower Shannon entropy, and en-

riched with polar residues. They used the derived knowledge about the sequence-specific

features of IDPs as well as implicit protein sequence embeddings generated by a language

model to construct machine-learning classifiers, which they used to identify LLPS prone

protein sequences from the human proteome at a high accuracy. A similar LLPS prediction

tool, PSPredictor, based on the amino acid sequence of proteins, was developed by Chu et

al111 which is reliant on features derived from protein specific language models, specifically

the word2vec model. The data-driven approach has been applied to various other predic-

tive analyses, including the design of predictive hydrophobicity scale, which can predict the

phase separation properties of a protein based on its amino acid sequence.112 In an attempt

to find the thermodynamic-dynamic trade off behavior in protein condensates, Jacobs and

coworkers85 implemented a combination of Bayesian optimization techniques with supervised

machine learning models to design new polypeptide sequences and predict the physical prop-

erties (e.g., second virial coefficient B2 and self-diffusion coefficient) from their amino acid
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sequence features. Afterwards, they validated these predictions by determining the phase

separation propensity of these polypeptides through large scale MD simulations using a CG

model that has been discussed previously.89 A recent breakthrough in this direction has

come through the work of Larsen and colleagues,113 in which they have tested the predictive

power of an optimized, transferable CG molecular model CALVADOS in order to generate

conformational ensembles for all the IDP sequences in the human proteome. They estab-

lished structure-function relationship for all the IDPs analyzed from their conformational

ensembles and used this knowledge to train a machine-learning model to predict protein

compaction propensity from the respective amino acid sequences. A general outcome of this

work is the conserved conformational properties of the orthologues of human proteins.

Mechanistic insights obtained from simulations

The models of crowded environments and of the cellular cytoplasm, in combination with the

different physics-based and data-driven methods to investigate crowded environments and

protein condensation mechanisms showcased in the previous sections, have been applied to

study fundamental biological properties and phenomena, such as protein and small-molecule

diffusion, protein-protein and protein-ligand binding, and the viscoelastic and surface proper-

ties of condensates inside cells. In this section, we summarize the main mechanistic insights

provided by recent simulations about how the physical behavior of biomolecules, protein

structure and dynamics and their phase separation behavior are affected by crowding and

the cellular environment (Figure 3). Interestingly, in some instances unexpected results

are observed, such as increased diffusion rates or increased protein-ligand binding due to

crowding.
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Figure 3: Properties investigated in simulations of crowded environments (a), cytoplasms
and biomolecular condensates (b). (a) The excluded volume and quinary interactions reduce
the diffusion rates of proteins in the cytoplasm. Binding of ligands to their target proteins is
facilitated as the effective concentration of the ligand increases in crowded conditions. Sim-
ilarly, protein structures are more stable and compact as the volume available for unfolding
of proteins reduces in crowded conditions. (b) Phase separation of cellular materials to form
biomolecular condensates can be facilitated by multiple physical parameters, ranging from
the nature of the amino-acid sequence of biomolecules to the pH and cooperative electro-
static interactions. This in turn regulates their phase separation propensities, mechanical
behavior as well as viscoelastic properties.

Diffusion

A well-established effect of crowded environments is the reduced diffusion rate of macro-

molecules and metabolites, which can be attributed to volume exclusion by the crowders,

which act as obstacles to free diffusion, as well as to the weak interactions with crowders.

Such reduced diffusion rates of proteins or substrates in crowded environments was mea-

sured in several studies.27,54,114 However, contrary to general expectations, studies of the

polymerization of actin and tubulin demonstrated their higher diffusion rates in the pres-

ence of crowders, resulting in faster elongation of cytoskeletal filaments compared to more
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dilute environments.21,45,46

Usually, it is observed that volume exclusion prevents the free diffusion of macromolecules16

but a few studies have also focused on other effects of volume exclusion. Kompella et al60 ob-

served protein subdiffusion in BD simulations, which was due to the rattling motion of cages

formed by crowders that evolved in absence of any significant interactions between the tracer

protein, chymotrypsin inhibitor 2, and the crowder protein BSA. In the presence of lysozyme

crowders, however, the subdiffusive effect was lost, since there were more protein-crowder

interactions.

The role of protein-crowder interactions on diffusion was demonstrated in recent stud-

ies.23,24 The authors used PEG and Ficoll as crowders in MD simulations and experiments,

and the viral enzyme NS3/4A as a tracer protein. Two types of representation for the crow-

der PEG were used in this study; the all-atom representation of PEG included the effects

of both volume exclusion and weak interactions with the tracer protein, and a CG model of

folded PEG, which had no interactions with the tracer protein. The authors observed 40%

reduced translational diffusion rates of the enzyme’s peptide substrates in the presence of

both PEG models. The rotational diffusion rates were also found to be lower, accompanied

with increased formation of transient clusters of tracer protein with PEG as compared to

that observed with Ficoll. This was found to be due to the occurrence of more interactions

between PEG and the enzyme, and is in line with experimental evidence. The authors also

observed that while the affinity of the enzyme for its substrate did not change with the

addition of crowders, its activity rate in presence of the substrate decreased with PEG and

increased with Ficoll.

The contribution of weak interactions between target proteins and crowder proteins was

further explored using BD simulations and experiments of fluorescence recovery after pho-

tobleaching (FRAP) to investigate the diffusion rates of small drug-like molecules.26 The

authors observed, for one of the small molecules investigated, fluorescein, decreased diffusion

rates in the presence of protein crowders such as BSA and lysozyme due to weak interac-
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tions between the small molecule and the crowders. Surprisingly, the authors also observed

increased diffusion rates for some small molecules in the presence of protein crowders, an

effect that has been attributed to reduced self-aggregation of the small molecules, as well as

reduced interaction with the glass surfaces used in in-vitro experiments, in the presence of

the crowders.

The importance of heterogeneity of crowders to account for all types of transient interac-

tions was demonstrated in a combined experimental study and stochastic particle simulations

of nanoparticles inside cells by Garner et al.63 By varying the cytoplasmic viscosity in the

simulations, the authors were able to reproduce the 10-fold range of differences in diffusivity

of the nanoparticles observed experimentally between individual cells. They claimed that the

cytoplasm is a heterogeneous environment with subcellular components that have a range

of effective viscosities, which contribute to the effects seen in experiments. The effect of

softness of crowders as well the shape of tracer proteins has been explored in another study,

where the authors used a modified potential to calculate the interactions between soft or

flexible crowders and hard or compact crowders by implementing low resolution simulations

(CG MD or BD).62 They found that softer crowders do not reduce the diffusion rates sig-

nificantly. The study further revealed that if the shape of the tracer protein is cylindrical,

instead of a sphere, it may diffuse similarly in the presence of soft or hard crowders, and

may even diffuse faster in the presence of hard crowders.

In addition to volume exclusion and weak interactions with crowders, confinement can

also modify diffusion rates. Smigel et al used BD simulations to elucidate the effect of con-

finement imposed by cell membranes, which resulted in variations in protein diffusion rates

observed in their single-molecule displacement mapping experiments.53 In their simulations,

the particles were reflected off of the boundary instead of maintaining periodicity, and they

found that the diffusion rate was faster in the center and decreased at the poles of the model,

which was consistent with their experimental observations. This could be attributed to the

reflections from the boundary, but also to accumulation of damaged proteins in the poles.
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Protein location inside cells is another aspect that could be explored and incorporated into

models and simulations of cellular environments.

Protein association

Protein binding to a partner (protein, nucleic acid or small molecule) inside cells is a crucial

step for several processes. While association rate constants for protein-target binding are

expected to be lower in comparison to in-vitro conditions due to slower diffusion rates,

the diverse effects of the cellular environment over protein-target binding are still largely

unknown.115

Previous works investigated the effect of crowding over kinetic rates and paths for protein-

ligand binding. Recently, the binding between trypsin and the small molecule benzamidine

was studied across a wide range of crowder concentrations using MD simulations and Markov

state modelling.80 As compared to dilute solutions, the association rate constant (kon) was

15-20 lower in crowded environments. Initially, the kon values increased as the crowder con-

centration was increased, but when the fraction of crowders went beyond 15% of the volume,

the kon values decreased. According to the authors, this was because at high crowder con-

centrations, the ligand was trapped in one of the key intermediate states for binding, where

the hinderance posed by the crowders limited the diffusion of the ligand to its target binding

site. In another study, the impact of crowding on the binding of the pyrazolopyrimidine

(PP1) ligand to the Src kinase protein in the presence of high concentrations of BSA protein

crowders was investigated.27 The authors observed reduced ligand binding efficacy as the

BSA concentration was increased, because of weak attractive interactions between crowders

and the ligand. Interestingly, the simulations suggest that there is a change in the protein-

ligand binding pathway, in comparison to the dilute solution. However, more binding events

are required to confirm whether this change in binding paths in the presence of crowders is

statistically significant. In MD simulationS of a crowded system with SARS-COV main pro-

tein and its inhibitory drug, along with crowder proteins and metabolites, the inhibitor was
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unable to bind to its target protein due to multiple interactions with the metabolites.116 This

study further demonstrates the necessity to include metabolites in the cytoplasmic models

to replicate in-vivo interactions in molecular simulation studies.

Several independent studies investigated the effect of crowding over protein-ligand bind-

ing in simpler model systems. Majumdar and Mondal used a model of a cavity-ligand system

with C60 fulerene as crowder.117 They found that the crowders facilitated ligand binding by

reducing the free energy barrier by volume exclusion. This effect also facilitated protein

desolvation. A target search model for ligand-active site binding considered the reversible

binding-unbinding reactions with the Brownian motion of particles, and the simulations

showed a higher chance of binding due to multiple chances for discovery of the interaction

sites.64

The effect of lysozyme crowders on the association of the side-by-side dimer and the

domain-swapped dimer of the B1 immunoglobulin-binding domain of protein G was studied

by Pradhan et al.51 The CG MD simulations revealed that the lysozyme crowders destabilize

native contact formation in both types of dimer due to the attractive interactions between

crowder and the protein, which overcomes the excluded volume effect. This result was in

contrast to what was obtained in the BD simulations with particle-based reaction-diffusion

model, with only LJ potentials applied on the spherical tracer and crowder proteins . Here,

stabilization of dimers was seen due to attractive LJ interactions that hold the monomers

together and improve the chance of dimerization. In qualitative agreement with experiments,

they observed that the domain swapped dimer is more likely to form in both diluted and

crowded conditions.

The association of DNA binding proteins to their target DNA was studied in an MC

model by Punia et al, where the time of target search and its pathway were characterized

based on the location of the target relative to the protein and protein-crowder affinities.

When the association rate constant of proteins with crowders (con) was greater than with

the DNA (kon), the search time reduced as compared to dilute solutions and when con=0.
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They concluded that instead of a random walk, the crowder-assisted search pathway helped

the protein to access the target DNA sites blocked by crowders via a new channel, thus

allowing it to efficiently scan and recognize its target site.46

In-silico studies of cytoskeleton polymerization explored the effects of cytoplasmic pro-

teins on the rate of cytoskeletal fibre association. Recently, MC simulations of microtubules

in the presence of low and high molecular weight crowders were used to study the collective

physical effects of crowding on the growth of cytoskeletal polymers inside cells. The simula-

tions provided evidence that the diffusion of elements and elongation rates of filaments in the

presence of smaller crowders is reduced due to an increase in microviscosity, while it is not

affected by larger crowders. The de-novo nucleation rate however increased due to crowding

at critical concentration in a size independent manner according to the polymerization ki-

netics experiments performed. The combination of these effects thus accounted for the bulk

elongation rates measured in experiments.44 In a similar study by Wang et al, the experi-

mental dissociation constant (Kd) for the dimerization of wild type and dimer-only mutant of

prokaryotic tubulin proteins BtubA and B was reproduced in MC simulations. Their study

indicated that the volume exclusion from the crowded environment in-vitro played a more

important role than the weak quinary interactions towards the decreasing Kd of BtubA and

B. This effect led to the facilitation of the polymerization process even if the local quinary

interactions were modified. However, this trend changed at higher temperatures, where the

enthalpic effects reduced the entropy of the system and promoted dimerization instead.45

Short MD simulation of 5 ns also revealed a similar trend of polymerization in crowded

conditions.21

Protein stability and folding

Maintaining the stability of proteins is crucial for their proper functioning, and a key focus lies

in understanding the equilibrium between the stabilizing effects caused by volume exclusion

in a crowded environment, and the potentially destabilizing effects of weak interactions,
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which can differ among protein crowders.

The effect of charges on the stability and folding of superoxide dismutase (SOD1) was in-

vestigated in a self-crowded environment.65 The native conformations of SOD1 with screened

charges (-1 e), the uncharged native protein or its variant, with a single point mutation

(G41D), that adds a negative charge (-2 e), were used as model systems. The authors found

a folding intermediate state sensitive to solvent ionic strength, that may play an impor-

tant role in the folding pathway. The addition of charge led to an increase in inter-protein

interactions, and in the mutated SOD1 it led to aggregation, which could be responsible

for amyotrophic lateral sclerosis (ALS) disease. However, in the absence of charged crow-

ders, inert or less interacting crowders like fullerenes promoted more intra-protein contacts,

which promoted the globular metastable states of α-synuclein and protein-G.25,71 In the hu-

man cytoplasmic models, the hinge-bending landscape of human phosphoglycerate kinase

(PGK) was simulated. The simulations suggested that the crowded environment promotes

the stability of semi-open hinge-bending states of PGK.43

The protective effect of crowded environments over proteins upon temperature increase

has also been investigated in different studies. Timr at al reported that high temperatures

affect the protein crowders BSA and lysozyme, which may lead to their unfolding along with

the test protein, chymotrypsin inhibitor 2 (CI2). This in turn resulted in decreased volume

exclusion effect and a destabilization of the test protein. They suggested there is a crossover

temperature beyond which crowding does not provide resistance to changes in temperature,

leading to unfolding at higher temperatures.70 To avoid the unfolding of crowders, Katava et

al tested the stability of lysozyme crowded with glycerol, where only one protein is affected

by the gradual increase in temperature and all other molecules were in frozen states using

REST2 MD simulations.75 Here, lysozyme experienced 60% volume exclusion when present

in a powder like state. The authors showed that the effect of volume exclusion can be

overcome if the proteins in the environment are sensitive to increases in temperature or if

there are electrostatic interactions that take effect in the crowded environment.
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Material properties of phase separated condensates

Mesoscopic material properties of biomolecular condensates, such as viscosity, viscoelasticity,

and surface tension, play a crucial role in dictating many cellular functions. Consequently,

a large number of computational studies have been performed with the goal to understand

and estimate these material properties and their connection to the functional behavior of

condensates. To decipher the relationship between amino acid sequence and the material

properties of charged IDPs, Mittal and colleagues88 have recently explored how alterations

in charge patterning within IDP sequences affect the diffusion coefficient, viscosity, and sur-

face tension of the condensates. They used two types of sequences for this study; model

proteins consisting of negatively charged glutamic acid (E) and positively charged lysine (K)

residues and two different naturally occurring charge-rich proteins, LAF1’s RGG domain

and the DDX4’s N-terminal domain. The analyses of the material properties showed that

charge patterning resulted in monotonic changes in them, despite the diverse sequence com-

positions of the model proteins and naturally occurring proteins. With increasing charge

segregation, the diffusion coefficient of protein chains within the dense phase of the conden-

sate decreased, while the dense phase viscosity and surface tension at the condensate-water

interface increased systematically. What is interesting here is that the rate of change in

these material properties with varying charge distribution was found to be nearly identical

between model and natural proteins, underscoring the interdependence of these properties

across a wide range of sequence compositions. These observations emphasize that sequence

charge patterning can modulate the material properties both within the dense phase and at

the interface of charge-rich IDP condensates, without the need to change external conditions

such as temperature and salt concentration.

One of the most crucial material properties of condensates is their surface tension, which

stems from the interactions among the constituent molecules and their interactions with the

solvent. Surface tension of condensates is known to significantly influence the equilibrium

properties of condensates, by controlling both their morphology and internal organization.
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Using the well-known sticker-spacer model of associative polymers, which closely represents

one-to-one interactions in biological systems like the algal pyrenoid (composed of the en-

zyme Rubisco and the linker protein EPYC1), Wingreen and colleagues118 established a

strong correlation between polymer sequence and the surface tension of condensates, and

consequently with the thermodynamic critical temperature TC associated with the polymer

solution.

The transition of condensate phase from liquid-like to solid/gel form has been known to

be closely related to the onset of multiple neurodegenerative disorders, and can potentially

be characterized by their change in viscoelastic properties. In order to decipher the molecu-

lar mechanisms underlying the changes in viscosity associated to liquid to solid transition of

condensates, Espinosa and coworkers119 tested the performance of several powerful compu-

tational methods which are rooted in the concepts of polymer physics. They applied these

techniques to determine the droplet viscosity of a set of 7 different IDPs and 5 peptide/RNA

complex coacervates using a sequence-dependent CG model. They found that the viscosity

of the phase separated condensates in each case rises with increasing chain length of the

proteins or RNA and therefore with increasing molecular mass. They also estimated the cor-

relation between viscosity and the sequence composition across the different studied IDPs

and found that viscosity is proportional to the abundance of amino acids that act as binding

sites for associative interactions, which are popularly known as stickers in the protein phase

separation framework.

Perspectives and conclusion

Taken together, the studies reviewed here provide a snapshot of the state-of-the-art of meth-

ods to model and simulate macromolecular crowding, cellular environments and biomolecular

condensates. Till date, simulation methods are being actively developed to model the cel-

lular cytoplasm (such as CELLPACKgpu38 and python scripts to build E. coli cytoplasm
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models120), and to simulate and analyze large and heterogenous systems (such as the GEN-

ESIS software package66,68,69 and the set of analysis tools SPANA79). Remarkably, models

of complete bacterial cells are available at this point of time,34,37 including the membrane

and macromolecules in the cytoplasm. The next challenge now is to build the tools that

enable the simulation of such large models.

Interestingly, the mechanistic insights provided by simulations can sometimes differ from

expectations (such as increased diffusion rates, instead of slower diffusion rates, for small

molecules in the presence of crowding26). This showcases the importance of a broader in-

vestigation of the effects of crowding over biological phenomena. Such studies can not only

provide unexpected information, but will also pave the way for the formulation of general

rules for the effects of crowding over protein folding and ligand binding. For instance, are the

kinetic rates, pathways and intermediate states for protein folding and ligand binding the

same in crowded environments and in-vitro? While some of the studies highlighted in this

review already identified differences in ligand binding in crowded environments, in compari-

son to in-vitro conditions, more simulations are required to understand how widespread the

effects of crowding are, and experiments are required to validate the results from simulations.

Moreover, knowledge about the diffusion rates of drugs and kinetic rates for protein-drug

binding inside cells may have important applications in drug design, as previously discussed

in Kasahara et al.27 For instance, drugs can be modified to have less weak interactions

with protein crowders, displaying faster diffusion rates and faster association rate constants

upon binding to their target proteins in vivo, leading to higher drug efficacy. The same

holds true for biomolecular condensates, as their dysfunction is closely associated to several

diseased states, including neurodegeneration, cancer, viral infections and cardiac disease.

Deciphering the molecular mechanism of condensate formation as well as estimating their

mechanical behavior in a closely replicated cellular environment could pave the way for

developing new therapeutic targets for these conditions. Similarly, simulation set-ups for

underpinning condensate diffusivity and visocelastic behavior in both liquid-like and dense
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or solid-like state in a closely matched cellular environment which is closely linked to conden-

sate driven neurodegenrative disorders can lead to the identification or design of condensate

modifying therapeutics. A step forward towards this effort could be taken by estimating

diffusive behavior of model condensates in presence of simple, non-biological crowders with

effective interaction, as discussed in previous sections. There is also the need to understand

multicomponent phase behavior of condensates and how the presence of cellular material

in the cytoplasmic state can facilitate their phase separation process. While physics-driven

methods are currently being implemented to accurately simulate systems with more than

a single component, the rise of machine learning models offers tremendous potential for

predicting the components of biomolecular condensates in cells and uncovering previously

unknown components of such systems, provided sufficient experimental data is available for

model training.

In the next few years, we anticipate further method development and more studies in-

vestigating condensate formation and the effects of macromolecular crowding and cellular

environments over protein-target binding, diffusion rates of macromolecules and small drug-

like molecules, and protein stability. However, the success of these studies depends on the

availability of data (such as diffusion rates of molecules, or rate constants for protein-target

binding) from experiments performed inside cells to benchmark the methods and validate

simulations. Experimental methods such as FRAP, to measure diffusion rates, and NMR,

to detect protein conformational changes, can be used to investigate proteins inside cells,

providing useful benchmarks for the effects of crowded environments.
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(61) D lugosz, M.; Zieliński, P.; Trylska, J. Brownian dynamics simulations on CPU and

GPU with BD BOX. Journal of computational chemistry 2011, 32, 2734–2744.

43

https://doi.org/10.26434/chemrxiv-2024-4z37h ORCID: https://orcid.org/0009-0007-0209-8362 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-4z37h
https://orcid.org/0009-0007-0209-8362
https://creativecommons.org/licenses/by-nc/4.0/
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