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Experimental demonstrations of modified chemical structure and reactivity under strong light-matter coupling
have spurred theoretical and computational efforts to uncover underlying mechanisms. Ab initio cavity quan-
tum electrodynamics (QED) combines quantum chemistry with cavity QED to investigate these phenomena
in detail. Unitary transformations of ab initio cavity QED Hamiltonians have been used to make them more
computationally tractable. We analyze one such transformation, the coherent state transformation, using
perturbation theory. Applying perturbation theory up to third order for ground state energies and potential
energy surfaces under electronic strong coupling, we show that the coherent state transformation yields better
agreement with exact ground state energies. Additionally, we apply perturbation theory up to second order
for cavity mode states under bilinear coupling, elucidating how the coherent state transformation accelerates
the convergence of the photonic subspace towards the complete basis limit and renders molecular ion energies
origin invariant. These findings contribute valuable insights into computational advantages of the coherent
state transformation in the context of ab initio cavity quantum electrodynamics methods.

I. INTRODUCTION

Strong interactions between photons resonant with
molecular transitions can lead to the emergence of new
hybrid light-matter states, known as polariton states,
which can effect dramatic changes in chemical structure
and reactivity.1–20 The emerging field of polariton chem-
istry seeks to understand and leverage these changes in
chemical structure and dynamics to perform novel chem-
istry, and computational modeling has played a key role
in shaping this understanding. For one or a few molecules
under electronic strong coupling, cavity quantum electro-
dynamics provides the tools to treat the photonic degrees
of freedom and ab initio quantum chemistry provides the
tools to treat the electronic degrees of freedom. The
marriage of these approaches is often referred to as ab
initio cavity quantum electrodynamics (ai-QED), which
has seen a surge of developments in recent years.18,21–51

Traditional quantum chemistry already presents a chal-
lenging example of the many-body problem, and strong
coupling to photons introduces additional difficulties that
must be overcome to yield accurate and computationally
facile approaches.

Unitary transformations have a long history in the
development of many-body theories, where a common
strategy is to identify or design transformations that
bring a many-body Hamiltonian into a representation
which is more computationally tractable.52–56 Recent ef-
forts to develop computationally tractable and predictive
methods for molecules under strong light-matter coupling
has brought these techniques to bear on ai-QED Hamil-
tonians to partially decouple the light-matter interac-
tions that arise in this context.43,57–60 In the Pauli-Fierz
Hamiltonian that is the basis for much of the work on ai-
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QED, there are several examples of unitary transforma-
tions that are based upon products of the photonic mo-
mentum operator and the matter dipole operator (which
is the matter position operator scaled by the electron
charge). These transformations impart shifts in the pho-
tonic positions and the matter momenta, and render the
Pauli-Fierz Hamiltonian diagonal in the infinite coupling
limit. In particular, Koch and co-workers59, as well as Li
and Zhang60, have used such unitary transformations to
parameterize reference states for QED Hartree-Fock pro-
cedures that have many attractive properties at arbitrary
coupling strengths, including energies and orbitals that
are fully origin invariant. Reichman and co-workers43 re-
cently investigated an analogous approach for correlated
theories where, similar to the approach of Zhang and Li
for QED Hartree-Fock, the transformation is variation-
ally optimized, yielding the so-called Lang-Firsov trans-
formation. In the current work, we focus on a related
but simpler unitary transformation known as the coher-
ent state transformation, which shares a similar form as
the transformations discussed in the independent investi-
gations in Refs. 43, 59, and 60 with a key difference being
it is formulated as a product of the photonic momentum
operator with the expectation value of the matter dipole
operator. The coherent state transformation thus shifts
the photonic coordinates but does not transform the mat-
ter degrees of freedom. The coherent state transforma-
tion has been used to parameterize QED Hartree-Fock
reference wavefunctions29,36 and in correlated ai-QED
calculations,37,41,48,61 and has been shown to yield ori-
gin invariant energies (not orbitals), and can significantly
accelerate the convergence of the photonic subspace. In
this work, we utilize perturbation theory to elucidate how
the coherent state transformation engenders these favor-
able properties in ai-QED calculations. We find that ap-
plying the coherent state transformation yields second
and third-order estimates to the ground state energy that
are in consistently better agreement with exact ground
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state across a range of coupling strengths as compared to
the same orders without transformation of the Hamilto-
nian. Furthermore, when we treat the bilinear coupling
between matter and photon degrees of freedom as a per-
turbation to the cavity Hamiltonian, we find that the
coherent state transformation decouples the systems to
within a magnitude that is related to the error in the ref-
erence estimate of the dipole moment expectation value
that parameterizes the transformation for a target cou-
pled state. Importantly, this error is manifestly origin
invariant, and so this result sheds light on why the coher-
ent state transformation accelerates photon convergence
and restores origin invariance in ai-QED calculations.

II. COHERENT STATE TRANSFORMED PAULI-FIERZ
HAMILTONIAN

The starting point for many ai-CQED treatments of
molecular polariton systems is the Pauli-Fierz Hamilto-
nian in the dipole approximation62, which we write in
atomic units as

ĤPF = Ĥe + ω

(︃
b̂
†
b̂+

1

2

)︃
−
√︃
ω

2
d̂(b̂

†
+ b̂) +

1

2
d̂
2
. (1)

In Eq. 1, Ĥe is the standard electronic Hamiltonian
within the Born-Oppenheimer approximation63, Ĥcav =

ω
(︂
b̂
†
b̂+ 1

2

)︂
is the bare Hamiltonian for the cavity pho-

ton mode where ω represents the frequency and b̂
†
and b̂

are raising and lowering operators for the photon mode.
The last two terms capture the coupling between the pho-
tonic and matter degrees of freedom, and are called the

bilinear coupling, Ĥblc = −
√︁

ω
2 d̂ (b̂

†
+ b̂), and dipole

self-energy terms Ĥdse = 1
2 d̂

2
, respectively. In these in-

teraction terms, d̂ = λ · µ̂ couples the field associated
with the photon mode to the molecular dipole opera-
tor64. The second term Ĥcav represents the Hamiltonian
for the bare cavity mode, which is a harmonic oscillator
with fundamental frequency ω. We may also write this in
terms of the canonical position and momentum operators
for the cavity photon65:

Ĥcav =
1

2
p̂2 +

1

2
ω2q̂2, (2)

where (in atomic units),

p̂ = i

√︃
ω

2

(︂
b̂
†
− b̂
)︂

(3)

q̂ =

√︃
1

2ω

(︂
b̂
†
+ b̂
)︂
. (4)

Next we apply the coherent state transformation to
Eq. 1, which has been done, e.g., in QED-Hartree–Fock,
QED-CC, QED-CIS, and QED-CASCI28,29,36,41, yielding

the Pauli-Fierz Hamiltonian in the coherent state basis:

ĤCS = Ĥe+Ĥcav−
√︃
ω

2
[d̂−⟨d̂⟩](b̂

†
+b̂)+

1

2
[d̂−⟨d̂⟩0]2. (5)

This follows from a unitary transformation of the Pauli-
Fierz Hamiltonian,

ĤCS = ÛCSĤPFÛ
†
CS, (6)

where the Unitary coherent state transformation is de-
fined as

ÛCS = exp
(︂
z(b̂

†
− b̂)

)︂
. (7)

where the parameter z may be computed as

z = − ⟨d̂⟩0√
2ω
. (8)

The expectation value ⟨d̂⟩0 will depend on the choice of
electronic state. Often, the Hartree-Fock (or QED-HF)
reference state is used to compute this expectation value,
but there are other valid choices.
In this work, we will endeavor to elucidate the proper-

ties of the coherent state transformation that can accel-
erate the convergence of ai-CQED approaches by specif-
ically examining the behavior of the Eqs. 1 and 5
projected onto a subspace of many-electron states that
arise from full configuration interaction (FCI) calcula-
tions, which is also called a parameterized QED approach
(pQED).18,40,44 In our analysis of these projected Hamil-

tonians, we will take ⟨d̂⟩0 from the ground state wave-
function from a FCI calculation of the molecule without
coupling to the cavity.

1. Perturbation Theory for the Coupled Ground State

We will perform Perturbation theory on the Pauli-
Fierz Hamiltonian and on the coherent state Hamilto-
nian, Eq. 1 or 5 projected onto a truncated basis of adi-
abatic electronic states. For a discussion of the details
of this projection and its use in ai-QED methods, see
References 18, 40, 44, and 61 for additional details. The
projected molecular electronic Hamiltonian has the form
(for both the Pauli-Fierz and coherent-state Hamiltoni-
ans):

He =
∑︂
α

Eα|ψα⟩⟨ψα| (9)

where Eα and |ψα⟩ are the energy eigenvalues of the adi-
abatic eigenstates, respectively. In this work we will ob-
tain these energies and eigenstates from FCI calculations
outside of the cavity, and we will denote the projected
Hamiltonian operators with calligraphic font as in Eq. 9.
The bilinear coupling terms has the form

HPF,blc = −
√︃
ω

2

∑︂
αβ

dαβ |ψα⟩⟨ψβ |
(︂
b̂
†
+ b̂
)︂

(10)
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for the Pauli-Fierz Hamiltonian, and upon coherent state
transformation, takes the form

HCS,blc = −
√︃
ω

2

(︂
b̂
†
+ b̂
)︂
×⎛⎝∑︂

αβ

dαβ |ψα⟩⟨ψβ | − ⟨d̂⟩0
∑︂
α

|ψα⟩⟨ψα|

⎞⎠ (11)

where dαβ = ⟨ψα|d̂|ψβ⟩ results from dotting the coupling
vector into the transition dipole moment between adia-
batic states α and β or the total dipole moment of state
α when α = β. Finally, the dipole self energy has the
form

HPF,dse =
1

2

∑︂
αβγ

dαγdγβ |ψα⟩⟨ψβ | (12)

for the Pauli-Fierz Hamiltonian and

HCS,dse =
1

2

⎡⎣∑︂
αβ

dαβ |ψα⟩⟨ψβ | − ⟨d̂⟩0
∑︂
α

|ψα⟩⟨ψα|

⎤⎦2

(13)

for the coherent state Hamiltonian.
If we identify our zeroth-order Hamiltonian as

H0 = He +Hcav, (14)

we can see that the product states of the adiabatic
states |ψα⟩ and photon number states |m⟩ are appropri-
ate zeroth-order states states satisfying

H0|ψ(0)
N ⟩ = E

(0)
N |ψ(0)

N ⟩ (15)

with |ψ(0)
N ⟩ = |ψµN

⟩⊗|mN ⟩ and E(0)
N = EµN

+mN (ω+ 1
2 ).

In this notation, we are using Greek letters subscripted
by upper-case Roman letters (e.g. µN ) to label the elec-
tronic contribution to the zeroth-order product state N ,
and lower-case Roman letters subscripted by upper-case
Roman letters (e.g. mN ) to label the photonic contribu-
tion to the zeroth-order product state N . It follows then
that the perturbation can be regarded as

H
′
= Hblc +Hdse, (16)

so that we can write the total the perturbative expansion
of the Pauli-Fierz or coherent state Hamiltonian as

H = H0 + ϵH
′
. (17)

Using this partitioning, we can derive perturbative en-
ergy corrections with and without application of the co-
herent state transformation and compare these correc-
tions for the same coupling parameters.

The first order energy correction for then Pauli-Fierz
Hamiltonian is

E
(1)
N,PF = ⟨ψ(0)

N |H
′
|ψ(0)

N ⟩

= ⟨ψ(0)
N |HPF,dse|ψ(0)

N ⟩

=
1

2

∑︂
γ

dµNγdγµN
, (18)

and the first order energy correction for the coherent
state Hamiltonian is

E
(1)
N,CS = ⟨ψ(0)

N |H
′
|ψ(0)

N ⟩

= ⟨ψ(0)
N |HCS,dse|ψ(0)

N ⟩

=
1

2

∑︂
γ

dµNγdγµN
− ⟨d̂⟩0dµNµN

+
1

2
⟨d̂⟩20. (19)

The bilinear coupling term does not contribute to the
first order correction since the bra and ket have the same
photon occupation state.

The second order correction to Pauli-Fierz energy is
given as

E
(2)
N,PF =

∑︂
M ̸=N

|⟨ψ(0)
M |H′ |ψ(0)

N ⟩|2

E
(0)
N − E

(0)
M

=
∑︂

M ̸=N

|⟨ψ(0)
M |HPF,blc|ψ(0)

N ⟩|2

E
(0)
N − E

(0)
M

+
|⟨ψ(0)

M |HPF,dse|ψ(0)
N ⟩|2

E
(0)
N − E

(0)
M

=
ω

2

∑︂
µM

|dµMµN

√
mN + 1|2

EµN
− EµM

− ωℏ

+
ω

2

∑︂
µM

|dµMµN

√
mN |2

EµN
− EµM

+ ωℏ

+
1

4

∑︂
µM ̸=µN

|
∑︁

γ dµMγdγµN
|2

EµN
− EµM

. (20)

In this case, both the bilinear coupling and the dipole
self energy terms contribute to the second order energy
correction, but we note that the second line of Equa-
tion 20 does not contain cross-terms between the dipole
self energy and the bilinear coupling because the former
can only contribute when the bra and the ket have the
same photon occupation number, and the latter only con-
tributes when the bra and ket differ by one photon occu-
pation number. Similarly, for the second-order correction
to the coherent state energy contains both bilinear cou-
pling and dipole self energy terms, and the cross terms
between them vanish as well. Here we will expand out
these contributions separately first as

E
(2)
N,CS blc =

∑︂
M ̸=N

|⟨ψ(0)
M |HCS,blc|ψ(0)

N ⟩|2

E
(0)
N − E

(0)
M

=
ω

2

∑︂
µM

⃓⃓⃓(︂
dµMµN

− ⟨d̂⟩0δµMµN

)︂√
mN + 1

⃓⃓⃓2
EµN

− EµM
− ωℏ

+
ω

2

∑︂
µM

⃓⃓⃓(︂
dµMµN

− ⟨d̂⟩0δµMµN

)︂√
mN

⃓⃓⃓2
EµN

− EµM
+ ωℏ

(21)
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for the bilinear coupling, and

E
(2)
N,CS dse =

∑︂
M ̸=N

|⟨ψ(0)
M |HCS,dse|ψ(0)

N ⟩|2

E
(0)
N − E

(0)
M

=
1

4

∑︂
µN ̸=µN

⃓⃓⃓∑︁
γ dµMγdγµN

− ⟨d̂⟩0dµMµN

⃓⃓⃓2
EµN

− EµM

(22)

for the dipole self energy.
The third order corrections can be written generically

as

E
(3)
N =∑︂

P,Q̸=N

⟨ψ(0)
N |H′ |ψ(0)

P ⟩⟨ψ(0)
P |H′ |ψ(0)

Q ⟩⟨ψ(0)
Q |H′ |ψ(0)

N ⟩

(E
(0)
N − E

(0)
P )(E

(0)
N − E

(0)
Q )

− ⟨ψ(0)
N |H

′
|ψ(0)

N ⟩
∑︂

M ̸=N

|⟨ψ(0)
M |H′ |ψ(0)

N ⟩|2

(E
(0)
N − E

(0)
M )2

. (23)

We provide more detailed expressions for the third order
corrections, as well as ways to factorize the evaluation of
these terms, in the Supporting Information.

We can see in the above expressions that the coher-
ent state transformation introduces offsets to the matrix
elements that arise in the perturbative corrections, par-
ticularly along the diagonal elements of these corrections.
This raises the question of if these offsets will reduce the
magnitude of the perturbative corrections, yielding a per-
turbative series that is well behaved for a larger range of
ϵ? We will investigate this question numerically in the
results section.

2. Perturbation Theory for Cavity Photon

We can take a slightly different perspective than in Sec-
tion II 1 and consider the matter subsystem to provide a
perturbation on the cavity mode. Here will define the ze-
roth order Hamiltonian as only the bare cavity Hamilto-
nian, and will consider the perturbation as arising strictly
through the bilinear coupling. This will provide insight
into the convergence of the photonic subspace in practical
coupled calculations.

The bare cavity Hamiltonian can be written as

Ĥ0,cav =
1

2
p̂2 +

1

2
ω2q̂2 = ℏω

(︃
b̂
†
b̂+

1

2

)︃
, (24)

where p̂ and q̂ were defined in Eq. 3. Recalling the def-

initions of d̂ = λ · µ̂ where λ =
√︂

1
ϵ0V

ê, we can express

the bilinear coupling as

Ĥblc = −
√︃
ω

2
d̂
(︂
b̂
†
+ b̂
)︂
= −ωd̂q̂. (25)

We can now take the point of view that the matter per-
turbs the cavity Hamiltonian through the bilinear cou-
pling term. In this point of view, the bare cavity Hamil-
tonian can be used as the zeroth order Hamiltonian sat-
isfying the eigenvalue equation

Ĥ0,cav|n(0)⟩ = E(0)
n |n(0)⟩ = ℏω(n+

1

2
)|n(0)⟩, (26)

and the bilinear coupling term can be the perturbation.
The perturbed Hamiltonian for the cavity mode inter-
acting with a polarized matter subsystem can then be
written as

Ĥcav = Ĥ0,cav + Ĥblc

Ĥcav =
1

2
p̂2 +

1

2
ω2q̂2 − ωd̂q̂

Ĥcav =
1

2
p̂2 +

1

2

(︂
ωq̂ − d̂

)︂2
− 1

2
d̂
2

Ĥcav = ℏω
(︃
b̂
†
b̂+

1

2

)︃
−
√︃
ω

2
d̂
(︂
b̂
†
+ b̂
)︂
. (27)

The perturbation contains a product of d̂ and q̂, where
the former is a matter operator and the latter a photon
operator. The exact eigenstates of this Hamiltonian will
self-consistently balance the impact of the photon field
on the charges in the matter subsystem and the polar-
ization of the photon field by the charges in the matter

subsystem. If, however, we replace the operator d̂ with

an expectation value ⟨d̂⟩ representing the average polar-
ization of the charges in the matter subsystem subject to
the photon field, an intuitive picture arises for the pho-
ton field subject to an effective potential that arises from
the polarized matter. Here, we can look specifically at
the third line of Eq. 27 and integrate over the electronic
degrees of freedom:

Ĥcav =
1

2
p̂2 +

1

2

(︂
ωq̂ − ⟨d̂⟩

)︂2
− 1

2
⟨d̂⟩2, (28)

where ⟨d̂⟩ in an expectation value in terms of an ex-
act electronic eigenstate of the coupled system, which of
course is not typically known a priori. We can see that
this is simply the original cavity Hamiltonian displaced

from equilibrium by ⟨d̂⟩ and with the total energy shifted

by the constant − 1
2 ⟨d̂⟩

2. This shifted Hamiltonian will
have the same spectrum of eigenstates as the original
Hamiltonian save for a constant shift of all eigenvalues

by − 1
2 ⟨d̂⟩

2.
Here we will use perturbative analysis to elucidate how

the coherent state transformation can accelerate the con-
vergence of practical calculations of the eigenstates of the
Pauli-Fierz Hamiltonian where one generally takes as the
basis the photon number states that are eigenstates of the
zeroth-order Hamiltonian. Although the shapes of these
zeroth-order states match those of the eigenstates of the
perturbed Hamiltonian, it will require an expansion of a
number of these zeroth-order functions to reproduce the
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perturbed eigenstates, and this number will increase with
the magnitude of the displacement of the potential that

goes as ⟨d̂⟩.
In particular, let’s consider the first and second order

correction to photonic state |n⟩:

|n(1)⟩ = −
∑︂
m ̸=n

⟨m(0)|ω⟨d̂⟩q̂|n(0)⟩
E

(0)
n − E

(0)
m

|m(0)⟩

|n(2)⟩ =
∑︂
k ̸=n

∑︂
n ̸=n

⟨k(0)|ω⟨d̂⟩q̂|m(0)⟩⟨m(0)|ω⟨d̂⟩q̂|n(0)⟩
(E

(0)
n − E

(0)
m )(E

(0)
n − E

(0)
k )

|k(0)⟩.

(29)

We note that the position operator q̂ can only couple ad-
jacent zeroth-order states, that is, only ⟨n(0)|q̂|(n±1)(0)⟩
are non-zero. However, we have a contribution to the first

order correction to state |n⟩ that scales linearly with ω⟨d̂⟩
and couples to states adjacent to |n⟩. The second order

correction scales quadratically with ω⟨d̂⟩ and brings in
coupling to states with |(n ± 1)⟩ and |(n ± 2)⟩. This
trend will continue to higher orders of correction to the

states, and is illustrative that for large values of ω⟨d̂⟩, it
will become very difficult to practically converge calcula-
tions using the zeroth-order photon basis. This echos the
numerical findings of DePrince and co-workers36 and Vu
et al.41 who found that large numbers of photon num-
ber states were required to converge variational calcula-
tions for polar molecules with strong coupling and for
charged molecules under displacements from the origin,

both circumstances where ⟨d̂⟩ can become large. We will
see that application of the coherent state transformation
can, at least in certain cases, diminish the magnitude of
the couplings that necessitate these corrections. We have
also observed that the coherent state transformation can
render ai-QED methods manifestly origin invariant for
charged molecules, and we can examine these perturba-
tive corrections to examine how this arises.

We can view the coherent state transformation as ap-
plying shift to the position coordinate as follows:

ÛCS q̂ Û
†
CS = q̂ +

⟨d̂⟩0
ω

, (30)

so that we can view the coherent state transformed
Hamiltonian for the cavity coupled to polarized matter
as

ÛCSĤcavÛ
†
CS =

1

2
p̂2 +

1

2

(︂
ωq̂ + ⟨d̂⟩0 − d̂

)︂2
− 1

2
d̂
2
. (31)

If we again average over the electronic degrees of freedom
in the coherent state transformed cavity Hamiltonian,
then Eq. 32 becomes

ÛCSĤcavÛ
†
CS ≈ 1

2
p̂2 +

1

2

(︂
ωq̂ + ⟨d̂⟩0 − ⟨d̂⟩

)︂2
− 1

2
⟨d̂⟩2

(32)

which un-shifts the potential to within the difference be-

tween the expectation value of ⟨d̂⟩0 evaluated with a spe-
cific reference function and the exact expectation values

⟨d̂⟩, which we will denote δ⟨d⟩ = ⟨d̂⟩ − ⟨d̂⟩0. Inserting the
same relationship into the perturbative correction to the
states yields

|n(1)⟩ = −
∑︂
m ̸=n

⟨m(0)|ωδ⟨d⟩q̂|n(0)⟩
E

(0)
n − E

(0)
m

|m(0)⟩

|n(2)⟩ =
∑︂
k ̸=n

∑︂
m̸=n

⟨k(0)|ωδ⟨d⟩q̂|m(0)⟩⟨m(0)|ωδ⟨d⟩q̂|n(0)⟩
(E

(0)
n − E

(0)
m )(E

(0)
n − E

(0)
k )

|k(0)⟩.

(33)

Thus, while the perturbative corrections in Eq. 29 scale

as orders of ω⟨d̂⟩, the corrections in Eq. 33 scale as or-
ders of ωδ⟨d̂⟩, which will tend to be small as long as the

cavity coupling does not lead to changes to the molecular
dipole moment that are larger than the uncoupled dipole
moment itself.
To see how the coherent state transformation im-

parts origin invariance, recall that d̂ is defined as the

lambda vector dotted into the dipole, d̂ = λ · µ̂, where
the dipole operator µ̂ =

∑︁
i ziri, so we can rewrite

d̂ = λ ·
∑︁

i ziri. The expectation value is then defined

as ⟨d̂⟩ = λ ·
∑︁

i zi⟨ψ|ri|ψ⟩ where ψ is the electronic con-
tribution to the target eigenstate which is unaffected by
the coherent state transformation since ÛCS acts only on

photonic coordinates. While d̂ itself is not origin invari-
ant if the molecule has net charge, δ⟨d⟩ is origin invariant.

To see this, we will consider the expectation value ⟨d̂
′
⟩

following displacement by ∆r:

⟨d̂
′
⟩ = λ ·

(︄∑︂
i

zi(⟨ψ|ri|ψ⟩+∆r)

)︄
= ⟨d̂⟩+ λ ·∆r

∑︂
i

zi, (34)

which shows that ⟨d̂⟩ is itself origin dependent. Similarly,

we will write ⟨d̂
′
⟩0 following displacement by the same ∆r

as

⟨d̂
′
⟩0 = λ ·

(︄∑︂
i

zi(⟨Φ0|ri|Φ0⟩+∆r)

)︄
= ⟨d̂⟩0 + λ ·∆r

∑︂
i

zi, (35)

so that we see ⟨d̂⟩0 has the same origin dependence. Fi-
nally, we consider δ⟨d′⟩,

δ⟨d′⟩ = ⟨d̂⟩+ λ ·∆r
∑︂
i

zi − ⟨d̂⟩0 − λ ·∆r
∑︂
i

zi

= ⟨d̂⟩ − ⟨d̂⟩0, (36)

which is origin invariant.

III. COMPUTATIONAL DETAILS

We formulate perturbative corrections to Pauli-Fierz
and coherenst state transformed Hamiltonians projected
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onto a subspace of adiabatic many-electron states and
photonic Fock states. The adiabatic many-electron states
are computed using full configuration interaction (FCI)
using the qed-ci package66 which interfaces with the psi4
package for standard electron integrals.67,68 We take vari-
ational calculations of the projected Pauli-Fierz Hamilto-
nian in a sufficiently large basis of electronic and photonic
states (herein referred to as variational pQED) to be the
numerically exact answer and compare the perturbative
corrections to this variational calculation in all cases. All
variational and perturbative calculations are also per-
formed using the qed-ci package. We apply these ap-
proaches to the helium hydride cation ( HeH+), lithium
hydride (LiH), and hydroxide anion (OH−). We repre-
sent the HeH+ system in the cc-pVQZ69 (results from
cc-pVDZ and cc-pVTZ are shown in the Supporting In-
formation), we represent LiH in a 6-311G basis set70, and
OH− in a 6-31G basis set. For all variational calculations,
we consider a photonic Fock space with 10 number states
(|0⟩, |1⟩, ..., |9⟩); these details are summarized in Table I.
A glossary of acronyms used in describing the various
perturbative and variational approaches is provided in
Table II.

System Orbital Basis Nel Np

HHe+ cc-pVQZ 2880 10
LiH 6-311g 500 10
OH− 6-31G 50 10

TABLE I. Summary of the orbital basis, size of the adiabatic
many-electron basis, and (for variational calculations) size of
the photonic Fock state basis for calculations presented in the
results section.

pQED(Nel, Np) Variational solution of Eq. 1 projected
onto a basis of Nel adiabatic many
electron states and Np photonic Fock
states

PF-PT2(Nel) Second order perturbative approxima-
tion to Eq. 1 projected onto a basis of
Nel adiabatic many electron states

PF-PT3(Nel) Third order perturbative approxima-
tion to Eq. 1 projected onto a basis of
Nel adiabatic many electron states

CS-PT2(Nel) Second order perturbative approxima-
tion to Eq. 5 projected onto a basis of
Nel adiabatic many electron states

CS-PT3(Nel) Third order perturbative approxima-
tion to Eq. 5 projected onto a basis of
Nel adiabatic many electron states

TABLE II. Glossary of acronyms used to describe different
methodologies used in this work.

IV. RESULTS

We provide several illustrative numerical examples of
the behavior of the coherent state transformation follow-

FIG. 1. Schematic of the HeH+ coupled to a cavity mode
polarized along the internuclear axis (z) and tuned to the first
optically allowed transition from S0 → S2 at approximately
26 eV.

ing the discussion in Sections II 1 and II 2. Specifi-
cally, to illustrate the discussion in Section II 1, we will
consider the second- and third-order perturbative correc-
tions to the ground state energy of the helium hydride
ion and the lithium hydride molecule. In both cases,
we will compare the resulting ground state estimates to
the variational result that we obtain after projecting the
Pauli-Fierz Hamiltonian onto a very large subspace of
electronic states and photonic states, which we will take
to be the exact ground state of the projected Pauli-Fierz
Hamiltonian. The orbital, many-electron, and photonic
Fock basis details for each system are provided in Sec-
tion III.

A. Peturbation theory for the coupled ground state

1. Helium hydride cation

We first consider HeH+ cation coupled to a cavity
mode resonant with the first dipole allowed transition
(S0 → S2) which has a transition dipole moment oriented
along the inter-nuclear axis (the z-axis in Figure 1). We
fix the geometry at the equilibrium bond length found
at the (cavity free) FCI/cc-pVTZ level, which is 0.77
Angstroms. At this geometry, the ground state has a
permanent dipole moment of 1.73 Debye along the z axis,
and the S0 → S2 transition energy has an energy of 26.1
eV. We fix the energy of the cavity mode to be on reso-
nance with this transition and consider values λz ranging
from 0 to 0.1 atomic units. Although these coupling con-
ditions can lead to the formation of polariton states, in
this work we focus exclusively on the ground state of the
coupled system. Degenerate perturbation theory is re-
quired to resolve the degeneracies that will arise when
polariton states are targetted, and will be the subject of
future work.

The behaviour of the ground-state energies to second
and third-order of perturbation theory to Eq. 1 (PF-
PT2(2880)/cc-pVQZ and PF-PT3(2880)/cc-pVQZ) and
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FIG. 2. Ground state energy from second-order perturbation
theory for HeH+ coupled to a cavity photon with ℏω = 26
eV across a range of coupling strengths. (Top) Relative en-
ergy of the coupled ground state as a function of coupling
strength as computed by a fully-converged variational ap-
proach to the Pauli-Fierz Hamiltonian and by second-order
perturbation theory for the Pauli-Fierz and coherent state
Hamiltonians. (Bottom) Error of second-order perturbation
theory for the PF and CS Hamiltonians relative to the fully-
converged variational calculation as a function of coupling
strength.

Eq. 5 (CS-PT2(2880)/cc-pVQZ and CS-PT3(2880)/cc-
pVQZ) are shown in Figures 2 and 3, with errors re-
ported relative to the exact variational ground state com-
puted at the pQED(2880,10)/cc-pVQZ level. In the top
panel of 2, we have Eg(λ)−Eg(0) plotted versus coupling
strength, where Eg(λ) is the energy of the coupled sys-
tem with λ representing the coupling strength, and Eg(0)
is the energy of the uncoupled system. This plot shows
the exact Eg(λ)− Eg(0) from pQED(2880,10)/cc-pVQZ
and the CS and PF formulations of second-order per-
turbation theory. The energy of the system increases as
coupling between the molecule and the cavity increases,
thus, the size of the perturbation is also increasing. We
observe that both PT2 results have negligible error when
the coupling strength is less than λz ≈ 0.025 atomic
units, but starts depart for stronger coupling (see Fig-
ure 2 bottom panel). At the larger values of λz, CS-PT2
has a consistently smaller error compared to PF-PT2.
The top panel of Figure 3 is similar to Figure 2 except

FIG. 3. Ground state energy from second-order perturbation
theory for HeH+ coupled to a cavity photon with ℏω = 26 eV
across a range of coupling strengths. (Top) Relative energy
of the coupled ground state as a function of coupling strength
as computed by a fully-converged variational approach to
the Pauli-Fierz Hamiltonian and by third-order perturbation
theory for the Pauli-Fierz and coherent state Hamiltonians.
(Bottom) Error of third-order perturbation theory for the PF
and CS Hamiltonians relative to the fully-converged varia-
tional calculation as a function of coupling strength.

the former now has the third-order perturbative approx-
imations to pQED. Again, we see that the CS-PT3 and
PF-PT3 energies have negligible error for small coupling
strength, and again start to depart for values of lambda
larger than λz ≈ 0.025 atomic units, and again, CS-PT3
has consistently smaller errors than the PF-PT3 results
(see Figure 3 bottom panel).

2. Lithium hydride bond stretch

The LiH ground state potential energy surface is com-
puted between bond lengths of 1.4 and 2.2 angstroms
coupled to a cavity mode with frequency ℏωcav = 3.28 eV
polarized along the z-axis with λz = 0.05 atomic units
(see Figure 4). We compare PF-PT2(500)/6-311G and
CS-PT2(500)/6-311G to exact variational potential en-
ergy surface (pQED(500,10)/6-311G) in Figure 5, and
the PT3 analogs are compared to the exact variational
potential energy surface in Figure 6.
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FIG. 4. Schematic of the LiH coupled to a cavity mode po-
larized along the internuclear axis (z) and tuned to the first
optically allowed transition from S0 → S1 at approximately
3.29 eV.

FIG. 5. Ground state potential energy surface for LiH coupled
to a cavity photon with ℏω = 3.28 eV across a range of r values
with a coupling strength of 0.05 au. Relative energy of the
coupled ground state as a function of bond length computed
by a fully-converged variational approach to the Pauli-Fierz
Hamiltonian and by second-order perturbation theory for the
Pauli-Fierz and coherent state Hamiltonians.

As with the HHe+ system, the CS-PTn results are con-
sistently closer to the numerically exact pQED results as
compared to PF-PTn results. It can be seen in Figure
5 that the CS-PT2 and PF-PT2 curves are both lower
bounds to the exact variational curve, with the CS-PT2
being closer across the stretch. Furthermore, we see in
Figure 6 that the CS-PT3 and PF-PT3 curves are upper

Level of Theory Root Mean Squared Error (Hartrees)
PF-PT2(500) 5.58 ·10−4

PF-PT3(500) 5.97 ·10−4

CS-PT2(500) 2.18 ·10−4

CS-PT3(500) 2.36 ·10−4

TABLE III. Comparison of mean squared errors for different
levels of theory for the LiH PES under strong coupling. Errors
calculated with respect to pQED(500,10)

FIG. 6. Ground state potential energy surface for LiH coupled
to a cavity photon with ℏω = 3.28 eV across a range of r values
with a coupling strength of 0.05 au. Relative energy of the
coupled ground state as a function of bond length computed
by a fully-converged variational approach to the Pauli-Fierz
Hamiltonian and by third-order perturbation theory for the
Pauli-Fierz and coherent state Hamiltonians.

bounds to the exact curve, with the CS-PT3 being closer
to the variational curve across the stretch. In Table III,
the root mean squared (RMS) error between the pertur-
bative approaches and the pQED across the bond length
scan are reported. Interestingly, we see the CS-PT2 re-
sult has the smallest RMS error. While the CS-PT3 RMS
error is smaller than the PF-PT3 RMS error, we observe
that the PF-PT3 RMS error is slightly larger than the
PF-PT2 error just as the CS-PT3 RMS error is slightly
larger than the CS-PT2 RMS error. Plots of magnitude
and relative errors for the perturbative approaches vs.
pQED(500,10)/6-311G are shown in the Supporting In-
formation for λz values of 0.01 and 0.05 in Figures S5 and
S6, respectively. The trajectories of the errors shown in
Figures S5 and S6 show a systematic increase with in-
creasing bond length, suggesting the magnitude of the
light-matter coupling increases similarly. This is likely
attributable to the monotonic increases in the magnitude
of the dipole moment as the LiH bond is stretched (see
Figure S7). In particular, the dipole self energy term in-
creases quadratically with the permanent dipole, and so
this scaling will tend to dominate the magnitude of the
perturbation. An important requirement for the validity
of perturbation theory is that the magnitude of the per-
turbation be relatively small, and failure of this criteria
leads to non-convergent perturbative series where sub-
sequent orders of perturbation theory take one further
away, rather than closer, to the exact answer. Figure S5
reveals that when λz = 0.01, the magnitude of the er-
ror of PF-PT3 exceeds the error of PF-PT2 for values of
the LiH bond length greater than about 1.8 Angstroms
where the ground-state dipole has a magnitude greater
than 2.35 Debye. Interestingly, the CS-PT3 error is con-
sistently smaller than the CS-PT2 error across the stretch
when λz = 0.01 atomic units. When we observe the anal-
ogous behavior with a larger coupling strength (λz = 0.05
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atomic units), we see that the PF-PT3 error is larger
than the PF-PT2 error for all value of the bond length,
whereas the CS-PT3 error only exceeds the CS-PT2 er-
ror for bond lengths greater than about 1.8 Angstroms.
These results are consistent with the supposition that
the coherent state transformation can mitigate the light-
matter coupling and extend the perturbative regime for
these coupled systems.

B. Perturbation theory for the cavity ground state

To investigate the impact of the coherent state trans-
formation on the convergence of the photonic subspace,
we consider two examples of the matter subsystem per-
turbing the cavity Hamiltonian. In the first example, we
revisit the lithium hydride system as an example of a po-
lar molecule that can strongly perturb the cavity Hamil-
tonian through bilinear coupling, and we illustrate how
the coherent state transformation can effectively miti-
gate this perturbation. In the second example, we con-
sider the hydroxide anion as a charged species that has
an origin-dependent dipole moment. This property of
charged species can induce very large perturbations to
cavity modes when the molecule is displaced away from
the cavity origin, and in the un-transformed representa-
tion, can impart a strong origin dependence in the energy
that necessitates a large photonic Fock spaces to numer-
ically resolve.

1. Lithium Hydride

We again consider the LiH molecule within the 6-311G
basis set with a bond length of 1.55 Angstroms coupled
to a photon with frequency ℏωcav = 3.28 eV (0.1208
Hartrees) polarized along the z-axis with λz = 0.2 atomic
units. We choose a large value of λ to clearly illustrate the
impact of strong coupling on the cavity potential, and the
bond length of 1.55 Angstroms was chosen as the equilib-
rium bond length for these cavity conditions. In the top
panel of Figure 7, we illustrate the bare cavity potential
given by V (q̂) = 1

2ω
2
cavq̂

2 in solid black lines, and the

perturbed potential given by V ′(q̂) = 1
2ω

2
cavq̂

2 −ωcav⟨d̂⟩q̂
in dashed black lines. The large displacement of these
potentials is indicative of the magnitude of the cavity
polarization imparted by the bilinear coupling to the po-

lar matter subsystem. The expectation value ⟨d̂⟩ is com-

puted at the pQED(500,10)/6-311G level and ⟨d̂⟩0 is com-
puted at the FCI/6-311G level (see Section III for more
details). We plot the exact ground-state cavity wavefunc-
tion for the perturbed system |0⟩ on the perturbed po-
tential (see Figure 7 top panel). Due to the polarization
induced by the bilinear coupling, the |0⟩ state has con-
siderable coupling to excited zeroth-order states (|n(0)⟩
with n > 0). We capture this coupling through the first-
and second-order corrections to state |0⟩ in the top panel

of Figure 7, where the contributions |0(1)⟩ and |0(2)⟩ are
shown on the unperturbed potential. In particular, these
corrections have the explicit form

|0(1)⟩ = ⟨d̂⟩√
2ωcav

|1(0)⟩

|0(2)⟩ = ⟨d̂⟩2

2
√
2ωcav

|2(0)⟩, (37)

where we have evaluated Eq. 29 analytically to obtain

these expressions in terms of ⟨d̂⟩ and ωcav. Numerical
values for the first- and second-order coefficients are pro-
vided in Table IV, and we can visually see that there
is considerable contribution from the first- and second-
order corrections owing to the magnitude of the bilinear
coupling term. The bottom panel of Figure 7 illustrate
the perturbed potential following coherent state transfor-

mation, ÛCSV
′(q̂)Û

†
CS = 1

2 (ωcavq̂ + ⟨d̂⟩0 − ⟨d̂⟩)2 − 1
2 ⟨d̂⟩)

2

in a dashed black line against the unperturbed potential
in solid black line, and we again plot the exact state |0⟩
along the transformed perturbed potential and the first-
and second-order corrections (|0(1)⟩ and |0(2)⟩) along the
unperturbed potential. We can clearly see the impact
of the transformation on the location of the minima of
the potential, which is now visibly indiscernible from the
minima of the unperturbed potential. Similarly, we can
see that the first- and second-order corrections to state |0⟩
are vanishingly small following the transformation (see
Figure 7 bottom panel). The first- and second-order coef-
ficients can again be evaluated analytically by substitut-

ing δ⟨d⟩ for ⟨d̂⟩ in Eqs. 37, and are tabulated in Table IV
where we see the first-order coefficient is roughly 75 times
smaller in magnitude the second-order coefficient is more
than 5000 times smaller in magnitude following the co-
herent state transformation. This illustrates how the co-
herent state transformation can effectively mitigate the
polarization of the cavity models by polar matter that
would typically necessitate a large number of photonic
Fock states to recover.

2. Hydroxide anion

To illustrate the ability of the coherent state trans-
formation to ensure numerical origin invariance for en-
ergies of charged molecules, we consider the hydroxide
anion displaced 20 Angstroms from the cavity origin (see
Figure 8). The OH− anion is represented within the 6-
31G basis set with a bond length of 0.9 Angstroms cou-
pled to a photon with frequency ℏωcav = 5.96 eV (0.219
Hartrees) polarized along the z-axis with λz = 0.05
atomic units. We note that this field does not couple
directly to a transition in the molecule; while there is
a dipole allowed transition at 5.96 eV, in this coordi-
nate system, it does not have a transition dipole moment
along the polarization axis of the field. Therefore, the
coupling occurs through the permanent dipole moment
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FIG. 7. (Top) Illustration of the polarization of a cavity mode
with ωcav = 3.28 eV through bilinear coupling to the LiH
molecule with coupling strength λz = 0.2 atomic units. The
unperturbed (solid black) and perturbed (dashed black) po-
tentials are plotted along with the exact ground-state wave-
function for the cavity mode on the perturbed potential, and
its first- and second-order corrections on the unperturbed po-
tential. (Bottom) The same system is represented following
application of the coherent state transformation to the cavity
Hamiltonian.

of the molecule. The expectation value ⟨d̂⟩ is computed

at the pQED(50,10)/6-31G level, and ⟨d̂⟩0 is computed
at the FCI/6-31G level. The top panel of Figure 9 shows
the unperturbed cavity potential (solid black line), the
perturbed potential when the molecule is at the cavity
origin (dashed-dotted black line), and the perturbed po-
tential when the molecule is displaced by 20 Angstroms
from the cavity origin (dashed black line). We can see
the profound influence that the origin dependent dipole
moments have on the displacement of the perturbed po-
tential. While the perturbed potential from the molecule
at the cavity origin is almost indiscernible from the un-
perturbed potential at this coupling strength, the per-

FIG. 8. Schematic of the OH− displaced from the cavity
origin. The cavity mode has energy of ℏω = 5.96 eV with
λz = 0.05 atomic units, polarized along the internuclear axis
of the molecule.

System Without Transformation With Transformation

c(1) c(2) c(1) c(2)

LiH -9.06 ·10−1 5.80 ·10−1 -1.24 ·10−2 1.08 ·10−4

OH− -2.80 ·100 5.57 ·100 5.11 ·10−4 1.85 ·10−7

TABLE IV. Coefficients for first- and second-order correc-
tions to the ground state cavity wavefunction for the LiH and
displaced OH− system with and without the coherent state
transformation.

turbed potential from the displaced molecule is dramat-
ically displaced. In other words, the hydroxide anion
provides some intrinsic polarization of the cavity state,
and also has a polarizing effect that is proportional to its
displacement from the cavity origin owing to its origin-
dependent dipole moment. For this particular system
(i.e. the cavity coupling strength and the displacement),
the polarization arising from the molecular displacement
is much more dramatic. We also see that this polariza-
tion imparts even stronger coupling between the ground
state wavefunction of the perturbed cavity and excited
zeroth-order states (see top panel of Figure 9). How-
ever, application of the coherent state transformation
completely eliminates the polarization that arises from
displacement from the cavity origin, and (similar to what
was demonstrated for LiH), results in cavity polarization
that is proportional to δ⟨d̂⟩. Accordingly, we see that

the transformed potential aligns closely with the unper-
turbed potential, and the coupling between the cavity
ground state and excited zeroth-order states is almost
entirely eliminated (see the bottom panel of Figure 9).
In this case, we see even more dramatic reduction in the
magnitude of the first- and second-order coefficients fol-
lowing coherent state transformation: the first-order co-
efficient is more than 5000 times smaller in magnitude
and the second-order coefficient is more than 7 orders
of magnitude times smaller following the coherent state
transformation.
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FIG. 9. (Top) Illustration of the polarization of a cavity mode
with ωcav = 5.96 eV through bilinear coupling to the OH−

anion with coupling strength λz = 0.05 atomic units with
and without displacement of the anion from the cavity origin.
The unperturbed (solid black) and perturbed potentials that
arise when the molecule shares the same origin as the cav-
ity (dashed-dotted black) and when it is displaced from the
cavity origin (dashed black) are plotted along with the exact
ground-state wavefunction for the cavity mode on the per-
turbed potential, and its first- and second-order corrections
on the unperturbed potential. (Bottom) The same system is
represented following application of the coherent state trans-
formation to the cavity Hamiltonian.

V. CONCLUDING REMARKS

In this work, we utilized perturbation theory to eluci-
date favorable computational properties, namely faster
convergence of the photonic Fock space and robustly
origin-invariant energies, that arise when the coherent
state transformation is applied to ab initio QED method-
ologies. In partciular, we found that applying the coher-
ent state transformation yields second- and third-order
estimates to the ground state energy that are in consis-

tently better agreement with exact ground state across a
range of coupling strengths as compared to the same or-
ders without transformation of the Hamiltonian. We rea-
son that this advantage arises because of the partial de-
coupling between the light-matter subsystems that arises
from this transformation that tends to increase the radius
of convergence of the perturbative series. Furthermore,
when we treated the bilinear coupling between electron
and photon degrees of freedom as a perturbation to the
cavity Hamiltonian, we found that the coherent state
transformation decouples the systems to within a magni-
tude that is related to the error in the reference estimate
of the dipole moment expectation value that parameter-
izes the transformation for a target coupled state. We
showed that this error is manifestly origin invariant, and
so this result sheds light on why the coherent state trans-
formation accelerates photon convergence and restores
origin invariance in ab initio QED calculations.
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Data Availability Open-source implementation

of the methods used for the results presented
within can be accessed in the following GitHub
repository: https://github.com/mapol-chem/qed-ci/
tree/jcp_submission.
The data that support the findings of this

study are available from the corresponding author
upon reasonable request; json data correspond-
ing to the results in Section IV.A may be found
https://github.com/FoleyLab/data_repository/;
specifically for HeH+ data here: https://github.
com/FoleyLab/data_repository/tree/main/Mapol/
HHep/perturbation_theory and for LiH data here:
https://github.com/FoleyLab/data_repository/
tree/main/Mapol/LiH/perturbation_theory. An
example Jupyter notebook producing the figures and
coefficients used in results Section IV B may be found
here: https://github.com/FoleyLab/SCQED-PCQED/
blob/perturbation_theory/src/OHminus_PT_for_
Cavity.ipynb.
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25J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A. Ru-
bio, “Ab initio optimized effective potentials for real molecules
in optical cavities: Photon contributions to the molecular ground
state,” ACS Photonics 5, 992–1005 (2018).
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