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Abstract

Acylation is an important reaction widely applied in medicinal chemistry. However,

yield optimization remains a challenging issue due to the broad conditions space. Re-

cently, accurate condition recommendations via machine learning have emerged as a novel

and efficient method to achieve the desired transformations without a trial-and-error

process. Nonetheless, accurately predicting yields is challenging due to the complex rela-

tionships involved. Herein, we present our strategy to address this problem. Two steps

were taken to ensure the quality of the dataset. First, we skillfully selected substrates to

ensure diversity and representativeness. Second, experiments were conducted using our

in-house high-throughput experimentation (HTE) platform to minimize the influence

of human factors. Additionally, we proposed an intermediate knowledge-embedded
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strategy to enhance the model’s robustness. The performance of the model was first

evaluated at three different levels—random split, partial substrate novelty, and full

substrate novelty. All model metrics in these cases improved dramatically, achieving

an R2 of 0.89, MAE of 6.1%, and RMSE of 8.0%. Moreover, the generalization of our

strategy was assessed using external datasets from reported literature. The prediction

error for nine reactions among 30 was less than 5%, and the model was able to identify

which reaction in a reaction pair with a reactivity cliff had a higher yield. In summary,

our research demonstrated the feasibility of achieving accurate yield predictions through

the combination of HTE and embedding intermediate knowledge into the model. This

approach also has the potential to facilitate other related machine learning tasks.

Introduction

N-acylation (referred to as acylation hereafter) reaction is one of the most important reactions

in drug discovery.1–3 It plays a crucial role in the synthesis of various pharmaceutical com-

pounds and has significant implications in this field. For example, surveys in pharmaceutical

chemistry have shown that the frequency of acylation reactions often dominates among all

reaction types. Despite their importance, yield optimization still remains challenging due

to the multitude of variables such as reagents, solvents, temperatures, and catalysts that

must be considered to achieve high yields. Traditional strategies for optimization typically

rely on prior knowledge and involve manual trial-and-error, which is a time-consuming and

labor-intensive process.

To address these challenges, scientists have turned to machine learning (ML) models

to predict reaction yields and streamline the optimization process. Recent publications

underscore the importance of ML in reaction yield prediction.4–7 For instance, Doyle et

al. demonstrated the application of Random Forest algorithms to predict yields in C–N

cross-coupling reactions, highlighting ML’s potential to reduce experimental workloads and

accelerate discovery.8 Similarly, Schwaller et al. utilized neural networks to predict reaction
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outcomes based on textual descriptions of experimental procedures, offering a novel approach

to yield prediction.9 However, both data quality and model could effect the prediction result,

thus, yield prediction remains challenging up to now.

The first acylation reaction yield prediction model by Isayev et al. utilized literature-

based reactions curated from Reaxys to build predictive models but highlighted the inherent

difficulties of using such data. Literature reactions often suffer from inconsistencies in

reporting, variability in experimental conditions, and a lack of comprehensive datasets,

making it challenging to build robust and generalizable models.10 Additionally, literature

sources typically report only successful reactions with high yields, neglecting low-yield and

negative data that are crucial for creating well-distributed and accurate predictive models.11

It is essential to curate relevant datasets for model development and to identify and control

factors that complicate yield prediction. The variability in data sources, reaction scales, and

structural diversity reported in the literature further complicates the development of reliable

models.12 In summary, the quality of reaction datasets is paramount for building robust and

high-performance prediction models.

High-throughput experimentation (HTE)13 has emerged as a powerful alternative to

traditional literature-based approaches for building reaction yield prediction models.14–22

HTE techniques generate large datasets through automated, parallelized experiments, offering

a more consistent, comprehensive, and controlled data source with a broader range of reaction

conditions, including low-yield and negative outcomes. This systematic approach helps

in developing more robust and generalizable models. With our in-house automated HTE

platform, we have successfully optimized reaction conditions, explored the reaction space,

and collected standardized experimental data for AI studies, resulting in a series of related

publications.17–23

Despite these advantages, many HTE-based models achieve high accuracy but are limited

to a narrow range of substrate and reaction condition spaces. Additionally, a common issue

with these models is the evaluation methodology. Often, models are tested using data splits
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that include test substrates seen by the model in the training set, resulting in overly optimistic

performance metrics. However, when evaluated using a strict test set — where the model

must predict yields for entirely new combinations of substrates—the performance typically

drops. This strict testing better reflects real-world applications where chemists need to

predict reaction yields for novel substrate pairs. Therefore, creating a reaction dataset with a

diversified substrate and conditions and implementing rigorous testing protocols and curating

relevant datasets is crucial for developing reliable and accurate predictive models.

In this context, we aim to build a high-quality dataset on acylation and develop a

high-performance yield prediction model that can accurately recommend optimal conditions

for novel substrate pairs in the training dataset. In this work, we first demonstrate our

efforts to prepare the dataset. We selected substrate pairs according to structures reported

in the USPTO reaction dataset24 to ensure potential application and structural diversity.

Second, our in-house HTE platform was utilized to collect data, ensuring repeatability. With

the dataset in hand, we then focused on developing a robust prediction model. Given the

challenge to develop a robust model under 95 conditions, we transformed our goal into an

iterative prediction task across the 95 conditions list. Meanwhile, intermediate knowledge

was embedded into the model to enhance its performance. The distinguishing feature of this

strategy is that the model does not need to learn the relationships among different conditions,

while still retaining condition information, thereby providing better performance with high

probability. The results of a series of studies revealed that the generalization ability of the

model could be significantly improved after applying this strategy (Figure 1). The yield

prediction error for 9 out of 30 reaction samples, which were from literatures entirely unseen

in the training dataset, was less than 5%, indicating the potential application of our work.

Additionally, our strategy achieved satisfactory prediction results for reaction pairs with

reactivity cliffs, delivering an accuracy of 0.73 in binary classification.
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Figure 1: Studies on conditions optimization of acylation.

Results and discussion

HTE substrates selections

From the USPTO reaction dataset,24 encompassing over 50,000 synthetic reactions derived

from published US patents, we initiated our study by compiling a comprehensive dataset

focusing on acylation reactions. The USPTO dataset is notable for its open-source availability,

enabling reproducibility by others. We emphasize the biological activity and practical

applications of the products derived from these reactions, underscoring their potential

significance in various fields. To do this, as shown in Figure 2a, by following the general

equation of acylation reaction, we first composed a reaction template in SMiles ARbitrary

Target Specification (SMARTS) syntax.25 We used RDKit26 to filter acylation reactions from

the USPTO dataset, which found 11663 entries of acylation reaction. Each entry in the

dataset includes detailed reaction conditions, substrates, and products information. The

product SMILES strings were then converted into extended connectivity fingerprints (1024-bit

ECFP),27 with 1024 bits and radius of 2, which serve as numerical representation of the
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molecular structures. To manage the high-dimensional nature of the Morgan fingerprints

and facilitate analysis, we employed a unsupervised learning technique, Principal Component

Analysis (PCA)28 to reduce the dimensionality of the data, preserving the variance inherent

in the molecular descriptors. The data was reduced to a two-dimensional space, optimizing

for the visualization and clustering of the chemical space.

Figure 2: (a) acylation reaction general equation and SMILES template, (b) chemical space
of patented acylation reaction data compared with self developed HTE data using the PCA

of acylation reaction product

From the USPTO chemical space, we strategically selected substrates from readily available

molecules to conduct high-throughput experimentation (HTE) due to the synthesis difficulty
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of many USPTO substrates, which commonly originate from patented molecules. To ensure

broad coverage across the chemical space, we identified 3,212 amines and 3,816 carboxylic acids

from our in-house commercial molecule database curated from various chemical providers. We

first selected a subset of commercially available substrates and enumerated the corresponding

virtual amide products. These virtual products were then projected into the PCA-reduced

space. Using MaxMin sampling, we started with a random substrate pair and then selected

subsequent pairs that maximize the minimum distance to previously chosen pairs, ensuring

diversity. This technique allowed us to select diverse product-substrate pairs, ensuring that a

few substrate pairs were already present in the USPTO dataset. These selected pairs were

combined with those derived from the USPTO data and divided into strata based on their

PCA-reduced coordinates. Within each stratum, we conducted random sampling to ensure

coverage of both dense and sparse regions of the chemical space. This approach allowed

us to curate a balanced and representative set of substrate pairs for our high-throughput

experimentation, effectively spanning the entire chemical space of interest.

Figure 2b illustrates the distribution of acylation products within a two-dimensional

chemical space, revealing a meaningful distribution of data. Several example molecules

are highlighted, demonstrating how different types of acylation products are organized into

distinct distributions. These clusters also provide insights into the acylation substrates, as the

substrates involved in each reaction can be inferred from the reaction templates. Only a few

of the acylation products came from substrates seen in the USPTO, shown in green, yellow,

and pink in Figure 2. However, the comparison of this chemical space indicates that our

self-developed HTE reactions encompass a breadth of chemical diversity comparable to that

of the USPTO dataset, which is recognized for its extensive coverage in reaction modeling.

Although the USPTO dataset does not capture the entire chemical space historically explored

by chemists,29 it represents a robust and comprehensive starting point due to its open-access

nature. This facilitates the replication of our study and underscores that our strategies to

select substrates effectively mirrors the diversity and scope of chemical spaces reported in the
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literature, which would be benefit to develop a robust model.

HTE conditions selection

According to the results of previous related work, we prepare 95 different conditions for HTE.

The details of the 95 conditions are shown in Table S1 of the Supporting Information (SI). It

should be noted that all commercial coupling reagents were involved in conditions set except

for acyl chloride, because it is not compatible with DMF solvent. With the conditions and

substrates pair in hand, we performed the HTE to collect reaction yield data. As a result,

more than 47000 yield data were collected except for those discard data. Overlapping of

chromatography peak and difficulty in NMR analysis usually result in failure to obtain the

corresponding yield data. The details of our HTE platforms and experimentation procedures

can be found from our previous publications.17,18,20,23 This dataset was designed to be rich

and diverse, providing a robust foundation for training machine learning models. The aim

was to ensure that our HTE data would be sufficiently comprehensive to enable the models

to understand and predict the yields of acylation reactions across the entire chemical space

covered by our study.

Multi-condition model development and assessment

In this section, we describe the development and assessment of our multi-condition models

for predicting acylation reaction yields. As shown in Figure 3, we employed several machine

learning algorithms, including XGBoost,30 Support Vector Machine (SVM),31 Random

Forest,32 and AutoGluon,33 utilizing 1024-bit ECFP fingerprints as descriptors.27 Additionally,

we explored the use of advanced deep learning textual methods such as yield-BERT9 and

T5-Chem,34 which leverage reaction SMILES strings for yield prediction.

First, we generated 1024-bit ECFP descriptors from the SMILES strings of reactants and

products. These ECFP descriptors, with 1024 bits and a radius of 2, capture the structural

features of the molecules involved in the reactions. These fingerprints of substrates and
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Figure 3: Schematics of multi-conditional model workflow, using methylamine reacting with
acetic acid as an example.

product of a reaction were concatenated to create a vector of 3072 or point-wise added to

keep size of 1024, as the reaction fingerprint. Each of the different reaction conditions was

encoded in a unique integer (1-95). We then used these descriptors to train the XGBoost,30

SVM,31 Random Forest,32 and AutoGluon33 models. Each model was fine-tuned to optimize

hyperparameters, ensuring the best performance for yield prediction. AutoGluon, a robust

ensemble model, combines the strengths of various machine learning algorithms to improve

predictive performance and model robustness.35 Figure 3 uses the modelling workflow of

AutoGluon to exemplify the machine learning approaches.

In parallel, we implemented deep learning yield-BERT9 and T5-Chem34 models. Yield-

BERT, based on the BERT architecture36 was trained on reaction SMILES to predict yields

by understanding the sequence-to-sequence relationships within the reaction data. Similarly,

T5-Chem, a variant of the T5 transformer model,37 was also trained to capture contextual

information from reaction SMILES strings, enabling it to predict yields by considering the
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entire reaction context. To do this, we first tokenized the reaction SMILES strings, converting

them into a sequence of tokens that represent the individual components of the molecules.

These tokens were then fed through the transformer processes, which include multiple layers

of attention mechanisms and feed-forward neural networks. Next, we incorporated the

categorical features of reaction conditions into the model. These categorical features were

combined with the text features output by the transformer through a combining module.

This module integrated the encoded textual information from the SMILES strings with the

reaction condition data. Finally, the combined features were passed through fully connected

layers to predict the reaction yield. These layers consisted of several dense neural network

layers that progressively refined the combined features into a single output value representing

the predicted yield. In the above methods, we tried using fingerprints or reaction SMILES

to represent the reaction conditions, but these did not represent the conditions well. Since

we do not intend to predict outside these conditions, we opted for a categorical encoding

approach to maintain clarity and consistency.

For the assessment of HTE-based reaction models, the conventional approach involves

using a random split to build a test dataset. The HTE-based reaction data come from

three dimensions: substrate 1 (amine), substrate 2 (carboxylic acid), and reaction conditions

(encoded from 1 to 95). Randomly splitting the reaction data into training and test sets can

result in some test substrates being seen by the model during training. For instance, the

test dataset might include two familiar substrates with an unfamiliar condition or a familiar

amine with an unfamiliar carboxylic acid, leading to overly optimistic performance metrics.

However, when evaluated using a strict test set with entirely new substrate combinations (or

at least one novel substrate), performance typically drops. This strict testing better reflects

real-world applications, where chemists need to predict reaction yields for novel substrate

pairs not previously encountered by the model.

To further assess the model, we developed three levels of test sets, as shown in Figure 4.

The "random split" approach involves randomly dividing the dataset into training and testing
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sets, ensuring that the model is exposed to a broad range of substrates and reaction conditions.

The "partial substrate novelty" test is a subset of the Random Split, excluding any test

cases where the reaction conditions are novel but involve substrates seen during training.

In this test, one of the substrates is novel to the model, whilst the other one is known.

The "full substrate novelty" test set is another subset of random split, and consists entirely

of new combinations of substrates that has not encountered during training, providing a

more rigorous evaluation of the model’s predictive capabilities in real-world scenarios. These

three levels of testing — random split, partial substrate novelty, and full novelty — offer a

comprehensive assessment of the model’s performance. Through this comprehensive approach,

we have developed a suite of multi-condition models that leverage both traditional molecular

descriptors and advanced textual methods, providing a robust framework for predicting

acylation reaction yields across a wide range of chemical spaces.

Figure 4: Schematics of three level of test sets - random split, partial substrate novelty, and
full novelty test: (a) split of training and test sets in the dimension of two substrates, (b)

vienn diagram of the three level of test sets

The results indicate that models performed better on the random split and partial

substrate novelty test sets compared to the full substrate novelty test set. This is evident

from the lower MAE and RMSE values and higher R2 values for the first two splits (shown
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in Table 1). These findings align with our expectations that models trained on datasets

where they are exposed to a broad range of substrates and reaction conditions perform better

on familiar substrates, but their performance drops when predicting yields for entirely new

substrate pairs.

Table 1: Model evaluation under HTE data set.

Test data

split

Metrics XGBoost SVM RF AutoGluon Yield-

BERT

T5-

Chem

Random split

R2 0.76 0.21 0.54 0.36 0.66 0.53

RMSE 12% 23% 18% 24% 15% 22%

MAE 9.00% 19.00% 17% 19% 10% 16%

Partial

substrate

novelty

R2 0.71 0.19 0.52 0.3 0.68 0.58

MAE 13% 24% 19% 26% 14% 20%

RMSE 11% 21% 17% 21% 10% 15%

Full

substrate

novelty

R2 0.65 0.22 0.51 -0.1 0.63 0.58

MAE 14% 22% 19% 32% 15% 22%

RMSE 12% 18% 17% 26% 11% 17%

In the random split dataset, XGBoost and BERT showed relatively better results with R2

values of 0.76 and 0.66, respectively. These models outperformed SVM, Random Forest, T5,

and AutoGluon. Even when evaluated on the full novelty substrate dataset, XGBoost and

BERT still maintained higher R2 values of 0.65 and 0.63, respectively, compared to the other

models. This indicates that XGBoost and BERT are more robust and capable of generalizing

better across different substrate combinations.
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Single condition model development and assessment

The results from models trained under 95 different conditions demonstrated their reliability

in accurately recommending conditions to facilitate optimal reactions, especially as model

performance improved further. Given the complex structure-yield relationship (SYR) and

the cost of data collection via HTE, we decided not to generate more data to enhance

model performance. Inspired by the concepts of knowledge embedding38 and dimensionality

reduction, we proposed to achieve our goal through single condition model development

presented as follows.

We could transform the yield prediction under multiple conditions into an iterative

prediction within a condition list, a method we termed single condition prediction. In

this approach, all reaction data within a single model were generated under the same set

of conditions, thus eliminating reaction contexts such as condensation reagents, catalysts,

bases, and solvents. This allowed the model to focus solely on the relationship between

substrates and products, leading to improved learning and predictive accuracy. However,

a significant challenge with this method is the potential loss of critical reaction condition

information. Since reaction conditions play a crucial role in determining the outcome of

chemical reactions, ignoring them can lead to incomplete models that do not accurately

reflect real-world scenarios. To address this issue, we incorporated intermediate information

based on reaction mechanisms into our model.

To evaluate our concept, we chose six different conditions with various coupling reagents

that are frequently used in the literature and have well-defined intermediates. For single

condition selection, we performed a statistical analysis of the literature-reported acylation

reactions curated from Reaxys.39 We identified the 25 most frequently used conditions, as

shown in Table S6 of the SI, and selected six for model development and assessment, as

shown in Table 2. These conditions were chosen based on their prevalence in the dataset,

ensuring that our HTE conditions were both representative and relevant to a wide range of

acylation reactions. In our investigation of single-condition models, we followed the meticulous
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approach in preparing our dataset, ensuring it mirrored the model’s rigor through three

distinct datasets: random split, partial substrate novelty, and full substrate novelty.

Table 2: Details of the six reaction conditions

Condition # Activation reagent Additive Base Solvent
1 HATU DIPEA DMF
6 TBTU DIPEA DMF
13 EDC.HCl HOBT DIPEA DMF
21 HBTU DIPEA DMF
34 PyBOP DIPEA DMF
79 DCC HOBT DMF

To simplify the complexity of the reaction system in multi-condition acylation reaction

modeling, we developed multiple single-condition models by removing condition variables as

mentioned above. Meanwhile, we incorporated intermediate information based on reaction

mechanisms by using reaction SMARTS templates to represent the formation of activated

acid intermediates. For example, in the presence of HATU as a condensation reagent, the

transformation of an acid to its activated intermediate was represented by the following

template shown in Figure 5(a).

This template converts the acid into the activated acid. We applied specific SMARTS

templates for all the six conditions, which are detailed in the code repository. Next, we added

the intermediate information into the reaction contexts, allowing the model to learn the effect

of intermediates on the reaction outcome. To generate descriptors, we experimented with

three approaches for generating the reaction context for the single-condition model, using the

patterns of:

1. no intermediate

2. amine + acid + intermediate → amide

3. amine + intermediate → amide
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Figure 5: (a) Transformation of acid to intermediate SMARTS pattern under HATU as
activation reagent, and (b) schematics of single-conditional model workflow

As shown in Figure 5(b), the reaction contexts were vectorized into ECFP fingerprints

and also converted into reaction SMILES, effectively capturing the structural features of the

reactants and products, along with crucial intermediate information. This approach ensured

that the model considered the essential reaction conditions indirectly through the intermediate

representation. The ECFP fingerprints and reaction SMILES were then used to train single-

condition models using similar machine learning and deep learning algorithms respectively as

those employed for multi-condition models (Figure 3). However, in this case, the reaction

conditions were no longer concatenated with the reaction vector. We employed the same
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rigorous testing protocols as used for the multi-condition models, evaluating performance

across random split, partial substrate novelty, and full substrate novelty datasets.

Our results reveal that the BERT model trained on the random split dataset usually

delivered superior performance, characterized by lower Mean Absolute Error (MAE) and Mean

Squared Error (MSE), alongside higher R2 values. This trend indicates that fewer variables

enhance model accuracy. Moreover, descriptors incorporating intermediate information

indeed enhanced performance. Specifically, under HATU and TBTU conditions, R2 values

surged from 0.69 and 0.71 to 0.86 and 0.84, respectively, with corresponding decreases in

errors, underscoring the efficacy of our intermediate strategy. This robust performance of

intermediate-inclusive descriptors persisted even in the full substrate novelty dataset, where

the BERT model maintained an R2 value of approximately 0.8 across all reaction conditions,

albeit with slight reductions (Table 3). Among the intermediate-inclusive descriptors, the

amine + intermediate approach usually outperformed the amine + acid + intermediate

strategy across all reaction conditions when using the BERT algorithm (more metric details

can be found in Table S7 of the SI). This observation aligns with the reaction mechanism, where

amines and acids form intermediates before converting to products. Since our intermediate is

represented as activated acid, it already encapsulates acid information, making the amine

+ acid + intermediate descriptors redundant. Consequently, the more precise amine +

intermediate descriptors yield better results by avoiding redundant information and focusing

on the critical reaction components.

Contrastingly, the XGBoost algorithm’s performance lagged behind the multi-condition

model, and the inclusion of intermediate descriptors did not enhance results, resulting in

marginal declines (details on metrics, please see Table S4 and S7 in SI). This discrepancy

between BERT and XGBoost is likely attributable to algorithmic differences. XGBoost,

a machine learning algorithm, excels in learning simple reactions but struggles with the

complexity added by intermediate descriptors. In contrast, the deep learning-based BERT

algorithm thrives on this additional complexity, leveraging it to improve predictive accuracy.
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Besides XGBoost, we also investigated other algorithms’ performance after intermediate

knowledge was embedded into the model. However, no better result was obtained in all cases

(details on metrics please see Table S7 in SI).

By incorporating intermediate information, our single-condition models demonstrated

significantly improved performance. The intermediate-powered model achieved an R2 of 0.86,

compared to an R2 of 0.69 for the model without intermediate incorporation. This innovative

strategy not only enhanced model accuracy but also provided a balanced approach that

integrates condition-specific data with broader chemical knowledge, ultimately improving the

robustness and generalizability of yield predictions for acylation reactions. This comprehensive

approach ensures that our single-condition models are capable of accurately predicting

reaction yields while considering the crucial role of reaction conditions through intermediate

representations, thereby providing reliable and practical tools for chemists in optimizing

acylation reactions.

Six-condition model development and assessment

Having identified the power of intermediate knowledge embedded in a model, we next aim

to determine whether our strategy would also work well in the case of combining data from

all six different conditions into one dataset . Indeed, the performance of the BERT model

enhanced by intermediate knowledge improved, but the growth rate in performance was less

than that observed in single-condition predictions, especially in cases of complete novelty

splitting, as shown in Table 4. This may be because the model needs to learn the relationships

among the six different conditions, but the data is insufficient for the model to learn these

relationships effectively.

In summary, it is evident that intermediate-inclusive descriptors yield better results not

only in single-condition predictions but also in multi-condition predictions. The absence of

intermediate descriptors leads the model to erroneously assume that reactions depend solely

on substrates, ignoring the significant impact of reaction conditions. This misassumption
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Table 3: Performances of the BERT model in single condition prediction. The results with
embedded intermediate knowledge are outside the parentheses, while the results with no
intermediate knowledge are inside the parentheses.

Test data split Metrics TBTU HATU PyBOP DCC HBTU EDC

Random
split

R2 0.84
(0.71)

0.86
(0.69)

0.90
(0.80)

0.86
(0.80)

0.89
(0.83)

0.89
(0.82)

RMSE 10%
(13% )

9.0%
(14%)

8.0%
(11%)

9.0%
(11%)

9.0%
(11%)

8.0%
(11%)

MAE 7.0%
(10%)

6.0%
(10%)

5.0%
(8.0%)

7.0%
(8.0%)

6.0%
(8.0%)

6.1%
(7.0%)

Partial
substrate
novelty

R2 0.77
(0.57)

0.78
(0.53)

0.82
(0.63)

0.81
(0.74)

0.86
(0.72)

0.88
(0.79)

MAE 12%
(16%)

12%
(17%)

10%
(14%)

11%
(13%)

9.0%
(13%)

9.0%
(12%)

RMSE 8.0%
(12%)

8.0%
(13%)

7.0%
(11%)

8.0%
(9.0%)

7.0%
(10%)

6.0%
(8.0%)

Full
substrate
novelty

R2 0.85
(0.66)

0.84
(0.39)

0.89
(0.40)

0.67
(0.1)

0.83
(0.68)

0.75
(0.46)

MAE 9.0%
(13%)

7.0%
(14%)

8.0%
(18%)

7.0%
(12%)

10%
(14%)

14%
(18%)

RMSE 7.0%
(11%)

6.0%
(11%)

6.0%
(12%)

5.0%
(10%)

7.0%
(8.0%)

11%
(13%)

Table 4: Performances of BERT under dataset of six different conditions

Intermediate information Test data split R2 RMSE MAE

Without
intermediate knowledge

Random split 0.77 12% 9.00%
Partial novelty 0.71 14% 10%
Full novelty 0.62 10% 8.00%

With embedded
intermeidate knowledge

Random split 0.85 10% 7.00%
Partial novelty 0.8 11% 8.00%
Full novelty 0.65 9.00% 8.00%
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explains why models without intermediate descriptors perform well in the random split and

known single-substrate datasets but experience sharp performance drops in the full novelty

substrate dataset.

Prediction of external literature reactions

In order to demonstrate the generalization ability of our model enhanced by intermediate

knowledge, we subsequently evaluated its performance on an unseen dataset originating from

the literature. We collected data from 30 reactions related to medicinal chemistry to showcase

the potential application of our model in this field. Five reactions were extracted from the

literature for each of the six conditions mentioned in the proof of concept section. We then

used the corresponding single-condition prediction models, which had the best performance

in the full novelty dataset, to predict the yields of these reactions. The performance of the

models was quite good, resulting in a mean absolute error of 12.2% (for details on prediction

results, please see SI, Table S10). Excitingly, the prediction errors for 9 reactions were less

than 5% (as shown in Figure 6).

For some substrates, the amidation transformations were challenging, and the relationships

were complex due to the presence of heterocycles or special functional groups, such as amine

group (4) and boronic acid group (7). Thus, achieving accurate yield predictions for these

transformations was not easy. However, the model provided rather accurate predictions,

indicating that it had indeed learned the complex structure-yield relationships. Given the

structural diversity and very accurate predictions for some reactions, the model appears to

have achieved a considerable balance between sensitivity and robustness.

Model performance evaluation in a benchmark dataset

After gaining a clear understanding of the generalization ability of the model trained on the

HTE dataset, we aimed to evaluate the performance of the BERT model enhanced with

intermediate knowledge on a benchmark dataset from Isayev’s work. We prepared the dataset
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Figure 6: Prediction results of some external literature reaction examples

according to the list of reaction IDs provided in the report. The model’s performance was

evaluated via random split. Initially, we studied the performance of the standard BERT

framework, which delivered modest metrics with an R2 of 0.37, MAE of 13%, and RMSE of

18%. Howeever, the BERT model enhanced by intermediate knowledge improved performance

to some extent, achieving an R2 of 0.42, MAE of 12%, and RMSE of 16%. Isayev disclosed

that reactivity cliffs were a reason for the poor performance of the model. Reactions were

considered "cliffs" when their similarity surpassed 0.9, yet the yield difference was greater

than 30. We were curious about whether our model’s performance was affected by reactivity

cliffs. Therefore, we predicted the yield of reactions identified as reactivity cliffs in Isayev’s
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work. The prediction error averaged 0.34, indicating the reactivity cliff may also weaken

the performance of our model. Although the performance of BERT in regression was not

optimal, the model could extrapolate which reaction from a reaction pair with a reactivity

cliff would achieve a greater yield, with a classification accuracy of 0.73 (details on prediction

results, please see the Table S11 in SI). To our delight, the model provided very satisfactory

prediction results for reaction pairs that best fit the concept of reactivity cliffs (Figure 7).

OH
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N
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N
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N
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(b)

H2N
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lower yield

Higher yield

AI

Figure 7: Prediction performance toward a reaction pair with reactivity cliff.

Conclusions

Accurate yield prediction is a crucial objective among many reaction-related prediction tasks,

as several tasks can be viewed as yield prediction problems, including selectivity, conditions

recommendation, catalysts design, ligands design, and more. Despite its importance, it

remains a challenging issue due to the impact of both data quality and the generalization

ability of the model. During the process of substrate pair selection, our goal was to match

the diversity found in literature-reported reactions. This targeted method ensured that our
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data collection was comprehensive and purposeful, rather than arbitrary. The data was

then collected utilizing our in-house high-throughput experimentation (HTE) platform to

ensure its quality. Our model’s performance was validated through three levels of test sets —

from random splits to strict tests — and further calibrated using recent unbiased external

literature datasets. To address the challenges observed with strict test results, we proposed a

strategy that enhances model performance by embedding domain-specific knowledge about

reaction intermediates and dimension reduction. We evaluated our concept from different

aspects, and the results revealed the importance of intermediate knowledge in elevating the

model’s performance. Excitingly, the model could even provide quite accurate predictions

for some useful reactions reported in the literature. In summary, we developed an acylation

yield prediction model with high performance by embedding intermediate knowledge into the

model and employing dimension reduction, using computationally economical SMILES as

input. Our strategy can also be applied to other related machine learning tasks to enhance

model performance.
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The data and code related to model development and evaluation could be found at following

link: https://www.github.com/aichemeco/Acylation/tree/main.
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