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Abstract 9 

This work utilizes collected and organized instructional data from the field of 10 

chemical science to fine-tune mainstream open-source large language models. To 11 

objectively evaluate the performance of the fine-tuned models, we have developed an 12 

automated scoring system specifically for the chemistry domain, ensuring the 13 

accuracy and reliability of the evaluation results. Building on this foundation, we have 14 

designed an innovative chemical intelligent assistant system. This system employs the 15 

fine-tuned Mistral Nemo model as one of its primary models and features a 16 

mechanism for flexibly invoking various advanced models. This design fully 17 

considers the rapid iteration characteristics of large language models, ensuring that the 18 

system can continuously leverage the latest and most powerful AI capabilities.A major 19 

highlight of this system is its deep integration of professional knowledge and 20 

requirements from the chemistry field. By incorporating specialized functions such as 21 

molecular visualization, SMILES string processing, and chemical literature retrieval, 22 

the system significantly enhances its practical value in chemical research and 23 

applications. More notably, the system possesses autonomous evolution capabilities. 24 

Through carefully designed mechanisms for knowledge accumulation, skill 25 

acquisition, performance evaluation, and group collaboration, the system can 26 

continuously optimize its professional abilities and interaction quality. This dynamic 27 

adaptive feature enables the system to evolve autonomously, breaking through the 28 
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inherent static limitations of traditional AI systems. 29 
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1. Introduction 48 

Large Language Models (LLMs) stand out as one of the most noteworthy 49 

achievements in the field of artificial intelligence in recent years and represents a 50 

crucial direction for the development of Artificial General Intelligence (AGI)[1,2]. 51 

Since the introduction of ChatGPT and GPT-4o, Large Language Models (LLMs) and 52 

Multimodal Large Language Models (MLLMs) have attracted significant interest due 53 

to their versatile abilities in understanding, reasoning, and generating content[3]. 54 

However, the current state of this technology still presents significant deficiencies and 55 

imbalances, including persistent illusions, misaligned values, weak specialization, and 56 

the black box effect[2]. In this scenario, how to apply Large Language Models (LLMs) 57 

to different professional fields has become a current research hotspot. 58 

Fine-tuning has a significant effect on improving the performance of LLM in 59 

specific application scenarios, which lays the foundation for LLM to further promote 60 

scientific progress in various fields[4,5]. For example, research by Ouyang et al. (2022), 61 

Wei et al. (2021), and Sanh et al. (2021) demonstrates that fine-tuning language 62 

models on a specific set of tasks significantly enhances their ability to understand and 63 

execute instructions[6-8]. This method not only reduces the reliance on large datasets 64 

but also improves the generalization capabilities of the models. Given the scale of 65 

LLMs, a common fine-tuning strategy currently involves adjusting a limited number 66 

of parameters while keeping the rest fixed[9]. This technique, known as Parameter-67 

Efficient Fine-Tuning (PEFT), selectively tunes a small subset of parameters. PEFT 68 

has also gained interest beyond NLP, particularly in the CV community, for fine-69 

tuning large-parameter visual models like Vision Transformers (ViTs), diffusion 70 

models, and visual-language models[4]. 71 

However, fine-tuning large models still has some drawbacks. For example, this 72 

method requires substantial computational resources and data. Fine-tuning large 73 

models is also prone to overfitting on small-scale datasets and cannot accurately 74 

reflect potential risks (e.g., "hallucinations"), which may introduce latent hazards. 75 

Additionally, it cannot update its knowledge base in real time[10]. The primary reasons 76 
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for these drawbacks are that both pre-trained large models and fine-tuned large 77 

models use parameter memory to construct a parameterized implicit knowledge 78 

base[11]. Hybrid models that combine parametric memory and non-parametric (i.e., 79 

retrieval-based) memory can address some of these issues[12-14]. The Retrieval-80 

Augmented Generation (RAG) technique improves the accuracy and reliability of 81 

hybrid model generation by integrating knowledge from external databases (non-82 

parametric memory), especially for knowledge-intensive tasks. This approach also 83 

allows for continuous knowledge updates and the integration of domain-specific 84 

information. RAG synergizes the intrinsic knowledge of large language models with 85 

the extensive dynamic repositories of external databases[15]. 86 

Furthermore, with the continuous development of LLMs, they are seen as 87 

potential sparks for Artificial General Intelligence (AGI), providing hope for the 88 

construction of general AI agents[16]. Currently, AI agents are considered a crucial step 89 

towards achieving AGI, encompassing the potential for a wide range of intelligent 90 

activities[17-19].In many real-world tasks, the capabilities of agents can be enhanced by 91 

constructing multiple cooperative agents[20]. Studies have shown that multi-agent 92 

systems help encourage divergent thinking[21] (Liang et al., 2023), improve factuality 93 

and reasoning abilities[22] (Du et al., 2023), and provide verification[23] (Wu et al., 94 

2023). These features have garnered widespread attention. Currently, the general 95 

frameworks for constructing LLM applications with multiple agents include 96 

AutoGen[37], crewAI[38],Langchain[39] and others. Intelligent agents based on large 97 

language models (LLMs) are increasingly permeating various aspects of human 98 

production and daily life. However, designing artificial intelligence agents with self-99 

evolution capabilities has become a current research hotspot. For example, Li et al.[24] 100 

proposed an evolutionary framework for agent evolution and arrangement called 101 

EvoluaryAgent. Qian et al.[25] proposed a general strategy for inter-task agent self-102 

evolution based on Investigation-Consolidation-Exploitation(ICE). 103 

These artificial intelligence technologies will provide a new paradigm for 104 

scientific research and open new avenues for scientific innovation, thereby 105 

significantly accelerating the pace of scientific discoveries. The close collaboration 106 
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between artificial intelligence technologies and scientists heralds the advent of a new 107 

era of scientific exploration and technological breakthroughs[26,27]. 108 

        In recent years, despite the rapid development of artificial intelligence 109 

technology, especially the emergence of large language models, its application in the 110 

field of chemistry has not yet been widely popularized. As an important productivity 111 

tool, artificial intelligence not only improves work efficiency but also provides a new 112 

paradigm for scientific research. For chemistry, a discipline with a long history, how 113 

to combine with this advanced productivity tool to breathe new life into the field has 114 

become an important topic facing the new generation of chemists. This research aims 115 

to address this challenge by developing a dedicated intelligent assistance system for 116 

the field of chemistry through the integration of cutting-edge AI 117 

technologies.Specifically, we first collected and organized a large amount of data 118 

from the field of chemical science to fine-tune mainstream open-source large 119 

language models. Secondly, we designed a set of evaluation systems specifically for 120 

the chemistry field to detect the performance of the fine-tuned models and select the 121 

best-performing model from them. On this basis, we developed an AI assistant for the 122 

chemistry field with autonomous evolution capabilities. This system integrates multi-123 

agent architecture, retrieval-augmented generation (RAG) technology, online search 124 

functionality, dynamic learning and evolution mechanisms, and an interactive user 125 

interface. It not only provides an innovative platform for chemical research and 126 

education but also offers valuable research opportunities for exploring multi-agent 127 

collaboration and evolution mechanisms in complex systems.By fusing traditional 128 

chemical knowledge with cutting-edge AI technology, this system is expected to 129 

promote innovative development in the field of chemistry and provide new ideas and 130 

tools for solving current scientific and engineering challenges. 131 

 132 
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 135 

                                           Fig1. Research Process 136 
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2. Related Work 144 

2.1 Fine-tuning LLMs for Applications in the Field of Chemistry 145 

In recent years, with the rapid development of artificial intelligence technology, 146 

Large Language Models (LLMs) have been increasingly applied in the field of 147 

chemical sciences. Through fine-tuning for specific chemical tasks, these models have 148 

demonstrated remarkable potential, bringing new perspectives and methods to 149 

chemical research. Currently, significant progress has been made in chemical science 150 

research using fine-tuned large language models, covering various aspects from 151 

material design to drug discovery. These studies not only showcase the exceptional 152 

ability of LLMs in handling complex chemical problems but also provide innovative 153 

approaches to addressing long-standing chemical challenges. 154 

For example, Kevin Maik Jablonka et al. [45] fine-tuned the large language model 155 

GPT-3 to perform various tasks in chemistry and materials science, including 156 

properties of molecules and materials, as well as chemical reaction outcomes. Zikai 157 

Xie et al. [46] demonstrated the effectiveness of fine-tuned GPT-3 in predicting 158 

electronic and functional properties of organic molecules. Shifa Zhong et al. [47] 159 

developed quantitative structure-activity relationship (QSAR) models for water 160 

pollutant activity/properties by fine-tuning GPT-3 models. Seongmin Kim et al. [48] 161 

evaluated the effectiveness of pre-trained and fine-tuned large language models 162 

(LLMs) in predicting the synthesizability of inorganic compounds and selecting 163 

synthetic precursors. Results showed that fine-tuned LLMs performed comparably, 164 

and sometimes superiorly, to recent custom machine learning models in these tasks, 165 

while requiring less user expertise, cost, and time to develop. 166 

These research findings conclusively demonstrate that fine-tuning LLMs can 167 

significantly enhance their application breadth and effectiveness in the field of 168 

chemical sciences. This approach not only provides powerful tools for chemical 169 

research but also promises to accelerate innovation in chemical sciences, offering new 170 

ideas and methods for solving complex chemical problems. As technology continues 171 

to advance, we can anticipate that fine-tuned LLMs will play an increasingly 172 
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important role in the field of chemical sciences, driving chemical research towards 173 

deeper and more precise directions. 174 

2.2 AI agents in the field of Chemistry 175 

Although large language models (LLMs) have demonstrated excellent 176 

performance in tasks across multiple domains, they face challenges in chemistry-177 

related problems and lack the ability to access external knowledge sources, limiting 178 

their practicality in scientific applications. To address these deficiencies, researchers 179 

have conducted relevant explorations. 180 

For example, Kevin Maik Jablonka et al. [49] developed ChemCrow, an LLM 181 

chemical agent designed to complete chemistry tasks such as organic synthesis, drug 182 

discovery, and materials design. By integrating multiple expert-designed chemical 183 

tools and using GPT-4 as the LLM, they enhanced the performance of LLMs in the 184 

field of chemistry and demonstrated new capabilities.Daniil A. Boiko et al. [50] 185 

reported on Coscientist, a GPT-4-powered artificial intelligence system capable of 186 

autonomously designing, planning, and executing complex scientific experiments. 187 

Coscientist leverages large language models combined with tools such as internet 188 

searches, document retrieval, code execution, and experimental automation.Andrew D. 189 

McNaughton et al. [51] introduced a system called CACTUS (Chemistry Agent 190 

Connecting Tool-Usage to Science), which is an intelligent agent based on large 191 

language models (LLMs) designed to enhance advanced reasoning and problem-192 

solving capabilities in the fields of chemistry and molecular discovery by integrating 193 

cheminformatics tools. 194 

These research findings demonstrate that AI Agents, by expanding the 195 

functionality of large language models, enable their more extensive application in the 196 

field of chemistry. 197 

 198 

 199 

 200 
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3. LLMS Fine-tuning Methods 202 

3.1 Dataset  203 

During the adjustment of the LLM, various datasets related to chemical sciences 204 

were utilized. The fine-tuning data for this work comes from the datasets listed in 205 

Table 1, with a total of 1.72 million fine-tuning instructions collected and organized. 206 

Based on this, two different types of instructions were divided for the fine-tuning 207 

training of different large models. 208 

 209 
Figure 2. Example of fine-tuned data 210 

 211 

Figures.3 and Figures.4 show the distribution of output character lengths for the 212 

instruction dataset and the usage frequency and types of the 20 most commonly used 213 

instructions in this work. 214 
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 215 

Figure3. Histogram of Output Length 216 

Figure 3 illustrates the character count (output length) of the output text in the 217 

dataset, which exhibits a wide distribution range, covering both short and long texts. 218 

The distribution is concentrated in the 0 to 1000 character range. Short texts (texts 219 

with fewer characters) appear more frequently, and as the output length increases, the 220 

frequency decreases. Kernel Density Estimation (KDE), also known as Parzen's 221 

window[28], is one of the most renowned methods for estimating the underlying 222 

probability density function of a dataset. The KDE curve provides a smooth estimate 223 

of the distribution within this range, aiding in a more intuitive understanding of the 224 

text distribution pattern. 225 

 226 

                                          Figure4. Top 20 Most Frequent Instructions 227 

The bar chart (Figure4) shows the frequency of the 20 most common instructions 228 

in the dataset for this study. Among these, "Provide a brief overview of this 229 
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molecule" and "Provide a description of this molecule" appear significantly more 230 

often than other instructions, indicating their prominent role in the dataset. 231 

Nonetheless, other types of instructions also appear, demonstrating the diversity of 232 

instruction types within the dataset. 233 

Table 1  List of datasets used in our study. 234 

Dataset Url link Data format 

ESOL[43] 

https://github.com/MasterAIEAM

/Darwin/blob/main/dataset/ESOL/

ESOL.json 

Json 

MoosaviCp[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

MoosaviCp/MoosaviCp.json 

Json 

MoosaviDiversity[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

MoosaviDiversity/MoosaviDivers

ity.json 

Json 

NagasawaOPV[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

NagasawaOPV/NagasawaOPV.js

on 

Json 

Chembl[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/c

hembl/chembl.json 

Json 

matbench_expt_gap[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

matbench_expt_gap/matbench_ex

pt_gap.json 

Json 

matbench_glass[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

matbench_glass/matbench_glass.j

son 

Json 

matbench_is_metal[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

matbench_is_metal/matbench_is_

metal.json 

Json 

matbench_steels[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/

matbench_steels/matbench_steels.

json 

Json 

Pei[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/P

ei/pei.json 

Json 

waterStability[43] https://github.com/MasterAI-

EAM/Darwin/blob/main/dataset/
Json 
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waterStability/waterStability.json 

description_guided_mol

ecule_design[44] 

https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 

 

Json 

forward_reaction_predi

ction[44] 

https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 

 

Json 

molecular_description_

generation[44] 

 

 

https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 
Json 

reagent_prediction[44] https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 

Json 

property_prediction[44] https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 

Json 

Retrosynthesis[44] https://huggingface.co/datasets/zj

unlp/Mol-

Instructions/tree/main/data 

Json 

 235 

3.2 Fine-tuning 236 

In this work, we collected and curated 1,720,313 fine-tuning instructions from 237 

the field of chemical science. Using the unsloth[29] tool, we fine-tuned open-source 238 

large language models including llama-3-8B-Instruct-bnb-4bit,mistral-7B-instruct-239 

v0.3-bnb-4bit,gemma-7B-bnb-4bit,gemma-2-9b-bnb-4bit,Phi-3-mini-4k-instruct, 240 

Mistral-Nemo-Instruct-2407-bnb-4bit and Llama-3.1-8B-Instruct-bnb-4bit.We 241 

employed the PEFT (Parameter-Efficient Fine-Tuning) method to apply LoRA (Low-242 

Rank Adaptation) technique for fine-tuning the pre-trained models. The training 243 

parameters were configured using SFTTrainer and TrainingArguments. By combining 244 

quantization techniques, LoRA technology, and optimized training configurations, we 245 

aimed to enhance performance and optimize resource utilization. Table2 Parameter 246 

settings for the fine-tuning process for LLMs. 247 

Table2.  Fine-tuning Process Parameter Settings  248 

Parameter Value Description 
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lora_alpha 
16 LoRA alpha parameter 

max_steps 
60 Maximum training steps 

learning_rate 
2e-4 Learning rate 

weight_decay 
0.01 Weight decay parameter 

seed 
3407 Random seed 

Fig5 represents the training loss curve during the training process of LLMs. In 249 

the initial phase of training, the loss value is relatively high because the model 250 

parameters have not yet been optimized, leading to a significant gap between the 251 

predicted results and the actual values. As the training progresses, the model gradually 252 

learns and continuously adjusts the parameters, making the predicted results 253 

increasingly closer to the actual values. Consequently, the error decreases, and the 254 

loss value gradually declines and tends to stabilize. 255 

 256 

                                                 Fig 5.Training Loss of LLMs 257 

3.3 Deployment of LLMs (Large Language Models) 258 

After the fine-tuning step in Section 2.2 of the large language model, we 259 

employed Ollama for the local deployment and testing of fine-tuned LLMs. Model 260 

parameters were set using the Modelfile configuration file. Specifically, the model's 261 
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temperature was set to 0.8, and the context window size was configured to 8192 262 

tokens. Additionally, three stop markers were defined to control the boundaries of the 263 

generated text. The detailed configuration is shown in the Fig6. After fine-tuning, the 264 

four large language models were deployed on a local computer for testing. The four 265 

fine-tuned large language models(Llama3-8B,Phi-3-mini,Gemma-7B,Mistral-7B) 266 

were deployed on a local computer with an Intel(R) Core(TM) i5-10210U CPU @ 267 

1.60GHz (up to 2.11 GHz) and an NVIDIA GeForce MX250 GPU for testing. The 268 

two fine-tuned models are tested using Google Colab, with Gemma2-9B tested on 269 

a T4 GPU,  Phi-3Medium tested on an L4 GPU,Llama3.1-8B tested on Colab CPU 270 

and Mistral Nemo tested on L4 GPU. 271 

 272 

                                      Fig6. Model parameter specific settings 273 

 274 

3.4 Methods for Evaluating the Quality of LLM Responses 275 

Based on previous research, evaluation after fine-tuning large language models is 276 

crucial, as it serves as a key tool for identifying current system limitations and 277 

informing the design of more powerful models[30]. Therefore, in this work, to assess 278 

the performance of different large models after fine-tuning, 100 questions were 279 

randomly selected from the dataset for model testing. To evaluate the performance of 280 
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different models after fine-tuning more objectively, this study specifically designed 281 

OptimizedModelEvaluator, an automatic scoring program to evaluate the performance 282 

of different models. 283 

Different scoring criteria were designed for different questions. Additionally, the 284 

evaluator considered some special cases in the field of chemical science, assigning 285 

higher weights to key words such as 'reaction', 'mechanism', 'synthesis', and 'catalyst'. 286 

It also recognizes specific chemical terms (e.g., 'alkane', 'alkene', 'alkyne'), considers 287 

conversions between different units when making numerical comparisons (such as kJ 288 

to kcal), and applies special processing for questions involving specific concepts like 289 

LUMO, HOMO, and orbital energies (comparing the signs (positive or negative) of 290 

the extracted answer value and the correct answer value; LUMO and HOMO energies 291 

are typically negative, so the correctness of the sign is important). For questions 292 

involving MOFs, it pays special attention to key concepts such as 'linker', 'node', and 293 

'topology'. 294 

The system employs various methods to evaluate the quality of answers. For 295 

numerical problems, it calculates relative errors and assigns corresponding scores. It 296 

uses Levenshtein distance[31] or simple word set intersections to compute the 297 

similarity between answers and standard solutions. BLEU scores[32] and ROUGE 298 

scores[33] are used to assess the quality of generated text and summaries, respectively. 299 

The Flesch[34] Reading Ease Index is utilized to evaluate text readability. In addition 300 

to these methods, the system also incorporates evaluation criteria such as keyword 301 

relevance, coherence, conciseness, factual accuracy, and creativity. 302 

 303 
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304 
               Fig7. Scoring Criteria for Different Types of Questions 305 

 306 

Through these detailed settings, the evaluator can better assess the model's 307 

understanding of concepts related to molecular orbital theory, rather than just simple 308 

numerical matching. This enables a comprehensive evaluation of AI models' 309 

performance in answering chemistry-related questions, covering multiple dimensions 310 

including accuracy, relevance, readability, and creativity. Figure 8 illustrates the 311 

scoring process. (See supporting information for details). 312 

 313 
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 314 

                                          Fig8. Automatic Grading Program Process   315 

 316 

3.5 LLMs Fine-Tuning Test Results and Discussion 317 

This study conducts a comprehensive evaluation of six fine-tuned large language 318 

models: Llama3-8B, Mistral-7B, Phi-3 Mini, Gemma-7B, Gemma2-9B,Phi-3 319 

Medium,Llama3.1 and MistralNemo. Through testing across multiple dimensions, we 320 

aim to gain a deep understanding of the performance differences of these models 321 

under various tasks and criteria, providing insights for model selection and future 322 

optimization directions. Using the automated scoring program introduced in Section 323 

2.4, the fine-tuned models were evaluated with four main metrics: overall score, 324 

average performance, multi-dimensional criteria evaluation, and question type 325 

classification assessment. Each model was fine-tuned using the same strategy and 326 

tested on the same test set (details in the supporting information), ensuring the 327 

https://doi.org/10.26434/chemrxiv-2024-6tv8c ORCID: https://orcid.org/0000-0001-6948-2560 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-6tv8c
https://orcid.org/0000-0001-6948-2560
https://creativecommons.org/licenses/by-nc/4.0/


comparability of the results. 328 

329 

Fig9. Total scores for each model      330 

The overall model scores (Figure9) show the total scores of eight models, with 331 

MistralNemo performing the best, scoring 429.0. Llama3 and Mistral follow closely 332 

behind, scoring 398.5 and 399.5 respectively, with both performing very similarly. 333 

Phi-3 follows with a score of 375.7. Notably, Gemma2 (360.6 points) shows 334 

significant improvement compared to its predecessor Gemma (304.7 points). The 335 

iteration from Mistral to MistralNemo also demonstrates the effectiveness of model 336 

iterations. However, Phi-3 Medium scored lower than Phi-3 Mini, possibly due to the 337 

increased number of parameters making model optimization more challenging, 338 

requiring more complex training strategies and computational resources. Additionally, 339 

Llama3.1 scored lower than Llama3, indicating that not all model iterations contribute 340 

to improved performance after fine-tuning.           341 
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 342 

                                   Fig10. Average scores for each model                     343 

      Overall Model Performance (Figure10): Figure 10 presents the same ranking trend 344 

using a normalized 0-5 scale. This normalization allows for a more intuitive 345 

comparison of relative performance differences between models. The 0-5 scale is 346 

closer to common rating systems, making performance evaluation more intuitive and 347 

relative performance clearer. On the normalized scale, differences after the decimal 348 

point become more meaningful, making subtle performance changes more apparent 349 

while maintaining the overall structure and relationships of the data.              350 

 351 

                                Fig11. Model Performance by Question Type 352 

Model Performance Across Different Question Types (Figure11) categorizes 353 

questions into numerical, descriptive, and generative types, providing insights into 354 

model performance across different task natures. All models perform best on 355 

generative questions, with scores ranging from 3.74 to 6.72. This result aligns with 356 
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the high scores in creativity and coherence in Figure 11, further confirming the strong 357 

capabilities of large language models in open-ended generation tasks. Descriptive 358 

questions are the most challenging for all models, with scores ranging from 1.93 to 359 

3.41, indicating room for improvement in precise description and information 360 

extraction. Performance on numerical questions falls between the other two types 361 

(3.24 to 4.21). 362 

 363 

                                    Fig12.Model Performance by Criteria 364 

Model Performance Across Different Criteria (Figure12) provides a fine-grained 365 

analysis of model performance across eight key criteria (numerical accuracy, keyword 366 

relevance, conciseness, task score, response range, problem-solving ability, coherence, 367 

and creativity). Models excel in creativity and coherence, generally scoring above 0.6, 368 

reflecting the common strengths of large language models in generating fluent and 369 

creative text. Keyword relevance and task score are common challenges for all 370 

models, with scores generally below 0.2. This suggests that even after fine-tuning, 371 

models still have room for improvement in accurately grasping task requirements and 372 

key information. Mistral stands out in numerical accuracy, surpassing other models, 373 

reflecting its optimization effect on specific tasks. MistralNemo maintains a lead in 374 

most criteria, showcasing its comprehensive performance advantage. 375 

Research findings reveal the significant impact of model iterations on 376 

performance improvement, particularly evident in the evolution from Gemma-7B to 377 

Gemma2-9B[35] and from Mistral-7B to Mistral-Nemo. However, the iteration from 378 
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Llama3-8B to Llama3.1-8B failed to achieve the expected performance leap, possibly 379 

due to different iteration priorities[36]. Notably, all tested models face common 380 

challenges, especially in keyword relevance and task scoring, highlighting the 381 

necessity of introducing additional technologies to address these shortcomings. 382 

Nevertheless, the outstanding performance of these models in creative and 383 

generative tasks continues to demonstrate the inherent advantages of large language 384 

models in these domains. Test results indicate that fine-tuned large language models 385 

can meet researchers' needs to some extent, but still have many limitations, including 386 

the inability to update data in real-time, lack of online search capabilities, poor 387 

compatibility with specific domains, insufficient response accuracy, and limitations in 388 

decision-making for single large models. 389 

Given these limitations exhibited by fine-tuned large language models, this study 390 

developed an artificial intelligence assistant for the chemical domain with 391 

autonomous evolution capabilities. This system cleverly integrates multi-agent 392 

architecture, Retrieval-Augmented Generation (RAG) technology, online search 393 

functionality, dynamic learning and evolution mechanisms, as well as a user-friendly 394 

interactive interface, aiming to comprehensively address the aforementioned 395 

shortcomings and provide researchers with a more intelligent, precise, and practical 396 

auxiliary tool. 397 

4. Self-Evolving AI Agents for Chemistry 398 

This work builds upon the fine-tuning of the aforementioned large language 399 

models to design an AI assistant platform specifically tailored for the field of 400 

chemistry. The platform integrates multi-agent systems, retrieval-augmented 401 

generation, real-time web search, and chemical structure visualization. The system 402 

incorporates AI agents with diverse professional backgrounds (such as laboratory 403 

directors, senior chemists, safety officers, etc.), simulating a virtual chemistry 404 

research team environment. These agents can collaborate, continuously learn and 405 

evolve to provide researchers with comprehensive and professional support in 406 

chemical knowledge, experimental design suggestions, safety guidance, and data 407 
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analysis. Additionally, the system has the capability to convert chemical structure 408 

formulas (SMILES) into visualized images, greatly enhancing the efficiency and 409 

intuitiveness of chemical research, education, and team collaboration. The system 410 

primarily consists of the following components: Multi-agent system, Retrieval-411 

augmented generation (RAG), Real-time web search, Chemical structure visualization, 412 

Agent evolution system and User-friendly interface design. 413 

4.1 Multi-Agent System 414 

This system is the core architecture of the project, simulating a real chemical 415 

team. The system contains five specialized agents, each with a specific role and 416 

expertise, together forming a comprehensive and efficient virtual chemical research 417 

team. The Lab_Director is responsible for overall task allocation and research 418 

direction guidance, ensuring the team's research direction aligns with the overall goals 419 

and coordinating work between agents. The Senior_Chemist provides in-depth 420 

chemical knowledge and solutions to complex problems, possessing rich chemical 421 

theory and practical experience to handle challenging chemical issues and propose 422 

innovative research ideas. The Lab_Manager is responsible for experiment planning 423 

and resource management, ensuring the feasibility of experimental plans, managing 424 

laboratory resources, optimizing experimental processes, and improving research 425 

efficiency. The Safety_Officer ensures all discussions and suggestions comply with 426 

safety standards, focusing on experimental safety, reviewing potential risks of all 427 

experimental protocols, and providing safety operation guidance. The 428 

Analytical_Chemist focuses on data analysis and instrument use, responsible for 429 

interpreting experimental data, providing instrument operation advice, and ensuring 430 

data accuracy and reliability. This design allows each agent to have its specific area of 431 

expertise, providing in-depth professional knowledge. Agents can complement each 432 

other to solve complex problems collaboratively. For example, when the 433 

Senior_Chemist proposes an experimental protocol, the Safety_Officer reviews its 434 

safety, while the Lab_Manager considers its feasibility. This multi-perspective 435 

analysis allows agents with different backgrounds to analyze problems from various 436 

angles, providing comprehensive insights. The structure simulates the team dynamics 437 
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of a real chemistry research group, closely mimicking real team decision-making 438 

processes. Each agent in the system is based on a large language model but has 439 

specific system prompts to define its role and expertise, and different language 440 

models can be substituted to meet the needs of different tasks. AutoGen is used to 441 

manage interactions and dialogue flow between agents, adopting a round-robin 442 

approach to select speakers, ensuring each agent has the opportunity to contribute. 443 

The above multi-agent design allows the system to analyze and solve chemical 444 

problems from multiple perspectives, providing comprehensive insights (This 445 

research uses the fine-tuned and performance-tested MistralNemo as a main model for 446 

this system, and all fine-tuned large language models involved in this research have 447 

been uploaded to Hugging Face and can be set to call different large language models 448 

according to different needs KANGYONGMA/Chemistry). 449 

4.2 Retrieval-Augmented Generation (RAG) 450 

RAG is a core functionality of the system, extending the knowledge base of 451 

agents by integrating preloaded chemical literature and experimental data. The RAG 452 

workflow includes document loading, text splitting, vector embedding, vector storage, 453 

similarity search, context enhancement, and answer generation. This process is 454 

implemented using the langchain library and RetrievalQA chain, significantly 455 

improving the accuracy and relevance of answers while reducing the possibility of AI 456 

generating false information. RAG technology enables agents to provide answers 457 

based on the latest chemical research, cite relevant literature to support views, and 458 

associate user queries with existing knowledge bases, thereby greatly enhancing the 459 

system's ability to handle complex chemical problems and provide more precise and 460 

relevant information. 461 

4.3 Real-time Web Search 462 

Another important feature of the system is the ability to perform real-time web 463 

searches by integrating the Tavily search API[40] to supplement the preloaded 464 

knowledge base. The workflow of this feature includes query analysis, API calls, 465 

result processing, and information integration. The system uses the requests[41] library 466 

to send API requests and implements error handling and retry mechanisms to ensure 467 
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stability. This feature allows agents to access the latest chemical research and 468 

discoveries, supplement information that may be missing from the preloaded database, 469 

and significantly improve the system's ability to answer current affairs questions. By 470 

combining preloaded data and real-time search, the system can provide users with 471 

comprehensive, up-to-date, and accurate chemical information, excelling particularly 472 

in handling emerging research, latest discoveries, or real-time data-related issues. 473 

4.4 Chemical Structure Visualization 474 

This feature greatly enhances the system's interactivity and intuitiveness when 475 

discussing chemical structures by converting SMILES[5] strings into 2D molecular 476 

structure images. The entire process involves SMILES parsing, molecular object 477 

creation, 2D coordinate generation, image rendering, and encoding, ultimately 478 

displaying on the Web interface. This functionality not only enhances the visual 479 

understanding of chemical concepts and improves the efficiency of discussing 480 

complex molecular structures but also makes the system more suitable for chemical 481 

education and research applications. Its implementation mainly relies on the RDKit[42] 482 

library for molecular manipulation and image generation, integrating it into the 483 

message processing flow to achieve automatic detection and conversion of SMILES 484 

strings, thereby providing chemistry researchers with a more intuitive and effective 485 

chemical structure interaction experience. 486 

 487 
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Fig14. Dialogue Interface SMILES Visualization 488 

4.5 Agent Evolution System 489 

Agent evolution is an innovative feature that allows agents to improve their 490 

performance and knowledge base over time. The system includes four main 491 

components: knowledge acquisition, skill development, performance evaluation, and 492 

adaptive adjustment. Through mechanisms such as knowledge base expansion, skill 493 

tree updates, feedback learning, and cross-learning, agents can learn new chemical 494 

concepts, acquire new problem-solving abilities, and adjust behaviors based on user 495 

feedback. The system uses dynamic data structures to store knowledge and skills, 496 

implements a scoring system to quantify performance, and adopts probability models 497 

to simulate the evolution process. This dynamic learning mechanism enables agents to 498 

continuously improve, adapt to user needs, and simulate human learning and 499 

professional development processes. Over time, agents continuously enhance their 500 

capabilities, providing increasingly relevant and useful information to users, thereby 501 

significantly improving the overall performance and user experience of the system. 502 

This system core is composed of two main classes: ChemistryAgent and 503 

ChemistryLab, implementing functions such as knowledge accumulation, skill 504 

acquisition, performance evaluation, and group evolution. The ChemistryAgent class 505 

stores knowledge and skills through the knowledge_base and skills attributes, 506 

constantly expanding its capabilities using the learn() and acquire_skill() methods. 507 

The performance evaluation mechanism records recent performance through 508 

performance_history, and the evaluate_performance() method assesses performance 509 

based on user feedback. The evolution mechanism is triggered by the evolve() method, 510 

determining whether to enhance or improve skills based on average performance. The 511 

improve() and refine_skills() methods are responsible for acquiring new skills and 512 

optimizing existing skills, respectively. The system can also identify areas for 513 

improvement by analyzing interaction history. At the group level, the ChemistryLab 514 

class implements knowledge sharing among agents and multi-round evolution 515 

simulation. This design allows the system to continuously adjust and optimize based 516 

on actual interactions and feedback, continuously improving its professional 517 
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capabilities and interaction quality in the field of chemistry, forming a dynamically 518 

adaptive and self-improving intelligent ecosystem. 519 

 520 

Fig.15 User Feedback and Intelligent Agent Evolution Interface 521 

4.6 User-friendly interface design 522 

The project includes an intuitive web interface that can display real-time 523 

conversations between agents, agent status, and feedback mechanisms, providing a 524 

better interactive experience. 525 

        Function Expansion: 526 

 527 

Fig.16 Functionality Expansion—Multimodal Models 528 

4.7 Functionality Expansion  529 
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During the system design phase, the team fully considered the potential impact 530 

of model update and iteration, and therefore reserved corresponding upgrade and 531 

development space. Figure 16 demonstrates the image recognition capabilities after 532 

the integration of multi-modal large models, which provides an important foundation 533 

for expanding more functionalities in the future. 534 

 535 

Fig 17. The Structure of Self-Evolving AI Agents for Chemistry System 536 

The system's design fully considers the rapid iteration characteristics of large 537 

language models, implementing a flexible mechanism to call upon different advanced 538 

models. The system deeply integrates specialized functions in the field of chemistry, 539 

such as molecular visualization and SMILES string processing, precisely meeting the 540 

needs of chemical research. 541 
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The core advantage of the system lies in its autonomous evolution capability. 542 

Through knowledge accumulation, skill acquisition, performance evaluation, and 543 

group collaboration, it can continuously optimize its professional capabilities and 544 

interaction quality. This dynamic adaptive feature breaks through the static limitations 545 

of traditional AI systems, providing intelligent and efficient support for solving 546 

complex chemical problems. 547 

 548 

Conclusion 549 

This study utilized 1,720,313 instruction data points from the field of chemical 550 

science to fine-tune 8 mainstream open-source large language models, including 551 

Llama3-8B, Mistral-7B, Phi-3 Mini, Gemma-7B, Gemma2-9B, Phi-3 Medium, 552 

Llama3.1, and MistralNemo. Through an automatic scoring program specifically 553 

designed to evaluate the quality of responses from large language models in the 554 

chemistry domain, the MistralNemo model demonstrated the most outstanding 555 

performance, achieving a total score of 429 points, surpassing other models.Based on 556 

these results, an innovative chemical intelligent assistant system was designed. This 557 

system employs the fine-tuned Mistral Nemo model as its primary model and can call 558 

upon different large models according to task requirements. Furthermore, the system 559 

deeply integrates professional knowledge and requirements from the chemistry field, 560 

featuring specialized functionalities such as molecular visualization, SMILES string 561 

processing, and chemical literature retrieval.Benefiting from knowledge accumulation, 562 

skill acquisition, performance evaluation, and collaborative mechanisms, the system 563 

can continuously optimize its professional capabilities and interaction quality. This 564 

allows the system to learn and grow continuously, breaking through the inherent static 565 

limitations of traditional AI systems and opening up new possibilities for the 566 

application of artificial intelligence in the field of chemistry. 567 
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