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Dynamic nuclear polarization (DNP) has proven to be a powerful technique to enhance nuclear
spin polarization by transferring the much higher electron spin polarization to the nuclear spins
prior to detection. While major attention has been devoted to high-field applications with con-
tinuous microwave irradiation, the introduction of fast arbitrary waveform generators is gradually
increasing the opportunities to a realization of pulsed DNP. Here, we describe how static-powder
DNP pulse sequences may systematically be designed using single-spin vector effective Hamiltonian
theory. Particular attention is devoted to the intricate interplay between two important parts of
the effective first-order Hamiltonian, namely, the linear field (single-spin) terms, and the Fourier
coefficients determining scaling of the bilinear coupling terms mediating polarization transfer. We
address two cases. The first operates in the regime where the microwave field amplitude is lower
than the nuclear Larmor frequency. Here, we illustrate the predictive strength of single-spin vector
model by comparing analytical calculations with experimental DNP results at 9.8 GHz/15 MHz on
trityl radicals at 80 K. The second case operates in the high-power regime, where we combine the
underlying single-spin vector design principles with numerical non-linear optimization to optimize
the balance between the linear terms and the bilinear Fourier coefficients in a figure of merit func-
tion. We demonstrate, numerically and experimentally, a broadband DNP pulse sequence PLATO
(PoLarizAtion Transfer via non-linear Optimization) with a bandwidth of 80 MHz and optimized
for microwave field a with maximum (peak) amplitude of 32 MHz.

INTRODUCTION

Dynamic nuclear polarization (DNP) is transforming
the field of nuclear magnetic resonance (NMR) by pro-
viding much higher sensitivity through transfer of po-
larization from the spins of free electrons to surround-
ing nuclear spins[1–7]. Moreover, by interfacing nuclear
magnetic resonance (NMR) and electron paramagnetic
resonance (EPR), DNP also offers the possibility to ob-
tain information encoded by electron spins in addition
to nuclear spin information. The electron spins typically
involve much larger interaction strengths and, therefore,
have sensitivity to the environment on longer distances.
While most efforts at present are devoted to magic-angle-
spinning (MAS) high-field DNP applications with the
electron spins influenced by continuous-wave (CW) mi-
crowave (MW) irradiation, increasing attention emerges
to the opportunities of realizing pulsed DNP. This is be-
lieved to significantly extend spin dynamics control, as
seen earlier in the transformation of NMR from CW to
pulsed operation.

Pulsed DNP comes with the need for design of optimal
experiments which closely resemble the design of pulsed
NMR experiments. However, there is a substantial dif-
ference concerning the much larger size of the electron-
spin induced hyperfine coupling and the g-anisotropy in-
teractions. This calls for design strategies which han-
dle operations on the nanosecond timescale in addition
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to coping with interactions in the MHz to GHz regime.
Furthermore, pulsed DNP requires instrumentation with
very fast waveform generators and powerful MW ampli-
fiers. This is at present found for instrumentation in the
X-, Q-, and W-band MW regimes.[8–10] Using similar
instrumentation, various pulsed DNP methods have al-
ready been demonstrated,[11] including NOVEL,[12] off-
resonance NOVEL,[13] TOP,[14] XiX-DNP,[15] TPPM-
DNP,[16] BEAM,[17] and frequency swept DNP.[18]
In this paper, we undertake the challenge of under-

standing the merits and design of pulsed DNP experi-
ments within the regimes of pulsed low- and high-MW
irradiation. Our approach will be based on our recent
single-spin-vector effective Hamiltonian theory (SSV-
EHT) method[19–21], which offers detailed insight into
the spin dynamics and its associated control.

THEORY

In this section, we will introduce and discuss the rele-
vant features of SSV-EHT needed to analyze and system-
atically develop advanced MW pulse sequences for static-
powder DNP. This should be considered an easy-to-use
and design-wise attractive alternative/supplement to av-
erage Hamiltonian theory,[22, 23] Floquet theory,[24, 25]
and exact effective Hamiltonian theory,[26, 27] each of
which have their strengths and weaknesses. Focusing
on a basic understanding, rather than cumbersome al-
gebraic derivations, the description is provided here in a
picturesque fashion by using a bare minimum number of
equations and instead concentrating attention to instruc-
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tive calculations and a pragmatic understanding. Addi-
tional insight and details of the mathematical concepts
can be found in an earlier account on the theoretical basis
of the SSV-EHT formalism.[19]

The Hamiltonian for a coupled electron (S) and nu-
clear (I) two-spin system can be expressed in the rotat-
ing frame of the electron and in the laboratory frame for
the nuclear spin as

Ĥ(t) = ∆ωSŜz+ωI Îz+ĤMW (t)+AŜz Îz+BŜz Îx , (1)

with ∆ωS denoting the electron spin offset, ωI the nuclear
Larmor frequency, and A and B the secular and pseudo-
secular hyperfine coupling constants, respectively. We as-
sume small g anisotropy and a point dipole model where
A = T (3 cos2 θPL − 1) and B = 3T sin θPL cos θPL, with
θPL being the angle between the principal axis system
and the static magnetic field. T denotes the anisotropy of
the hyperfine coupling. ĤMW (t) describes a time-varying
Hamiltonian for the applied MW pulse sequence. All
frequencies are given as angular frequency units. With
our focus being DNP of electron to nuclear polarization
transfer. We do not apply any radio-frequency (RF) ir-
radiation on the nuclear spins, as the size (and thereby
the timescale) of the electron spin interactions largely
overwhelm the corresponding interactions of the nuclear
spins. We note that the first three terms in Eq. ((1) are
single-spin, linear terms, and the final two terms, for the
hyperfine coupling interaction, are bilinear spin terms.

When designing a pulse sequence which generates a
time-independent effective Hamiltonian for the coupling
terms in Eq. (1), driving coherence/polarization transfer
between electron and nuclear spins, it is useful to de-
scribe the system in an interaction frame defined by the
linear terms Eq. (1). These terms may be regarded as
mediators of the transfer in addition to being the source
of non-ideal pulse sequence behaviour, if not managed
appropriately. Due to the commutation of nuclear and
electron spin operators, i.e., [Îp, Ŝq] = 0 with p and q be-
ing x, y, or z, the frame transformation can be performed
in any order. Since there is no RF irradiation on the nu-
clear spin, only the pseudo-secular BŜz Îx hyperfine cou-
pling term is being time-modulated with the nuclear Lar-
mor frequency upon transformation. Therefore, genera-
tion of a finite first-order double-quantum (DQ) or zero-
quantum (ZQ) effective Hamiltonian requires the time
dependencies induced on the hyperfine coupling interac-
tion, by the ∆ωSŜz + ĤMW (t)Ŝx terms, to counteract
the modulation by the nuclear Larmor frequency. In this
case time-independent terms exist for the hyperfine cou-
pling in the interaction frame of the linear terms. Note
that the DQ/ZQ operators for a given pulse sequence for
easy interpretation may be defined in a tilted (or effective
field) frame with the coherence/polarization transfer re-
ferred to as planar mixing. These are both commonplace
in solid-state MAS NMR dipolar recoupling, establish-
ing resonances between the MAS spinning frequency and

the RF irradiation, and in pulsed DNP ‘recoupling’ ex-
periments, establishing a resonance between the nuclear
Larmor frequency and, e.g., the MW irradiation.

Importance of the linear field: Resonance and
deviation

The simplest approach to generate a DQ or ZQ effec-
tive Hamiltonian is to use constant amplitude x-phase
MW irradiation on the electron spins. Here, Figure 1
shows numerical simulations calculating the efficiency of
electron to nuclear transfer, as function of the MW field
strength, using ĤMW = ωMW Ŝx and an electron spin
offset ∆ωSŜz. The mixing time has for each point been
chosen as the shortest time providing maximal transfer.
The simulations assumed a nuclear Larmor frequency of
ωI/(2π)=15 MHz being in the regime of 1H spins in a
0.35 T static magnetic field used for X-band EPR (9.8
GHz). In Fig. 1A, the transfer is mediated as Ŝx → Îz
and in Fig. 1B as Ŝz → Îz. From Fig. 1, it is clearly
evident that for any polarization transfer to occur, the
matching (‘recoupling’) condition with ω2

I = ∆ω2
S+ω2

MW

needs to be fulfilled. Indeed, this is an efficient matching
condition known as the NOVEL or off-resonance NOVEL
condition[12, 13] with the transfer mediated as Ŝx → Îz.
For the far-offset case, the transfer is Ŝz → Îz which is
commonly referred to as the Solid-Effect (SE).[28, 29] At
the condition ∆ωS = ±ωI , no transfer of polarization to
the nuclear spin occurs. This is the resonance condition
for which ωMW = 0. In this case, the hyperfine interac-
tion term in Eq. (1) will not be perturbed by the linear
offset term of the electron spin. In general, a unit-less
scaling factor κ = ωMW /

√
∆ω2

S + ω2
MW expresses the

size of the bilinear DQ/ZQ effective Hamiltonian for con-
stant amplitude MW irradiation. κ = 1 at the NOVEL
condition and κ = 0 at the ∆ωS = ±ωI condition.

It is important to realize that different conditions along
the ω2

I = ∆ω2
S + ω2

MW matching condition for the CW
irradiation scheme have different tolerances towards mis-
matching of the linear terms. The mismatches may occur
due to wrong setting, inhomogeneity in the MW field over
the sample volume or by g-anisotropies for the electron
spins in a powder sample. Hence, it may be important
to develop pulse schemes that are tolerant to variations
in the resonance conditions. For the constant amplitude
x-phase MW irradiation case, it can be seen to the left
in Fig. 1 that the NOVEL condition (ωMW = ±ωI ,
∆ωS = 0) is the most tolerant condition for efficient po-
larization transfer in terms of MW mismatch (horizon-
tal changes) and electron spin offset frequency (vertical
changes) by having a broader range around the matching
condition for which transfer to the nuclear spin is still ef-
ficient. For the SE condition, using less MW power but
requiring an electron offset, it can be seen in Fig. 1B
that this condition is much narrower. The fact that the
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FIG. 1. Numerical simulation of the electron to nuclear spin
polarization transfer as function of the field strength and elec-
tron spin offset in case of constant-amplitude, x- phase MW
irradiation. The starting operator for the electron spin is
along the Ŝx-axis (A) or the Ŝz-axis (B), while the detection

operator for the nuclear spin in both cases is along Îz. In
the figures, the mixing time has been optimized for each off-
set/MW field for maximal absolute transfer. The calculations
assumed an anisotropy of the hyperfine coupling of T/(2π) = 1
MHz and 20 uniformly distributed crystallite angles to mimic
a powder sample.

NOVEL condition is less sensitive towards electron spin
offset variations than the SE condition is not that sur-
prising, as higher MW power is employed.

To further improve the stability towards mismatch in
the resonance condition, one may take benefit from pulse
sequences with varying phases and/or amplitudes. A
simple, yet compelling example hereof demonstrating the
potential of pulsed DNP is shown in Fig. 2A where three
variants of the recent Broadband Enhanced Amplitude
Modulation (BEAM) pulse sequence[17] are presented.
For simplicity of the description, we have chosen settings
that provide frequencies for which the matching condi-
tions are easy to calculate, while noting that these set-
tings do not lead to the best practically performing pulse
sequences. The sequences span a time of τm = 50 ns
for their basic element, giving a modulation frequency of
ωm/(2π) = 1/τm = 20 MHz. The sequences are chosen
to fulfil the resonance condition for a static field corre-
sponding to a nuclear Larmor frequency of ωI/(2π) = 15
MHz. As the period τm of the basic element of the se-
quence, in this case, does not fulfil an integral number of
rotations caused by the nuclear Larmor frequency, an ef-
fective nuclear linear field emerges. The size of this field
may be described as

ω
(I)
lin,eff = ωI − kIωm and kI = round

(
ωI

ωm

)
, (2)

which for the pulse element in Fig. 2A amounts to

ω
(I)
lin,eff/(2π)= -5 MHz. Hence, addressing a 50 ns pulse

element (ωm/2π = 20 MHz) that is repeated to pro-
vide the most efficient transfer for a given non-secular
hyperfine coupling to a nuclear spin with Larmor fre-
quency ωI/(2π) = 15 MHz, it is required that the effec-
tive linear field on the MW pulse element equals in size

to ω
(I)
lin,eff/(2π). In this case, this corresponds to 5 MHz.

The effective linear field for a pulse sequence ele-
ment may be expressed by the overall rotation angle θtot
that the element will invoke on the electron spin oper-
ators scaled inversely by the period of the element, i.e.,

ω
(S)
lin,eff = θtot/τm. The electron spin effective linear field

may be defined as

e−iω
(S)
lin,eff Ŝ

eff
z τm = T̂ e−i

∫ τm
0

∆ωS Ŝz+ĤMW (t)dt , (3)

where Ŝeff
z denotes the tilted frame operator along which

the effective field is oriented, ω
(S)
lin,eff its amplitude, and

T̂ the Dyson time-ordering operator. In practice, the ef-
fective field in SU(2) may conveniently be be found using
quaternions,[30] numerical calculations, or Exact Effec-
tive Hamiltonian Theory (EEHT)[26, 27] as described
previously.[21] In the case of phase-inverted pulse se-
quences, as in Fig. 2A with red and blue squares rep-
resenting x or −x phase MW pulses, respectively, the
linear field may easily be determined at zero offset for
the electron spin (∆ωS = 0) as the pulse sequence com-
mutes with itself at all times. Therefore, the total ro-
tation angle caused by the element is just obtained by
summing the rotation angle of each pulse in Fig. 2A with
θtot = (τx−τ−x)ωMW in the ZQ case. For the three pulse
sequences in Fig. 2, the MW field strengths are 25, 10,
and 6.25 MHz and the phase changes happen after 20,
10, and 5 ns, respectively. The effective linear field is the

same with ω
(S)
lin,eff/(2π) = (τx − τ−x)ωMW /(2πτm) = 5

MHz with τm = τx + τ−x.

By designing the pulse sequences to fulfil the condition

ω
(S)
lin,eff = ±ω

(I)
lin,eff , the linear fields for the two channels

are matched, which gives the potential for good polariza-
tion transfer. This is indeed the case for the three pulse
sequences in Fig. 2 where their respective transfer perfor-
mances are numerically shown in Fig. 2B for a two-spin
system with an anisotropy of the hyperfine coupling of
T/(2π) = 1 MHz. The transfer efficiency depicted as
function of mixing time is obtained by repeating the ba-
sic pulse elements using numerical calculations in black
and by propagation using the first-order effective Hamil-
tonian found by SSV-EHT in red. It is seen that the
fastest transfer occurs for the sequence on top, which
also applies the highest MW amplitude. To understand
the scaling factor for the DQ/ZQ effective Hamiltonian,
it is useful to look at the Fourier coefficient presented in
Fig. 2D), as described in the following section.

Importance of the bilinear field: Scaling and
efficiency

Up to this point, the effect of the effective linear
terms on DNP experiments taking electron spin coher-
ence aligned along Ŝx (i.e., practically realized with a
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FIG. 2. A) Schematic representation of BEAM pulse sequences for static DNP under conditions of a nuclear Larmor frequency
of 15 MHz. Red and blue colors represent x and −x phase MW pulses of length τx and τ−x, respectively. The overall length
of the element is τm = τx + τ−x = 50 ns. The MW field strengths used are 25 MHz (top), 10 MHz (middle), and 6.25 MHz
(bottom) with a total time for the basic pulse element of 50 ns. B) Numerical (black) and analytical (red) simulation of the

transfer efficiency (Ŝx → −Îz) for an electron-nuclear spin system as function of mixing time using the pulse sequences in A).
The simulation is accomplished for a powder using 20 α,β crystallite angles and an anisotropy of the hyperfine coupling of
T/(2π) = 1 MHz. C) Trajectories according to Eq. (4) for Ŝx (green), Ŝy (blue) and Ŝz (red) using the pulse sequences in A).

D) Illustrates the Fourier coefficients a
(kS)
p for the three trajectories in C). The Fourier coefficients are calculated for the p = z

(left) and p = y (right) with the real (blue cross) and imaginary part (red circles) mapped on a scale from -1 to 1.

(π/2)y preparation MW pulse) or along Ŝz (i.e., taken di-
rectly) into nuclear spin polarization (i.e., oriented along
Îz) has been investigated. This brought into attention
that potential deviations from the resonance condition
will effectively reduce the transfer efficiency for a given
pulse sequence, how large the effect is, and simple means
to remedy this. The other important parameter in ex-
periment design is the scaling factor for the bilinear
terms in the effective first-order Hamiltonian. This de-
fines the time needed for (and thereby the time efficiency
of) efficient polarization transfer. The shorter time, the
less propensity of deleterious effects due to relaxation,
multiple-spin effects, and mismatches in the effective lin-
ear fields.

In an SSV-EHT analysis, the scaling factor can be de-
scribed in terms of trajectories for certain operators dur-
ing the pulse sequence. In general, the trajectory for
a certain operator influenced by a pulse sequence and
potential offset will not be cyclic but lead to an over-
all rotation of the initial operator into another state by
a rotation angle θtot as discussed above. However, the
overall angle rotation can be disentangled by frame trans-

formation and hereby cyclic trajectories appear with one
characteristic frequency ωm defined by the overall time
of the trajectory. In the case where the hyperfine cou-
pling interaction in Eq. (1) is the only bilinear term in
the Hamiltonian, the only operator to track is the evo-
lution of a starting operator Ô(0) = Ŝz making up the
electron spin operator of the hyperfine coupling interac-
tion with operators Ŝz Îz and Ŝz Îx. The evolution of the
Hamiltonian components in the cyclic interaction frame
can now be expressed as

⟨Ô(t)|Ŝeff
p ⟩ =

∞∑
kS=−∞

a(kS)
p eikSωmt , (4)

where p is either x, y, or z and a
(kS)
p the corresponding

Fourier coefficients. In Figs. 2C and 2D, the trajectories
in Eq. (4) and the corresponding Fourier coefficients are
shown, respectively, with real (blue cross) and imaginary
(red circles) coefficients for the three pulse sequences.

In the cyclic interaction frame of both the electron and
nuclear spins, the Hamiltonian (cf., Eq. (1)) may be ex-
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pressed as

˜̂
H(t) =

∑
p=x,y,z

∞∑
kS=−∞

a(kS)
p eikSωmtŜeff

p [AÎz

+
B

2
(e−ikIωm Î−+eikIωm Î+)]−ω

(S)
lin,eff Ŝ

eff
z −ω

(I)
lin,eff Îz .

(5)

From Eq. (5), it is clear that only the matching val-
ues kS = ±kI contribute to the scaling factor for the
DQ/ZQ effective first-order Hamiltonian. This is visu-
alized in Fig. 2D by dashed boxes around the values
kS = ±1. It is clearly evident that by lowering the am-

plitude of the pulses, more of the a
(kS)
p coefficients are

moved into the kS = 0 band and hereby lowering the
scaling factor. This is a straightforward consequence of∑∞

kS=−∞ a
(kS)
p = ⟨Ô(0)|Ŝp⟩. A unitless scaling factor for

DQ (+) or ZQ (-) bilinear terms can be defined as

a∓ =

√
(a

(∓kI)
z ± a

(∓kI)
y )(a

(±kI)
z ∓ a

(±kI)
y ) , (6)

which for the pulse sequences in Fig. 2A give ZQ coeffi-
cients of a− = 0.60 (top sequence), a− = 0.24 (middle se-
quence), and a− = 0.06 (bottom sequence), whereas the
DQ coefficients are all zero. The scaling factors match
well with the transfer efficiency plots in Fig. 2B, where
the transfer is much slower for the low-power sequence.
We note that the agreement between the full numerical
calculated black curves and analytical red curves is get-
ting worse for the sequence using less field strength. This
is ascribed to higher-order terms, as we only have calcu-
lated first-order terms in the SSV-EHT calculation of the
effective Hamiltonian.

Balancing linear and bilinear terms in numerical
optimization

Up to this point, the effective Hamiltonian has been
discussed as separated terms, namely the linear and the
bilinear operator terms. To generate efficient pulse se-
quences coping with specific needs in regard of band-
selective or broadbandedness relative to electron spin off-
sets, it is relevant to consider these terms in combination.
This is ascribed to the fact that linear terms not com-
muting with the bilinear terms effectively truncates the
effect of the latter ones as touched on earlier in relation to
liquid- and solid-state NMR[19–21] and DNP.[17] Taking
origin in the SSV-EHT approach[21] described above, we
can readily define a figure-of-merit (FOM) function for
transfer through the pseudo-secular hyperfine coupling

as

ϵFOM = ⟨ρ(0)|Ŝeff
z ⟩

B2a2±

B2a2± + 4(ω
(S)
lin,eff ± ω

(I)
lin,eff )

2
·

sin2


√
B2a2± + 4(ω

(S)
lin,eff ± ω

(I)
lin,eff )

2

4
tFOM

 , (7)

where + and − relates to transfers based on effective DQ
and ZQ effective Hamiltonians, respectively, tFOM the
length of the overall pulse sequence, and the prefactor
scaling through projection of the initial density operator
onto the effective field axis.[17]
This formulation, which describes the evolution of the

density operator in terms of the components of the effec-
tive Hamiltonian, has several crucial aspects relating to
systematic pulse sequence engineering. First, through its
direct relationship between the effective Hamiltonian, it
is possible to optimize the capability of the bilinear terms
in efficiently reaching polarization transfer with adher-
ence to the time used for it. This is expressed through
the B2a2± coefficient which formulates the dependency of
the pseudosecular hyperfine coupling strength (B) and
the scaling through the Fourier coefficients (a±) as de-
scribed above. Second, it considers the truncating effects
of the linear terms not commuting with the desired bilin-
ear Hamiltonian as an inversion in either the ZQ or DQ
invariant 3D subspace. The differential offset, which may
be formulated as a fictitious ZQz = I23z = (Iz − Sz)/2
spin-1/2 operator,[31, 32] perturbs the ZQ transfer with

a (ω
(S)
lin,eff − ω

(I)
lin,eff ) dependency, while the sum of lin-

ear term frequencies (ω
(S)
lin,eff + ω

(I)
lin,eff ) perturbs DQ

inversion through the DQ fictitious spin-1/2 operator
DQz = I14z = (Iz + Sz)/2 in the DQ subspace. This
implies that the relevant linear terms need to be sup-
pressed over the desired bandwidth of the pulse sequence.
Third, the FOM equation above is extremely handy in
optimizing pulse sequences as it may be work ahead in
time, i.e., an effective Hamiltonian of a pulse sequence
building block is predictive on the performance of a pulse
sequence with repetition of the element a sufficient num-
ber of times M until it reaches the maximal transfer at
tFOM = MτM .
The latter aspect proves extremely useful in non-linear

optimization of pulse sequences as it may significantly re-
duce the number of free variables relative to previously
demonstrated optimal control type optimizations[33–38]
typically using hundreds to thousands of variables and
presenting pulse sequences as lengthy arrays of ampli-
tudes and phases. Such sequences may be difficult
to interpret and may practically lead to concerns for
the instrumentalists, as they do not leave much room
for instrumental optimization and ready adaption to
transfer via couplings with different size. While used
mostly in relation to NMR and MRI experiment, op-
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timal control theory has also been applied in the con-
text of developing DNP experiments theoretically and
numerically.[36, 39, 40] We will in the following demon-
strate numerical and experimental results based on a
simpler approach facilitated by the simplicity offered by
the SSV-EHT FOM formulation appropriately balancing
linear and bilinear terms in the effective Hamiltonian,
and employing non-linear optimization. More specifi-
cally, a controlled random search [41–43] followed by op-
timization using the subplex routine [44] – a variant non-
linear Nelder-Mead simplex optimization[45] with sub-
space search.

EXPERIMENTAL AND COMPUTATIONAL
DETAILS

All experiments were conducted on a home-built X-
band pulsed EPR/DNP spectrometer (based on the de-
sign of Doll et al. [8]) with a sample of 5 mM trityl
(OX063) in a H2O:D2O:Glycerol-d5 solution (1:3:6 by
volume) at 80 K. Note that the degree of protonation
in this system is higher than in the common DNP juice.
A commercial MD4 electron-nuclear double resonance
probe (Bruker BioSpin, Rheinstetten, DE) extended with
an external tuning and matching circuit was used, and
NMR signals were detected with a SpinCore iSpin-NMR
console (SpinCore Technologies Inc., Gainesville, FL).

For all experimental data, the pulse sequence in
Fig. 3A were used. For the initial saturation of 1H, a
set of S = 11 pulses of duration 2.4 µs separated by
τsat = 1 ms were employed, while a solid-echo sequence
π/2− τ − π/2 was used for read out with τ = 25 µs (see
Fig. 3A). All 1H pulses used an RF field strength of 166.7
kHz and a π/2 pulse time of 1.5 µs. A 5 s overall pump-
ing time with P = 2500 and τrep = 2 ms were used for
the experiments, if not specified otherwise. Experimen-
tal polarization enhancements reported in this work are
denoted with ϵp which is defined by the ratio between the
DNP-enhanced signal intensity and the thermal equilib-
rium signal intensity.

The optimization routine was developed using in-
house written C++ scripts using the eigen3 template
library.[46] The non-linear optimization routines were im-
plemented using the NLOPT library.[47] The first op-
timization step consisted of a controlled random search
[41–43] which was then refined using the subplex routine.
[44] The sequence was optimized to cover a bandwidth of
80 MHz, in steps of 1 MHz, and considering a set of
nine MW field strengths B1/B

0
1 ={0.65, 0.70, 0.75, 0.80,

0.85, 0.90, 0.95, 1.00, 1.05} with corresponding weights
={0.079, 0.083, 0.088, 0.094, 0.103, 0.115, 0.135, 0.209,
0.095}, following a power-model to cope with MW field
inhomogeneity. [48]

The numerical effective Hamiltonian considered in the
optimization was calculated employing the matrix log-

arithm. The different components of Eq. (7) were cal-
culated by computing the projections onto the desired
operators, after the electron single-spin operators were
rotated to ensure that the longitudinal electron single-
spin operator is aligned with the effective field.

RESULTS AND DISCUSSION

In this section, we compare and discuss the analytical
results relative to experimental findings. The section is
split into two parts. The first operates in the regime
where the MW field strength is lower than the nuclear
Larmor frequency while the second addresses the high-
power MW regime with design principles complemented
with numerical non-linear optimization for development
of offset compensated DNP pulse sequences.

Analysis of important parameters for efficient DNP
transfer

The objective of this section is to illustrate the pre-
dictive power that a simple two-spin-oriented SSV-ETH
analysis provides for developing efficient static DNP pulse
sequences. We will compare analytical calculations of
linear and bilinear operator terms to experimental DNP
enhancement efficiencies, and discuss limitations in the
model, in particular when a much larger spin system is
required to understand the spin dynamics fully.
From Figure 2, we recall that the BEAM pulse ele-

ment can be modified by lowering the required MW field
strength while keeping the linear field constant to fulfil
the resonance condition for efficient DNP transfer. To
put further perspective to the predictive insight that an
SSV-EHT-based model provides, we have in Fig. 3B in-
vestigated a permuted version of the BEAM element by
analysing a two-BEAM-element pulse sequence, where
the −x-phase irradiation is time shifted by ∆t for the sec-
ond element. By permuting the element, we ensure that
the linear field will be independent of the time shifting ∆t
under conditions of on-resonance (∆ωS = 0) MW irradi-
ation and thereby always fulfil the resonance condition.

However, the size of the effective linear field, ω
(S)
lin,eff as

a function of electron spin offset, ∆ωS , will be different.
In addition, the scaling factors of the bilinear fields, a∓,
may change, as can be seen in Figs. 3C-E.
Figure 3C shows experimental 1H DNP polarization

enhancements ϵp, for three pulse sequences with ∆t =
0 ns (blue), ∆t = 25 ns (red) and ∆t = 45 ns (yellow)
as function of mixing time, τmix. To compare the ex-
perimental results, we have in Figs. 3D-E calculated the
transfer efficiency as function of τmix using the analytical
calculated first-order effective Hamiltonian for a simple
two-spin e-1H spin system using a MW field strength of
ωMW /(2π) = 6.5 MHz (D) and ωMW /(2π) = 6.0 MHz
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FIG. 3. A) Schematic representation of the pulse sequence used for e-1H static DNP containing initial saturation pulses on the
1H channel followed by a pumping element that is repeated P times for electron to nuclear polarization transfer and finally a
solid-echo element for readout of the 1H polarization. B) Illustration of the MW pulse element that is repeated M times to span
the mixing period, τmix = Mτm with τm=100 ns. Colours red and blue indicate x and −x-phase MW irradiation, respectively.
C) Experimental data for the 1H signal enhancement, ϵp, as function of the mixing time τmix using the pulse element i B), ∆t
= 0 ns (blue), ∆t = 25 ns (red) and ∆t = 45 ns (yellow). An experimentally optimized MW field amplitude of 6.25 MHz was
employed for ∆t = 0 ns and 5.83 MHZ for ∆t = 25 and ∆t = 45 ns. The data were recorded using an overall pumping time
of 5 s (τrep = 2 ms, P = 2500). D) and E) shows numerical simulations using the analytically calculated first-order effective
Hamiltonian (evaluated at time points being an integral of 2τm) using an MW field strength of ωMW /(2π) = 6.5 MHz in D)
and ωMW /(2π) = 6.0 MHz in E).

(E). The size of the anisotropy of the hyperfine coupling
were set to T/(2π) = 1 MHz.

From the experimental data in Fig. 3C, it can be seen
that both positive (blue) and negative (red and yellow)
polarization enhancements may be achieved depending
on the time shifting. This can be explained by looking
at propagation with the first-order effective Hamiltonian
in Figs. 3D-E, analytically calculated for two elements,
giving a total time of 2π/ωm = 200 ns. Relative to the
idealized case addressed in section , the measurements

were performed at a static magnetic field corresponding
to a Larmor frequency of the 1H nuclei of ωI/(2π) =
14.8 MHz. By investigating the cyclic interaction frame
Hamiltonian in Eq. (5) for a pulse sequence with ωm/(2π)
= 10.0 MHz, it becomes clear that resonance conditions

exist at ω
(I)
lin,eff/(2π) = 4.8 MHz and 5.2 MHz. This leads

to either a ZQ condition at 5.2 MHz/0.8 = 6.5 MHz as
shown in Fig. 3D or a DQ condition at 4.8 MHz/0.8 = 6.0
MHz shown in Fig. 3E. Indeed, this is in agreement with
the experimental data using ωMW /(2π) = 6.25 MHz and
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where the ∆t = 0 ns sequence (blue curves) produces a
pure ZQ first-order effective Hamiltonian, the ∆t = 25
ns sequence (red curves) almost a pure DQ first-order
effective Hamiltonian, whereas the ∆t = 45 ns sequence
(yellow curves) contains both ZQ and DQ components
but with different scaling factors as seen by the different
buildup times for maximal transfers in Figs. 3D-E.

By comparing analytical and experimental curves, it is
clear that several important features are well-described
by the simple SSV-EHT-based two-spin model, which are
useful for systematic design of efficient pulse sequences.
The overall enhancement is better for the ∆t = 25 ns
sequence than for the ∆t = 0 ns sequence. This can be
explained by the larger scaling factor of the bilinear terms
in the effective Hamiltonian. In addition, it can be seen
that one should actively try to avoid having resonance
conditions close to each other, fulfilling both ZQ and DQ
conditions as is the case when ∆t = 45 ns. This is espe-
cially important when dealing with large MW field inho-
mogeneities, where the specifics of such inhomogeneities
are not sufficiently known to prevent overlap between the
ZQ and DQ effective Hamiltonians for all inhomogeneity
isochromats in the sample. In the current example, we
still see a sizable amount of transfer, due to the mag-
nitude of the DQ terms being approximately two times
larger than the ZQ terms. However, as can be seen from
the yellow curve in Fig. 3C, the polarization enhancement
does not continuously increase as a function of the mixing
time and, therefore, only a smaller overall enhancement
is achieved compared to the red curve, despite having a
larger scaling factor for the DQ terms.

Two aspects that the analytical model does not ex-
plain are: (i) the transient oscillations seen in the ana-
lytical curves are absent in the experimental data, and
(ii) the experimental transfer efficiencies apparently ex-
hibit a buildup rate that is approximately three times
greater compared to the rates derived from the analyt-
ical curves. We attribute these two limitations primar-
ily to the simplicity of the model, which approximates
a large spin system to a two-spin model. In addition,
defining the anisotropy of the hyperfine coupling to be
T/(2π) = 1 MHz for the analytical calculations may also
be inaccurate, relative to the real spin system. However,
for the purposes of designing pulse elements for efficient
DNP transfer, these two simplifications are not relevant
for evaluating whether a given pulse sequence element is
good or bad.

To further illuminate the design principles and how to
systematically search for good pulse sequences, we have
in Fig. 4 analysed another important parameter for the
basic element, namely the overall time τm that the basic
element takes. The basic element is shown in Fig. 4A us-
ing a constant MW field amplitude. For a pulse sequence
to potentially provide good DNP polarization enhance-
ment, it is required that the ratio between the lengths
of -x-phase (red bar) and x-phase (blue) are chosen to

match an effective linear field according to Eq. (5). This
is ensured by setting the pulse durations τ−x and τx to

fulfill ω
(S)
lin,eff = (τx − τ−x)ωMW /τm with τm = τx + τ−x.

Figure 4B displays the experimental polarization en-
hancement factors, while Figure 4C presents both numer-
ical (solid lines) and analytical (dashed lines) polarization
enhancement factors, ϵp, all as a function of the mix-
ing time τmix. Three different modulation times, with
ωm/(2π) = 20 MHz (black, τ−x = 5 ns, τx = 45 ns),
ωm/(2π) = 18 MHz (red, τ−x = 14.5 ns, τx = 41 ns), and
ωm/(2π) = 16 MHz (blue, τ−x = 26.25 ns, τx = 36.25
ns) were examined. For the numerical and analytical cal-
culations, the size of the anisotropy of the hyperfine cou-
pling was again set to T/(2π) = 1 MHz. By comparing
the numerical and experimental data, we observe a good
correspondence between the initial buildup given by the
scaling factor in Eq. (4). It can easily be seen that for
ωm/(2π) = 18 MHz and 16 MHz, we obtain a higher scal-
ing factor than for ωm/(2π) = 20 MHz. This correlates
with a higher overall experimental polarization transfer
of the 1H spins, with maximal transfer efficiencies around
ϵp = 23 - 30, using a pumping time of 5 s. By using a
longer pumping time of 60 s, we achieved an enhance-
ment of approximately ϵp ∼ 80 (not shown). The size
of DQ/ZQ scaling factor correlates with the ratio τx/τ−x

for the pulse element in Fig. 4A. Thus, when using a
lower MW field strength than the 1H Larmor frequency,
the scaling factor in Eq. (4) will increase when the mod-
ulation time approaches the nuclear Larmor frequency.
However, this also implies that the effective linear field

on the electrons ω
(S)
lin,eff will be small to match the reso-

nance conditions and thereby the ZQ and DQ conditions
may both be active depending on the a± coefficients for
a given pulse element.

A large linear field has the advantage that it truncates
any unwanted ZQ or DQ bilinear terms. This effect is
seen for the blue curves with ωm/(2π) = 16 MHz where
the dotted blue curve in 4C is calculated using a first-
order effective Hamiltonian for propagation. This effec-
tive first-order Hamiltonian does indeed contain both DQ
and ZQ terms as the effective linear field is 1.2 MHz and
not much larger than the size for the pseudo secular hy-
perfine interaction being 1 MHz. Therefore, the analyti-
cal first-order description does not converge that well and
higher-order terms may be required for a precise descrip-
tion of the spin dynamics, as seen by comparing to the
numerical calculated curve (solid blue line). From a pulse
optimization point of view, this convergence is not prob-
lematic, as this situation will not lead to the best overall
sequence. Experimentally, a better sequence was found
for an element with a modulation frequency of ωm/(2π)
= 18 MHz and hereby requiring a larger effective linear
field. This sequence is represented by the red curve in
Figs. 4B and 4C.

As discussed in section , besides the scaling factors of
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FIG. 4. A) Schematic representation of the pulse element used for e-1H static DNP consisting of two pulses with -x phase
(red) spanning a time period τx for the first pulse followed by a second pulse with x phase (blue) spanning a time period
τ−x. B) Experimental data for the DNP 1H signal enhancement, ϵp, as function of mixing time τmix using the pulse element
in A) with τ−x = 5 ns, τx = 45 ns (black), τ−x = 14.5 ns, τx = 41 ns (red) and τ−x = 26.25 ns, τx = 36.25 ns (blue).
Experimentally optimized MW field amplitudes of 6.25, 6.46 and 6.88 MHz were employed, respectively. C) Numerical (solid
lines) and analytical (dashed lines) simulations of a two spin e-1H system using the same pulse times as given in B) and a MW
field strength of ωMW /(2π) = 6.5 MHz (black), ωMW /(2π) = 6.7 MHz (red) and ωMW /(2π) = 7.5 MHz (blue). The analytical
curves were calculated using the SSV-EHT first-order effective Hamiltonian. D) Experimental polarization enhancement (blue
curve) as function of the electron offset ∆ωS/(2π) using the pulse times τ−x = 14.5 ns, τx = 41 ns (red curves in B and C).
The red curve shows the EPR line and the green curve shows the analytical calculated polarization transfer (both in arbitrary
units). The black curve shows the folding of the red and green curve, with the maximum being normalized to match the blue
curve.

the bilinear terms, it is also important that the effective
linear field for a given pulse sequence does not vary much
as a function of the electron spin offset, as this will in-
fluence the transfer efficiency. We have analysed this in
Fig. 4D using the pulse sequence with ωm/(2π) = 18
MHz (τ−x = 14.5 ns, τx = 41 ns). In blue, is shown the
experimental polarization enhancement ϵp, as function of
electron spin offset. The green curve shows the analytical
calculated transfer efficiency (arbitrary scaled for visual-
ization) using a simple two-spin e-1H spin system. It is
clear that the resonance condition for the analytical cal-
culated curves is much narrower than the experimental
one.

However, by taking the line-width of the electron EPR
signal, shown in red, into account, good agreement with
the experimental data can be achieved. This demon-
strated by the black curve (B) which has been calcu-
lated by folding the red (R) and green (G) lines using
B(ω) =

∫
R(ω)G(ω −∆)d∆. In this way, from a simple

analytical model and the EPR spectrum, we show it is
possible to predict the efficacy of a pulse sequence, par-
ticularly since unwanted offset effects may also be consid-
ered. More specifically, the negative transfers that occur
at an electron spin offset of ∆ωS/(2π) = ±15 MHz, may
lead to destructive interference with the positive trans-
fer at zero offset and, therefore, should be to be avoided.
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FIG. 5. A) Schematic representation of the PLATO pulse element developed using a non-linear optimization approach for
e-1H static DNP with the pulse amplitude (in MHz) for individually pulses. Red and blue illustrates x and −x phase pulses,
respectively (the amplitudes of the 24 5-ns pulses are {9.31, 20.36, 32.00, -9.29, -32.00, -32.00, -32.00, -7.86, 32.00, 32.00, -32.00,
-32.00, -32.00, -28.04, -32.00, -32.00, 8.60, 32.00, 32.00, 32.00, -32.00, -6.94, 32.00, 32.00} MHz). B) Analytically derived FOM
vs electron spin offset (∆ωS/(2π)) profile (Eq. (7)) overlaid with the corresponding profile calculated for the density operator.
C) and D) 2D density operator transfer profiles as function of electron spin offset (∆ωS/(2π)) and the MW field amplitude
(ωMW /(2π)). The calculations in B-D) assumed an e-1H two-spin system with an anisotropy of the hyperfine coupling of T/(2π)
= 1 MHz (corresponding to an inter-spin distance of reH=4.5 Å in a point-dipole model), a static magnet field of B0=0.35 T,
and total mixing time of 2.28 µs (representing M=19 repetitions of the basic 120 ns element in A). In C) a single crystallite
orientation was considered, such that A/(2π) = −0.4 and B/(2π) = 1.0 MHz, while a powder represented by 20 crystallite
angles was considered in D).

For this analytical analysis, this only leads to a marginal
loss in the highest polarization transfer, occurring at zero
offset.

Offset compensation by non-linear optimization

In the previous section, we discussed the requirements
for designing good pulse sequence elements balancing lin-
ear and bilinear terms in the SSV-EHT effective Hamil-
tonian. Taking a numerical approach to develop efficient
broadband DNP experiments, we here demonstrate non-
linear optimization of ϵFOM as formulated in Eq. (7)
considering both ZQ and DQ formulations simultane-
ously. The objective has been to design an efficient e-1H

DNP pulse sequence with a bandwidth of 80 MHz (for the
electron spin offset, ∆ωS/(2π)) using a maximal (peak)
MW amplitude of 32 MHz. We used a digitization of the
pulses in 5 ns steps with 24 pulses over a DNP building
block period of 120 ns corresponding to a modulation fre-
quency of ωm/(2π) = 8.33 MHz. By inspecting Eq. (2),
it is seen that this corresponds to a linear effective field

of around ω
(I)
lin,eff/(2π) = 1.9 MHz which will provide a

good truncation of unwanted ZQ or DQ terms.

Combining non-linear optimization, numerical analy-
sis, and experimental measurements, we obtained results
as demonstrated in Fig. 5. The optimal pulse sequence
- henceforth denoted PLATO (PoLarizAtion Transfer
via non-linear Optimization) - was obtained by opti-
mization of ϵFOM for a single crystal orientation with
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FIG. 6. A) Experimental data for the 1H signal enhancement, ϵp, for NOVEL (blue), BEAM, with τx = 20 and τ−x = 28.75 ns,
(red) and PLATO (green) as function of electron spin offset, ∆ωS/(2π) using a buildup time of 5 s. The black curve shows the
experimental EPR signal. B) Experimental 1H enhancement factors as function of pumping time (τbuildup = Pτrep) using the
same pulse sequences as in A). The buildup times TB , given by ϵp(τbuildup) = ϵmax[1− exp(−τbuildup/TB)] for NOVEL, BEAM
and PLATO correspond to 10.0, 9.2, and 8.4 s. All experimental data was acquired using experimentally optimized mixing
times, τmix, of 2000, 585, and 720 ns for NOVEL, BEAM, and PLATO, respectively, and MW field amplitudes (ωMW /(2π)) of
16.25 MHZ for NOVEL and 36.25 MHZ for BEAM and PLATO.

A/(2π) = −0.4 MHz and B/(2π) = 1.0 MHz, initial Sx

operator (prepared by the (π/2)y pulse), x-phase MW
irradiation (allowing positive and negative amplitudes)
and under consideration of an experimentally relevant
MW field inhomogeneity profile (see section 3) is shown
in Fig. 5A. The FOM function calculated using either
SSV-EHT (black curve) or by projection of a numerical
effective calculated Hamiltonian (red) and the state-to-
state calculation (green) at tFOM = 2.3 µs (expectation
value ⟨Iz⟩(t)) is plotted as a function of the electron spin
frequency offset ∆ωS/(2π) in Fig. 5B. The corresponding
density operator projection is shown as a function of the
electron spin offset and the MW amplitude (ωMW /(2π),
with the nominal maximum value being 32 MHz) for a
single crystal and a powder in Figs. 5C and 5D, re-
spectively. We note the extreme broadbandedness of the
PLATO pulse sequence exceeds previously demonstrated
DNP pulse sequences.

Figure 6 shows experimental results obtained for the
PLATO DNP sequence optimized in Fig. 5 in comparison
with results obtained for previously proposed NOVEL
and BEAM pulse sequences and the profile of the EPR
resonance. It is clearly evident that the PLATO pulse se-
quence developed by balancing linear and bilinear terms
in the FOM function by non-linear optimization is more
broadbanded than the compared methods, and that the
developed pulse sequence works very well experimentally.
The latter is extremely important, as it is well-known

that the electron-nuclear spin systems in typical DNP
cases, as here explored for trityl, are much larger than a
two-spin model. We attribute this result to optimization
of the effective Hamiltonian, rather than state-to-state
optimization often used in typical numerical (e.g., op-
timal control) optimizations. We should note that our
comparison dealt with sequences not further improved
by adiabatic implementation, which may render all the
individual compared methods more broadbanded.

CONCLUSIONS

In this work, we have theoretically, numerically, and
experimentally demonstrated how the single-spin vector
effective Hamiltonian (SSV-EHT) approach can be used
to understand and design pulse sequences for static DNP
by investigating single-spin operators in a two-spin sys-
tem. By analysing the terms in the first-order effective
Hamiltonian giving rise to the linear fields (single-spin
terms) and the Fourier coefficients that describe the scal-
ing factors for the bilinear terms (two-spin terms), we
were able to establish the crucial parameters that pro-
vide insight in the experimental transfer performance for
a given pulse sequence.

Based on the same principles, we designed an ex-
tremely broadbanded DNP pulse sequence, PLATO, em-
ploying a non-linear optimization. The PLATO DNP
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sequence covers an electron spin offset range of approxi-
mately 80 MHz using a maximum MW field strength of
32 MHz. This may open up for the possibility to explore
other radicals with a larger linewidth for efficient polar-
ization transfer to nuclear spins in DNP experiments.
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