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Abstract The oscillatory fields near the electrode surface are not considered in the classical 
models of electrical double layer (EDL), while holding immense importance for stability, activity, 
and selectivity of interfacial reactions. Here, we develop a unified theoretical framework for 
oscillatory fields in the EDL under constant potential conditions, combining an orbital-free DFT 
treatment of electrons on the metal side and a statistical field theory of charged fluids on the 
electrolyte side. The resulting grand potential is a hybrid functional of electron density, electric 
potential, and solvent polarization, referred to as density-potential-polarization functional theory 
(DPPFT). Built on the DPPFT, an EDL model for the Ag(110)-KPF6 aqueous interface is 
parameterized with experimental double layer capacitance (𝐶𝐶dl) data. The calibrated model is then 
employed to study the influence of electronic, ion, and solvent properties on the EDL structure and 
capacitance. 𝐶𝐶dl  profiles at different crystal faces and in various electrolyte solutions are 
rationalized coherently. We reveal that intensified ion layering leads to elevated capacitances at the 
potential of zero charge (PZC) and narrowed ionic peaks in the 𝐶𝐶dl profile. Contrary to classical 
models, the DPPFT model allows co-ions to have an appreciable density near the electrode surface, 
opening an avenue to decipher the origin of the anomalous anion effects on electrochemical CO2 
reduction. The presented framework adds much-needed realism to the modelling of EDLs. 

Keywords density-potential-polarization functional theory, statistical field theory, constant 
potential, differential capacitance, electric double layer, oscillatory fields, layered structure 
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1 Introduction 

The physics at electrified interfaces is the foundational basis of numerous research fields, 
including but not limited to electrochemistry [1–4], nanofluidics [5–7], biology [8,9], and 
geological science [10]. In a nutshell, when an electronic conductor, often a metal, is immersed 
into an ionic conductor, often an aqueous solution, electronic and ionic charge of same magnitude 
but opposite sign assemble at the interface between the adjacent phases, forming an electric 
double layer (EDL).  

Understanding the interactions between electrons, ions, and solvent molecules within the EDL has 
been a topic of intense research for the past two centuries. Current textbook understanding is 
neatly condensed into the Gouy-Chapman-Stern-Grahame (GCSG) model [11,12], which 
describes the EDL as an inner compact layer and an outer diffuse layer. The inner layer is further 
divided into an inner Helmholtz plane (IHP) of specifically adsorbed ions and an outer Helmholtz 
plane (OHP) at the position of the closest nonspecifically adsorbed ions. Ion densities in the 
diffuse layer are determined by the interplay between electrostatic, thermal, and short-range hard-
sphere forces. The GCSG model is well-established for mercury-like metals [13–15], as well as 
for sd metals like Ag and Au [16–21]. Applicability of the GCSG model for Pt-type electrodes 
remains a topic of heated discussion [22–25]. 

The GCSG model and its variants are often criticized for the absence of two characteristic features 
of an EDL. The first one is metal electronic effects [26,27]. The second one is the absence of 
oscillations in the electric potential and ion densities in the nanoscale region just outside the 
electrode surface that appear in every atomistic or molecular simulation [28–30]. Addressing 
metal electronic effects, the jellium models developed in the 1980s allow us to understand the 
dependency of the inner layer capacitance on the nature of the metal [31–33]. Nowadays, Kohn-
Sham density functional theory (DFT) based models provide a largely satisfactory description of 
metal electronic effects. Oscillatory fields were first sensed by surface force apparatus (SFA) in 
the pioneering work by Pashley and Israelachvili et al. [34–36] Later, advances in experimental 
techniques such as atomic force microscopy (AFM) [37,38], have enabled their more detailed 
investigation. For instance, Mugele et al. detected oscillatory forces on mica and amorphous silica 
surfaces in aqueous solution using an ultra-sharp AFM tip with a radius of 1-2 nm [38]. 

The oscillatory fields near the electrode surface are crucial for the stability of colloidal particles 
and macromolecules like DNA, as well as the activity and selectivity of electrochemical reactions. 
Recently, Kornyshev et al. gave a historical account of interests in the former aspect [39], and 
herein, we complement their account by focusing on the latter aspect. All electrochemical 
reactions occur in the EDL, and the oscillatory fields dramatically change the local reaction 
conditions for reactions, including the concentration of the reactant(s) and product(s), electrostatic 
driving force, and solvent reorganization free energy. Early on, these local reaction conditions 
were accounted for in the Frumkin corrections based on the notation of a reaction plane [3,40–45]. 
The reaction plane may be a good approximation in the mean-field type GCSG model, while it 
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becomes problematic in the presence of oscillatory local reaction conditions. Instead, the notation 
of a reaction volume considering the discreteness and oscillatory distribution of charges near the 
electrode surface is necessary [46,47]. 

On the theory side, the oscillatory fields in the EDL can be captured by phenomenological theories 
of structured liquids. For this end, Berthoumieux et al. employed the Landau-Ginzburg approach 
where solvent interactions are described as a functional of the solvent polarization [39,48,49]. In 
this theory, electric potential and solvent polarization are two coupled field variables of the 
electrolyte solution. The oscillations of electric potential and solvent polarization, alongside the 
layered structure of ions, are delineated by this theory [39]. Recently, Blossey and Podgornik have 
developed a comprehensive continuum theory rooted in statistical field theory, in which they 
further coupled the ion charge density with the solvent polarization, enabling the description of 
short-range interactions between ions and solvent [50–52]. These literature works have described 
the electrolyte solution side in great detail, while treating the metal surface as a featureless 
boundary condition. This treatment neglects the built-in electric field at the metal surface and its 
influence over the oscillatory fields. It is unclear how the built-in electric field distorts the 
oscillatory fields in the EDL. 

While the two key drawbacks of the GCSG model can be treated by Kohn-Sham DFT and 
Landau–Ginzburg theory, a unified framework considering the interactions between electrons on 
the metal side and classical oscillatory fields on the electrolyte side is, to the best of our 
knowledge, missing. This work addresses this gap by developing a computationally efficient, 
grand-canonical, variational theory for metal electronic effects and oscillatory fields in the EDL. 
In the remainder of this paper, we first formulate the grand potential of the EDL by combining the 
orbital-free density functional theory (OFDFT) of quantum mechanical electrons and the statistical 
field theory of charged fluids on the electrolyte side. The theory describes the grand potential of 
the EDL as a functional of three field variables, i.e., the electron density, the electric potential, and 
the solvent polarization field, hence referred to as a density-potential-polarization functional 
theory (DPPFT). Afterwards, we obtain three controlling equations of the EDL from a variational 
analysis of the grand potential. The DPPFT model is parameterized with experimental data for the 
differential capacitance (𝐶𝐶dl) of the Ag(110)-KPF6 aqueous interface. The calibrated model is then 
employed to study the influence of model parameters, including electronic structure parameters, 
ionic properties, and solvent properties, on the interfacial structure and 𝐶𝐶dl profiles. 

2 Theory development 

2.1 Grand potential of EDL 

The metal comprises cationic cores and electrons, while the electrolyte comprises cations, anions, 
and solvent molecules (denoted by cc, e, c, a, s subscripts). The grand potential 𝛺𝛺  of the 
electrochemical interface is obtained by a Legendre-transformed from the Helmholtz free energy 
𝐹𝐹, 
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𝛺𝛺 = 𝐹𝐹 −��𝑛𝑛e𝜇𝜇�e + � 𝑛𝑛𝑖𝑖𝜇𝜇�𝑖𝑖
𝑖𝑖=a,c,s

�
𝑟𝑟

 (1) 

where 𝜇𝜇�e and 𝜇𝜇�𝑖𝑖 are electrochemical potentials of electrons and electrolyte component 𝑖𝑖, and 𝑛𝑛e 
and 𝑛𝑛𝑖𝑖  represent their number densities. The subscript of the integral sign denotes the integral 
variable. 𝑟𝑟 represents the spatial coordinates, and ∫𝑟𝑟  is a short-hand notation for ∭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

Following ref. [53,54], the Helmholtz free energy is decomposed as, 

𝐹𝐹 = 𝐹𝐹ℚ + 𝐹𝐹ℂ + 𝐹𝐹⨂ (2) 

where 𝐹𝐹ℚ describes the quantum-mechanical interactions of the inhomogeneous electron gas in the 

metal, 𝐹𝐹ℂ describes the classical interactions between all particles in both phases, and 𝐹𝐹⨂ describes 

the short-range interactions between the metal and the electrolyte particles. 

2.2 The metal 

In the orbital-free DFT (OFDFT) formalism, 𝐹𝐹ℚ is written as, 

𝐹𝐹ℚ = 𝑇𝑇in[𝑛𝑛e,∇𝑛𝑛e, … ] + 𝑈𝑈XC[𝑛𝑛e,∇𝑛𝑛e, … ] (3) 

where 𝑇𝑇ni  is the kinetic energy of non-interacting electrons and 𝑈𝑈XC  the exchange-correlation 
energy. They are functionals of electron density, ∇𝑛𝑛e , ∇2𝑛𝑛e, etc. 𝑇𝑇ni  is described by Thomas-
Fermi-von Weizsäcker (TFvW) theory [55–57], 

𝑇𝑇ni[𝑛𝑛e] = �𝑒𝑒au𝑎𝑎0−3𝑡𝑡TF(1 + 𝜃𝜃T𝑠𝑠2)
𝑟𝑟

 (4) 

with the volumetric kinetic energy that is given by the Thomas-Fermi theory, 𝑡𝑡TF =
3
10

(3𝜋𝜋2)
2
3(𝑛𝑛e𝑎𝑎03)

5
3, the correction for gradient terms, (1 + 𝜃𝜃T𝑠𝑠2), and the reduced gradient term, 

𝑠𝑠 = 1
2

(3𝜋𝜋2)−
1
3|∇𝑛𝑛e|(𝑛𝑛e)−

4
3 . 𝜃𝜃T  is a coefficient for the contribution of the gradient term in the 

kinetic energy. 𝑒𝑒au𝑎𝑎0−3 is used to transform the expression from atomic units to SI units, with 

atomic energy 𝑒𝑒au = 𝑒𝑒02

4𝜋𝜋𝜖𝜖0𝑎𝑎0
, Bohr radius 𝑎𝑎0, elementary charge 𝑒𝑒0, and vacuum permittivity 𝜖𝜖0. 

The exchange-correlation energy 𝑈𝑈XC is the sum of an exchange part 𝑢𝑢X and a correlation part 𝑢𝑢C 
[34], 

𝑈𝑈XC = �(𝑢𝑢X + 𝑢𝑢C)
𝑟𝑟

 (5) 

𝑢𝑢X and 𝑢𝑢C are described by the Perdew-Burke-Ernzerhof (PBE) functional [58]. 𝑢𝑢X is formulated 
as, 

𝑢𝑢X = 𝑒𝑒au𝑎𝑎0−3𝑢𝑢X0(1 + 𝜃𝜃X𝑠𝑠2) (6) 
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with the volumetric exchange energy of a uniform electron gas, 𝑢𝑢X0 = −3
4
�3
𝜋𝜋
�
1
3 (𝑛𝑛e𝑎𝑎03)

4
3. 𝜃𝜃X is a 

coefficient for the contribution of the gradient term in the exchange energy. Similarly, 𝑢𝑢C  is 
formulated as, 

𝑢𝑢C = 𝑒𝑒au𝑎𝑎0−3(𝑢𝑢C0 + (𝑛𝑛e𝑎𝑎03)𝜃𝜃C𝑡𝑡2) (7) 

with the reduced gradient term 𝑡𝑡 = 1
4
�3
𝜋𝜋
�
−16 𝑎𝑎04|∇𝑛𝑛e|(𝑛𝑛e𝑎𝑎03)−

7
6 . 𝜃𝜃C  is a coefficient for the 

contribution of the gradient term in the correlation energy. 𝑢𝑢C0 is the volumetric correlation energy 
of a uniform electron gas, for which we use the interpolation scheme of Perdew et al. [59], 𝑢𝑢C0 =

−2𝑎𝑎1(1 + 𝑎𝑎2𝑟𝑟s)(𝑛𝑛e𝑎𝑎03) ln(1/𝜉𝜉 + 1), with the term 𝜉𝜉 = 2𝑎𝑎1(𝑎𝑎3𝑟𝑟s
1/2 + 𝑎𝑎4𝑟𝑟s + 𝑎𝑎5𝑟𝑟s

3/2 + 𝑎𝑎6𝑟𝑟s2), the 

radius 𝑟𝑟s = (4𝜋𝜋𝑛𝑛e𝑎𝑎03/3)−
1
3 , the coefficients 𝑎𝑎1 = 0.0310907,𝑎𝑎2 = 0.2137,𝑎𝑎3 = 7.5957,𝑎𝑎4 =

3.5876,𝑎𝑎5 = 1.6382,𝑎𝑎6 = 0.49294. 

Three aspects regarding the description of metal electrons need to be noted. Firstly, if we consider 
all electrons in the metal, pseudopotentials for the cationic cores are not required anymore. 
Secondly, the electrostatic potential energy of electrons and cationic cores is included in 𝐹𝐹ℂ . 
Thirdly, the entropy of the electron gas can be implicitly considered in the parameters of electronic 
functionals, 𝑇𝑇ni and 𝑈𝑈XC, which are temperature-dependent as in ref [60]. 

2.3 The electrolyte solution 

Following Blossey and Podgornik [50,51], the classical part is treated by field-theoretic continuum 
theory, encompassing both electrostatic and non-electrostatic interactions between classical 
particles. We consider an electrolyte containing a pair of monovalent ions. We first introduce four 
fields, i.e., the charge density field of cations 𝜌𝜌�c , the charge density field of anions 𝜌𝜌�a , the 

polarization field 𝑷𝑷� and the overall charge density field 𝜌𝜌�. Their spatial distributions depend on the 
positions of cations 𝑟𝑟c, anions 𝑟𝑟a, solvent molecules 𝑟𝑟s, and the orientations of solvent molecules 𝒏𝒏, 

𝜌𝜌�c = 𝑒𝑒0�𝛿𝛿(𝑟𝑟 − 𝑟𝑟c)
𝑁𝑁c

 (8) 

𝜌𝜌�a = −𝑒𝑒0�𝛿𝛿(𝑟𝑟 − 𝑟𝑟a)
𝑁𝑁a

 (9) 

𝑷𝑷�(𝑟𝑟) = 𝑝𝑝�𝒏𝒏𝛿𝛿(𝑟𝑟 − 𝑟𝑟s)
𝑁𝑁s

 (10) 

𝜌𝜌�(𝑟𝑟) = 𝜌𝜌�c(𝑟𝑟) + 𝜌𝜌�a(𝑟𝑟) + ∇ ⋅ 𝑷𝑷�(𝑟𝑟) + 𝜌𝜌ex(𝑟𝑟) (11) 

where 𝑁𝑁c,𝑁𝑁a are the number of cations and anions and the summations over them iterate over the 
positions of all ions. 𝑁𝑁s is the number of solvent molecules, and the summations iterate over the 
positions and orientations of all solvent molecules. 𝑝𝑝 is the magnitude of solvent dipole moment. 
Here, 𝒏𝒏 is defined as the normal vector pointing from the center of positive charge of a solvent 

https://doi.org/10.26434/chemrxiv-2024-c5dvr ORCID: https://orcid.org/0009-0000-6894-4145 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-c5dvr
https://orcid.org/0009-0000-6894-4145
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

molecule to that of negative charge of a solvent molecule. In this definition, the bound charge 
(polarization charge) distribution generated by the solvent polarization is expressed as,  

𝜌𝜌�b(𝑟𝑟) = ∇ ⋅ 𝑷𝑷�(𝑟𝑟) (12) 

The interaction energy of the classical part can be expressed as a functional of the above four 
fields and their gradients. Following ref. [50,51], it comprises of three parts, 

𝐻𝐻��𝜌𝜌�c,𝜌𝜌�c,𝜌𝜌�,𝑷𝑷�� = 𝐻𝐻�es[𝜌𝜌�] + 𝐻𝐻�corr�𝑷𝑷�� +𝐻𝐻�sr�𝜌𝜌�c,𝜌𝜌�a,𝑷𝑷�� (13) 

where 𝐻𝐻�es is the total electrostatic energy between charged particles. For a given configuration, it 
can be expressed by a standard Coulomb interaction, 

𝐻𝐻�es[𝜌𝜌�] =
1
2�

𝜌𝜌�(𝑟𝑟)𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌�(𝑟𝑟′)
𝑟𝑟,𝑟𝑟′

 (14) 

where 𝐺𝐺(𝑟𝑟, 𝑟𝑟′) = 1
4𝜋𝜋𝜖𝜖∞|𝑟𝑟−𝑟𝑟′|

 is the Coulomb interaction potential with its inverse operator being 

𝐺𝐺−1(𝑟𝑟, 𝑟𝑟′) = −𝜖𝜖∞∇2𝛿𝛿(𝑟𝑟 − 𝑟𝑟′) , and 𝜖𝜖∞  being the high-frequency dielectric permittivity 
accounting for the non-configurational polarization. 

𝐻𝐻corr is the correlational energy between solvent molecules, which originates from short-range 
interactions, due to the coupling between non-local polarization fields. Following ref. [50,51], we 

expand the coupling potential to fourth order, namely, 𝐻𝐻�corr can be expressed as the quadratic 

functional of polarization field 𝑷𝑷�, its gradient ∇ ⋅ 𝑷𝑷�, and its second order gradient ∇2𝑷𝑷�, 

𝐻𝐻�corr�𝑷𝑷�� =
1

2𝜖𝜖0
��𝐾𝐾s𝑷𝑷�2 + 𝐾𝐾𝛼𝛼�∇ ⋅ 𝑷𝑷��

2 + 𝐾𝐾𝛽𝛽�∇2𝑷𝑷��
2
�

𝑟𝑟
 (15) 

where 𝐾𝐾s,𝐾𝐾𝛼𝛼 ,𝐾𝐾𝛽𝛽 are phenomenological coefficients of expanded terms. 𝐾𝐾s is dimensionless, while 

𝐾𝐾𝛼𝛼
1
2 ,𝐾𝐾𝛽𝛽

1
4 have the dimension of length. 

𝐻𝐻�sr is the short-range interaction between the charge density of ions and the solvent polarization 
field. This term describes the coupling between the solvent polarization and the charge density of 

ions, which is related to the solvation of ions. To the lowest order, 𝐻𝐻�sr can be expressed as a 
functional of ionic density field and the gradient of polarization field [50,51], 

𝐻𝐻�sr�𝜌𝜌�c,𝜌𝜌�a,𝑷𝑷�� = 𝛼𝛼c �𝜌𝜌�c∇ ⋅ 𝑷𝑷�
𝑟𝑟

+ 𝛼𝛼a �𝜌𝜌�a∇ ⋅ 𝑷𝑷�
𝑟𝑟

 (16) 

where 𝛼𝛼c,𝛼𝛼a are two parameters that characterize the strength of short-range correlations between 
solvent and cations and between solvent and anions, respectively. In the classical interaction 

energy 𝐻𝐻�, the total solvation energy 𝐻𝐻�sol, arising from all interactions between ions and solvent 
molecules, is then, 
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𝐻𝐻�sol�𝜌𝜌�c,𝜌𝜌�a,𝑷𝑷�� = �𝜌𝜌�c(𝑟𝑟)
𝑟𝑟

�𝛼𝛼c +� 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)
𝑟𝑟′

�∇ ⋅ 𝑷𝑷(𝑟𝑟′) +� 𝜌𝜌�c(𝑟𝑟)
𝑟𝑟′

�𝛼𝛼c + �𝐺𝐺(𝑟𝑟, 𝑟𝑟′)
𝑟𝑟

�∇

⋅ 𝑷𝑷(𝑟𝑟′) 
(17) 

Since 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)  is positive, negative values of 𝛼𝛼c  and 𝛼𝛼a  indicate that short-range correlations 
effectively reduce the impact of electrostatic interactions between ions and surrounding solvent 
molecules. This destabilizes the solvation structure governed by electrostatic interactions, 
resulting in a less negative solvation energy. Conversely, positive values of 𝛼𝛼c and 𝛼𝛼a effectively 
enhance electrostatic interactions between ions and surrounding solvent molecules, strengthen the 
solvation structure, and result in a more negative solvation energy.  

The grand canonical partition function 𝑍𝑍gc for the system with Hamiltonian 𝐻𝐻�, is defined as, 

𝑍𝑍gc[𝑇𝑇, {𝜇𝜇�𝑖𝑖}] = ���𝜆𝜆s
𝑁𝑁s𝜆𝜆c

𝑁𝑁c𝜆𝜆a
𝑁𝑁a𝑍𝑍c

𝑁𝑁a𝑁𝑁c𝑁𝑁s

 (18) 

with 

𝑍𝑍c[𝑇𝑇, {𝑁𝑁𝑖𝑖}] =
1

𝛬𝛬s
3𝑁𝑁s𝛬𝛬c

3𝑁𝑁c𝛬𝛬a
3𝑁𝑁a

1
𝑁𝑁s!𝑁𝑁c!𝑁𝑁a!�

exp�−𝛽𝛽𝐻𝐻��𝜌𝜌�c,𝜌𝜌�a,𝜌𝜌�,𝑷𝑷���
ℂ

 (19) 

where 𝜆𝜆𝑖𝑖 = 𝑒𝑒𝛽𝛽𝜇𝜇�𝑖𝑖 is the fugacity of electrolyte component 𝑖𝑖, 𝛽𝛽 = 1
𝑘𝑘B𝑇𝑇

 is the thermal constant, with 

Boltzmann constant 𝑘𝑘B. The thermal de Broglie wavelength , 𝛬𝛬𝑖𝑖, ensures a dimensionless partition 
function. 𝑍𝑍c is the canonical partition function with temperature 𝑇𝑇, and particle number {𝑁𝑁𝑖𝑖}. The 
subscript ℂ represents the integral measure over all configurational coordinates of particles. 

To develop the field theoretic representation of the partition function, we first introduce a set of 
collective fields by utilizing the sifting property of the Dirac delta functional. For example, given 
a functional 𝑓𝑓(𝜚𝜚�) of the field 𝜚𝜚�, a collective field 𝜚𝜚 can be introduced using the sifting property of 
the Dirac delta functional 𝛿𝛿(𝜚𝜚 − 𝜚𝜚�), i.e., 

𝑓𝑓(𝜚𝜚�) = �𝛿𝛿(𝜚𝜚 − 𝜚𝜚�)𝑓𝑓(𝜚𝜚)
𝜚𝜚

 (20) 

In such a way, we can introduce four collective fields 𝜌𝜌c,𝜌𝜌a,𝜌𝜌,𝑷𝑷 respectively corresponding to the 

previously defined fields 𝜌𝜌�c,𝜌𝜌�a,𝜌𝜌,𝑷𝑷� in the integral kernel of 𝑍𝑍c in Eq. 19, 

exp�−𝛽𝛽𝐻𝐻��𝜌𝜌�c,𝜌𝜌�a,𝜌𝜌�,𝑷𝑷��� = � � � � � � 𝛿𝛿(𝜚𝜚 − 𝜚𝜚�)
𝜚𝜚=𝜌𝜌c,𝜌𝜌a,𝜌𝜌,𝑷𝑷

� exp(−𝛽𝛽𝐻𝐻[𝜌𝜌c,𝜌𝜌a,𝜌𝜌,𝑷𝑷])
𝜌𝜌𝑷𝑷𝜌𝜌a𝜌𝜌c

 (21) 

with, 
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𝐻𝐻 =
1
2�

𝜌𝜌(𝑟𝑟)𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′)
𝑟𝑟,𝑟𝑟′

+
1

2𝜖𝜖0
��𝐾𝐾s𝑷𝑷2 + 𝐾𝐾𝛼𝛼(∇ ⋅ 𝑷𝑷)2 + 𝐾𝐾𝛽𝛽(∇2𝑷𝑷)2�
𝑟𝑟

+ 𝛼𝛼c �𝜌𝜌c∇ ⋅ 𝑷𝑷
𝑟𝑟

+ 𝛼𝛼a �𝜌𝜌a∇ ⋅ 𝑷𝑷
𝑟𝑟

 
(22) 

The collective fields are functions of spatial coordinates only. Further, the auxiliary field 𝜑𝜑∗ 
corresponding to the collective field 𝜚𝜚 in Eq. 21 can be introduced by Fourier transform to 𝜚𝜚 in the 
Dirac delta functional 𝛿𝛿(𝜚𝜚 − 𝜚𝜚�) [61], i.e., 

𝛿𝛿(𝜚𝜚 − 𝜚𝜚�) = � exp�−𝑖𝑖�𝛽𝛽𝜑𝜑∗(𝜚𝜚 − 𝜚𝜚�)
𝑟𝑟

�
𝜑𝜑∗

 (23) 

In such a way, we introduce another four auxiliary fields 𝜙𝜙c∗,𝜙𝜙a∗,𝜙𝜙∗,𝓔𝓔∗ respectively corresponding 
to the collective fields 𝜌𝜌c,𝜌𝜌a,𝜌𝜌,𝑷𝑷  in Eq. 21. The auxiliary fields are functions of spatial 
coordinates only. Then 𝑍𝑍c is reformulated as, 

𝑍𝑍c =
1

𝛬𝛬s
3𝑁𝑁s𝛬𝛬c

3𝑁𝑁c𝛬𝛬a
3𝑁𝑁a

1
𝑁𝑁s!𝑁𝑁c!𝑁𝑁a!�

exp

⎝

⎜
⎛
−𝛽𝛽

⎝

⎛
𝐻𝐻 + 𝑖𝑖 �𝓔𝓔∗ ⋅ 𝑷𝑷

𝑟𝑟
+ 𝑖𝑖 �𝜙𝜙∗𝜌𝜌

𝑟𝑟

+𝑖𝑖 �𝜙𝜙c∗𝜌𝜌c
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙a∗𝜌𝜌a
𝑟𝑟 ⎠

⎞

⎠

⎟
⎞
𝑍𝑍c0

𝔽𝔽
 (24) 

with 

𝑍𝑍c0 = � exp�𝑖𝑖𝛽𝛽��𝓔𝓔∗ ⋅ 𝑷𝑷� + 𝜙𝜙∗𝜌𝜌� + 𝜙𝜙c∗𝜌𝜌�c + 𝜙𝜙a∗𝜌𝜌�a�
𝑟𝑟

�
ℂ

 
(25) 

where the subscript 𝔽𝔽 denotes the integral measure over all collective fields and all auxiliary fields. 
The exponential term in 𝑍𝑍c0 is evaluated as follows, 

𝑖𝑖𝛽𝛽��𝜙𝜙∗𝜌𝜌�+𝜙𝜙c∗𝜌𝜌�c + 𝜙𝜙a∗𝜌𝜌�a + 𝓔𝓔∗ ⋅ 𝑷𝑷��
𝑟𝑟

= 𝑖𝑖𝛽𝛽�𝜙𝜙∗ �𝑒𝑒0�𝛿𝛿(𝑟𝑟 − 𝑟𝑟c)
𝑁𝑁c

− 𝑒𝑒0�𝛿𝛿(𝑟𝑟 − 𝑟𝑟a)
𝑁𝑁a

+ 𝑝𝑝�𝒏𝒏 ⋅ ∇𝛿𝛿(𝑟𝑟 − 𝑟𝑟s)
𝑁𝑁s𝑟𝑟

+ 𝜌𝜌ex(𝑟𝑟)�+ 𝑖𝑖𝛽𝛽𝑒𝑒0 �𝜙𝜙c∗�𝛿𝛿(𝑟𝑟 − 𝑟𝑟c)
𝑁𝑁c𝑟𝑟

− 𝑖𝑖𝛽𝛽𝑒𝑒0 �𝜙𝜙a∗�𝛿𝛿(𝑟𝑟 − 𝑟𝑟a)
𝑁𝑁a𝑟𝑟

+ 𝑖𝑖𝛽𝛽� 𝑝𝑝𝓔𝓔∗ ⋅�𝒏𝒏𝛿𝛿(𝑟𝑟 − 𝑟𝑟s)
𝑁𝑁s𝑟𝑟

= 𝑖𝑖𝛽𝛽𝑝𝑝�𝒏𝒏 ⋅ �𝓔𝓔∗(𝑟𝑟s)− ∇𝜙𝜙∗(𝑟𝑟s)�
𝑁𝑁s

+ 𝑖𝑖𝛽𝛽𝑒𝑒0��𝜙𝜙∗(𝑟𝑟c) + 𝜙𝜙c∗(𝑟𝑟c)�
𝑁𝑁c

− 𝑖𝑖𝛽𝛽𝑒𝑒0��𝜙𝜙∗(𝑟𝑟a) + 𝜙𝜙a∗(𝑟𝑟a)�
𝑁𝑁a

+ 𝑖𝑖𝛽𝛽�𝜙𝜙∗𝜌𝜌ex
𝑟𝑟

 

(26) 

where the first equality is obtained by recalling the definition of fields in Eq. 8-11, and the second 

https://doi.org/10.26434/chemrxiv-2024-c5dvr ORCID: https://orcid.org/0009-0000-6894-4145 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-c5dvr
https://orcid.org/0009-0000-6894-4145
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

equality utilizes the sifting property of the Dirac delta function, as shown in Eq. 20. 𝑍𝑍c0 is then 
calculated as, 

𝑍𝑍c0 = ��exp(𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ + 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙c∗)
𝑟𝑟

�
𝑁𝑁c
��exp(−𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ − 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙a∗)

𝑟𝑟
�
𝑁𝑁a
��𝑑𝑑𝒏𝒏 exp�𝑖𝑖𝛽𝛽𝑝𝑝𝒏𝒏

𝑟𝑟

⋅ (𝓔𝓔∗ − ∇𝜙𝜙∗)��
𝑁𝑁s

exp�𝑖𝑖𝛽𝛽�𝜙𝜙∗𝜌𝜌ex
𝑟𝑟

� 

(27) 

The integration over 𝒏𝒏 for solvent molecules can be done straightforward by going to spherical 
coordinates, i.e., 

�𝑑𝑑𝒏𝒏 exp�𝑖𝑖𝛽𝛽𝑝𝑝𝒏𝒏 ⋅ (𝓔𝓔∗ − ∇𝜙𝜙∗)� =
1

4𝜋𝜋�
𝑑𝑑𝜃𝜃 sin 𝜃𝜃� 𝑑𝑑𝑑𝑑 exp(𝑖𝑖𝛽𝛽𝑝𝑝 cos𝜃𝜃 |𝓔𝓔∗ − ∇𝜙𝜙∗|)

2𝜋𝜋

0

𝜋𝜋

0

=
sin(𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|)
𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|  

(28) 

where 𝜃𝜃 is the angle between 𝒏𝒏 and 𝑑𝑑 axis, 𝑑𝑑 is the polar angle. 𝑍𝑍gc is rearranged into, 

𝑍𝑍gc = � exp�−𝛽𝛽�𝐻𝐻 + 𝑖𝑖 �𝓔𝓔∗ ⋅ 𝑷𝑷
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙∗𝜌𝜌
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙c∗𝜌𝜌c
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙a∗𝜌𝜌a
𝑟𝑟

− 𝑖𝑖 �𝜙𝜙∗𝜌𝜌ex
𝑟𝑟

��
𝔽𝔽

𝑊𝑊 (29) 

with the series function, 

𝑊𝑊 = ���

1
𝑁𝑁s!𝑁𝑁c!𝑁𝑁a!

�
𝜆𝜆c
𝛬𝛬c3
�exp(𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ + 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙c∗)
𝑟𝑟

�
𝑁𝑁c

�
𝜆𝜆a
𝛬𝛬a3
�exp(−𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ − 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙a∗)
𝑟𝑟

�
𝑁𝑁a
�
𝜆𝜆s
𝛬𝛬s3

sin(𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|)
𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗| �

𝑁𝑁s
𝑁𝑁a𝑁𝑁c𝑁𝑁s

 (30) 

It can be found that 𝑊𝑊 is exactly the series expansion of an exponential function, i.e., 

𝑊𝑊 = exp�
𝜆𝜆c
𝛬𝛬c3
�exp(𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ + 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙c∗)
𝑟𝑟

�exp�
𝜆𝜆a
𝛬𝛬a3
�exp(−𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗

𝑟𝑟

− 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙a∗)� exp�
𝜆𝜆s
𝛬𝛬s3
�

sin(𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|)
𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|𝑟𝑟

� 
(31) 

𝑍𝑍gc is then reformulated as, 

𝑍𝑍gc = � exp�−𝛽𝛽�𝐻𝐻 + 𝑖𝑖 �𝓔𝓔∗ ⋅ 𝑷𝑷
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙∗𝜌𝜌
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙c∗𝜌𝜌c
𝑟𝑟

+ 𝑖𝑖 �𝜙𝜙a∗𝜌𝜌a
𝑟𝑟

− 𝑖𝑖 �𝜙𝜙∗𝜌𝜌ex
𝑟𝑟

− 𝑉𝑉��
𝔽𝔽

 (32) 

with 

𝑉𝑉 =
1
𝛽𝛽�

�
𝜆𝜆c
𝛬𝛬c3

exp(𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ + 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙c∗) +
𝜆𝜆a
𝛬𝛬a3

exp(−𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙∗ − 𝑖𝑖𝛽𝛽𝑒𝑒0𝜙𝜙a∗)
𝑟𝑟

+
𝜆𝜆s
𝛬𝛬s3

sin(𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗|)
𝛽𝛽𝑝𝑝|𝓔𝓔∗ − ∇𝜙𝜙∗| � 

(33) 
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2.4 Saddle-point approximation 

Within the saddle point approximation, the auxiliary fields are purely imaginary, i.e., 𝓔𝓔∗ =
𝑖𝑖𝓔𝓔,𝜙𝜙∗ = 𝑖𝑖𝜙𝜙,𝜙𝜙c∗ = 𝑖𝑖𝜙𝜙c,𝜙𝜙a∗ = 𝑖𝑖𝜙𝜙a , with 𝓔𝓔,𝜙𝜙,𝜙𝜙c,𝜙𝜙a  being real-valued quantities [50]. In this 
scenario, the fluctuations around the average are completely omitted, which can be treated using 
the one-loop expansion as in our previous work [62], and the grand partition function is 
approximated as, 

𝑍𝑍gc ≈ exp�−𝛽𝛽�𝐻𝐻 −�𝓔𝓔 ⋅ 𝑷𝑷
𝑟𝑟

−�𝜙𝜙𝜌𝜌
𝑟𝑟

−�𝜙𝜙a𝜌𝜌a
𝑟𝑟

− �𝜙𝜙c𝜌𝜌c
𝑟𝑟

+�𝜙𝜙𝜌𝜌ex
𝑟𝑟

− 𝑉𝑉�� (34) 

with 

𝑉𝑉 =
1
𝛽𝛽�

�
𝜆𝜆c
𝛬𝛬c3

exp(−𝛽𝛽𝑒𝑒0𝜙𝜙 − 𝛽𝛽𝑒𝑒0𝜙𝜙c) +
𝜆𝜆a
𝛬𝛬a3

exp(𝛽𝛽𝑒𝑒0𝜙𝜙 + 𝛽𝛽𝑒𝑒0𝜙𝜙a) +
𝜆𝜆s
𝛬𝛬s3

sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)
𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙| �

𝑟𝑟
 (35) 

where we use the identity, sin(𝑖𝑖𝑑𝑑) = 𝑖𝑖 sinh𝑑𝑑. Here, an integration constant should be present in 
Eq. 34; however, it does not affect the results, and thus, we omit it hereinafter. The grand potential 
of the classical part 𝛺𝛺C can be obtained by its definition, 

𝛺𝛺C = −
1
𝛽𝛽

log𝑍𝑍gc = 𝐻𝐻 −�𝓔𝓔 ⋅ 𝑷𝑷
𝑟𝑟

− �𝜙𝜙𝜌𝜌
𝑟𝑟

− �𝜙𝜙a𝜌𝜌a
𝑟𝑟

−�𝜙𝜙c𝜌𝜌c
𝑟𝑟

+ �𝜙𝜙𝜌𝜌ex
𝑟𝑟

− 𝑉𝑉 (36) 

To obtain 𝐹𝐹ℂ, we perform a Legendre transformation to convert the grand potential back to the 
Helmholtz free energy, i.e., 

𝐹𝐹ℂ = 𝛺𝛺C + � �𝑛𝑛𝑖𝑖𝜇𝜇�𝑖𝑖𝑐𝑐
𝑟𝑟𝑖𝑖=a,c,s

 (37) 

where 𝜇𝜇�𝑖𝑖𝑐𝑐 is the electrochemical potential of the electrolyte component 𝑖𝑖 in the classical part. The 

difference between 𝜇𝜇�𝑖𝑖𝑐𝑐 and 𝜇𝜇�𝑖𝑖 in Eq. 1 should be noted. The latter also accounts for short-range 

interactions between electrolyte component 𝑖𝑖 and the metal. The variables 𝜌𝜌a and 𝜌𝜌c in Eq. 36 are 
the charge densities of anions and cations. They are given by 𝜌𝜌a = −𝑒𝑒0𝑛𝑛a and 𝜌𝜌c = 𝑒𝑒0𝑛𝑛c. With the 

definition of particle number 𝑁𝑁𝑖𝑖 = ∫ 𝑛𝑛𝑖𝑖𝑟𝑟 = −𝜕𝜕𝛺𝛺c
𝜕𝜕𝜇𝜇�𝑖𝑖

𝑐𝑐, we have, 

𝜇𝜇�c𝑐𝑐 =
1
𝛽𝛽

log(𝑛𝑛c𝛬𝛬c3) + 𝑒𝑒0(𝜙𝜙 + 𝜙𝜙c) (38) 

𝜇𝜇�a𝑐𝑐 =
1
𝛽𝛽

log(𝑛𝑛a𝛬𝛬a3)− 𝑒𝑒0(𝜙𝜙 + 𝜙𝜙a) (39) 

𝜇𝜇�s𝑐𝑐 =
1
𝛽𝛽

log(𝑛𝑛s𝛬𝛬s3)−
1
𝛽𝛽

log
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|  
(40) 

When the classical system reaches the equilibrium, 𝛺𝛺C reaches its extremal value. At equilibrium, 
𝛿𝛿𝛺𝛺C
𝛿𝛿𝜌𝜌c

= 𝛿𝛿𝛺𝛺C
𝛿𝛿𝜌𝜌a

= 0, which gives 
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𝜙𝜙c = 𝛼𝛼c∇ ⋅ 𝑷𝑷,𝜙𝜙a = 𝛼𝛼a∇ ⋅ 𝑷𝑷 (41) 

Substituting Eq. 36 and Eq. 38-40 into Eq. 37, we obtain, 

𝐹𝐹ℂ =
1
2�

𝜌𝜌(𝑟𝑟)𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′)
𝑟𝑟𝑟𝑟′

+
1

2𝜖𝜖0
��𝐾𝐾s𝑷𝑷2 +𝐾𝐾𝛼𝛼(∇ ⋅ 𝑷𝑷)2 + 𝐾𝐾𝛽𝛽(∇2𝑷𝑷)2�
𝑟𝑟

− �𝓔𝓔 ⋅ 𝑷𝑷
𝑟𝑟

− �𝜙𝜙𝜌𝜌
𝑟𝑟

+ �𝜙𝜙𝜌𝜌ex
𝑟𝑟

+ �𝑛𝑛c𝑒𝑒0(𝜙𝜙 + 𝛼𝛼c∇ ⋅ 𝑷𝑷) −�𝑛𝑛a𝑒𝑒0(𝜙𝜙 + 𝛼𝛼a∇ ⋅ 𝑷𝑷)
𝑟𝑟𝑟𝑟

− �
𝑛𝑛s
𝛽𝛽

log
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|𝑟𝑟
+ � �

1
𝛽𝛽
�𝑛𝑛𝑖𝑖 log�𝑛𝑛𝑖𝑖𝛬𝛬𝑖𝑖3� − 𝑛𝑛𝑖𝑖�

𝑟𝑟𝑖𝑖=a,c,s

 

(42) 

To account for excluded volume effects, which distinguish the real system from the ideal gas 
system, a so-called volumetric excess free energy 𝛷𝛷ex({𝑛𝑛𝑖𝑖}) is added into the Helmholtz free 
energy density 𝑓𝑓ℂ, defined as the kernel of the free energy functional 𝐹𝐹ℂ = ∫ 𝑓𝑓ℂ𝑟𝑟 . Budkov [63] and 

Lue et al. [64] attempted to incorporate excluded volume effects self-consistently into the grand 
partition function of the system. The derivative of the volumetric excess free energy is defined as 
the excess chemical potential, which is expressed in the Bikerman model as [65], 

𝜇𝜇𝑖𝑖ex =
𝜕𝜕𝛷𝛷ex
𝜕𝜕𝑛𝑛𝑖𝑖

=
1
𝛽𝛽

log
1

1 − ∑ 𝑛𝑛𝑖𝑖𝛾𝛾𝑖𝑖𝛬𝛬𝐵𝐵3𝑖𝑖=a,c,s
 (43) 

where 𝛬𝛬B is the characteristic length of referenced lattice, and the maximum number density of 

referenced lattices is 𝑛𝑛max = 𝛬𝛬B−3 . 𝛾𝛾𝑖𝑖 = �𝑑𝑑𝑖𝑖
3

𝛬𝛬B3
�  is the relative size of electrolyte component 

𝑖𝑖 referenced to the size of lattice. 𝑑𝑑𝑖𝑖 is the characteristic length of electrolyte component 𝑖𝑖. Then 𝑓𝑓ℂ 
has the form 

𝑓𝑓ℂ =
1
2
𝜌𝜌(𝑟𝑟)𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) +

1
2𝜖𝜖0

�𝐾𝐾s𝑷𝑷2 +𝐾𝐾𝛼𝛼(∇ ⋅ 𝑷𝑷)2 + 𝐾𝐾𝛽𝛽(∇2𝑷𝑷)2� − 𝓔𝓔 ⋅ 𝑷𝑷 − 𝜙𝜙𝜌𝜌 + 𝜙𝜙𝜌𝜌ex

+ 𝑛𝑛c𝑒𝑒0(𝜙𝜙 + 𝛼𝛼c∇ ⋅ 𝑷𝑷) − 𝑛𝑛a𝑒𝑒0(𝜙𝜙 + 𝛼𝛼a∇ ⋅ 𝑷𝑷) −
𝑛𝑛s
𝛽𝛽

log
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|

+ �
1
𝛽𝛽
�𝑛𝑛𝑖𝑖 log�𝑛𝑛𝑖𝑖𝛬𝛬𝑖𝑖3� − 𝑛𝑛𝑖𝑖�

𝑖𝑖=a,c,s

+𝛷𝛷ex 

(44) 

As for short-range interactions between electrolyte component 𝑖𝑖  and the metal, we use the 
repulsive part of the Morse potential 𝑤𝑤𝑖𝑖 to prevent electrolyte particles from penetrating into the 
metal, i.e., 

𝐹𝐹⨂ = � �𝑛𝑛𝑖𝑖𝑤𝑤𝑖𝑖
𝑟𝑟𝑖𝑖=a,c,s

 (45) 

with 

𝑤𝑤𝑖𝑖 = 𝐷𝐷𝑖𝑖 exp�−2𝛽𝛽𝑖𝑖(𝑑𝑑 − 𝑑𝑑𝑖𝑖)� (46) 

Here, 𝐷𝐷𝑖𝑖  represents the depth of the Morse potential well, 𝛽𝛽𝑖𝑖  is the coefficient controlling the 
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width of the potential well, and 𝑑𝑑,𝑑𝑑𝑖𝑖 denote the distances from the position and the equilibrium 
position of electrolyte particle 𝑖𝑖 to the metal surface, respectively. 

2.5 Variational analysis 

Combining the above sections, the grand potential density 𝑔𝑔, which is the kernel of the grand 
potential functional, i.e., 𝛺𝛺 = ∫ 𝑔𝑔𝑟𝑟 , is formulated as 

𝑔𝑔 = 𝑒𝑒au𝑎𝑎0−3𝑡𝑡TF(1 + 𝜃𝜃T𝑠𝑠2) + 𝑒𝑒au𝑎𝑎0−3𝑢𝑢X0(1 + 𝜃𝜃X𝑠𝑠2) + 𝑒𝑒au𝑎𝑎0−3(𝑢𝑢C0 + (𝑛𝑛e𝑎𝑎03)𝜃𝜃C𝑡𝑡2)

+
1
2
𝜌𝜌(𝑟𝑟)𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′) +

1
2𝜖𝜖0

�𝐾𝐾s𝑷𝑷2 +𝐾𝐾𝛼𝛼(∇ ⋅ 𝑷𝑷)2 + 𝐾𝐾𝛽𝛽(∇2𝑷𝑷)2� − 𝓔𝓔 ⋅ 𝑷𝑷

− 𝜙𝜙𝜌𝜌 + 𝜙𝜙𝜌𝜌ex + 𝑛𝑛c𝑒𝑒0(𝜙𝜙 + 𝛼𝛼c∇ ⋅ 𝑷𝑷) − 𝑛𝑛a𝑒𝑒0(𝜙𝜙 + 𝛼𝛼a∇ ⋅ 𝑷𝑷)

−
𝑛𝑛s
𝛽𝛽

log
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙| + �
1
𝛽𝛽
�𝑛𝑛𝑖𝑖 log�𝑛𝑛𝑖𝑖𝛬𝛬𝑖𝑖3� − 𝑛𝑛𝑖𝑖�

𝑖𝑖=a,c,s

+ 𝛷𝛷ex

+ � 𝑛𝑛𝑖𝑖𝑤𝑤𝑖𝑖
𝑖𝑖=a,c,s

− �𝑛𝑛e𝜇𝜇�e + � 𝑛𝑛𝑖𝑖𝜇𝜇�𝑖𝑖
𝑖𝑖=a,c,s

� 

(47) 

where 𝑔𝑔  and 𝛺𝛺  are the functional of the field variables 𝜌𝜌,𝜙𝜙,𝓔𝓔,𝑷𝑷 and particle number density 
𝑛𝑛e,𝑛𝑛c,𝑛𝑛a,𝑛𝑛s. The grand potential has its minimum under equilibrium, where its variation with 
respect to the field variables and particle number density will be zero, i.e., 

𝛿𝛿𝛺𝛺
𝛿𝛿𝛿𝛿

= 0 (𝛿𝛿 = 𝜌𝜌,𝜙𝜙,𝓔𝓔,𝑷𝑷,𝑛𝑛e,𝑛𝑛c,𝑛𝑛a,𝑛𝑛s) (48) 

For 𝛿𝛿 = 𝑛𝑛e, Eq. 48 transforms into an Euler-Lagrange equation for 𝑛𝑛e, i.e.,  

𝜕𝜕𝑔𝑔
𝜕𝜕𝑛𝑛e

− ∇ �
𝜕𝜕𝑓𝑓

𝜕𝜕(∇𝑛𝑛e)� = 0 (49) 

which gives, 

∇�∇�𝑛𝑛�e =
20
3
𝑛𝑛�e

𝑑𝑑
(𝜃𝜃T𝑑𝑑 − 𝜃𝜃XC)�

𝜕𝜕𝑡𝑡TF
𝜕𝜕𝑛𝑛�e

+
𝜕𝜕𝑢𝑢X0

𝜕𝜕𝑛𝑛�e
+
𝜕𝜕𝑢𝑢C0

𝜕𝜕𝑛𝑛�e
−

(𝜇𝜇�e + 𝑒𝑒0𝜙𝜙)
𝑒𝑒au

�

+
�𝜃𝜃T𝑑𝑑 − 4

3𝜃𝜃XC�
2𝑛𝑛�e(𝜃𝜃T𝑑𝑑 − 𝜃𝜃XC)

(∇�𝑛𝑛�e)2 

(50) 

with dimensionless electron density 𝑛𝑛�e = 𝑛𝑛e𝑎𝑎03, dimensionless gradient operator ∇�= 𝑎𝑎0∇, 𝑑𝑑 =
2
5

(3𝜋𝜋5)
1
3(𝑛𝑛�e)

1
3, the constant 𝜃𝜃XC = 𝜃𝜃X −

𝜋𝜋2

3
𝜃𝜃C. A detailed derivation was given in Ref. [54]. 

For 𝛿𝛿 = 𝜌𝜌, Eq. 48 leads to, 

𝜙𝜙 = � 𝐺𝐺(𝑟𝑟, 𝑟𝑟′)𝜌𝜌(𝑟𝑟′)
𝑟𝑟′

= �
𝜌𝜌(𝑟𝑟′)

4𝜋𝜋𝜖𝜖∞|𝑟𝑟 − 𝑟𝑟′|𝑟𝑟′
 (51) 

i.e., the electric potential. Inversely, we have, 
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𝜌𝜌 = −∇(𝜖𝜖∞∇𝜙𝜙) (52) 

where 𝜖𝜖∞ varies spatially in the metal-solution interfacial region.  

For 𝛿𝛿 = 𝓔𝓔, Eq. 48 is transformed to the constitutive relation, 

𝑷𝑷 = −
𝑝𝑝𝑛𝑛𝑠𝑠ℒ(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

|𝓔𝓔 − ∇𝜙𝜙|
(𝓔𝓔 − ∇𝜙𝜙) (53) 

where ℒ(𝑢𝑢) = coth𝑢𝑢 − 1
𝑢𝑢

= 𝜕𝜕 log(sinh𝑢𝑢/𝑢𝑢)
𝜕𝜕𝑢𝑢

 is the Langevin function. 

For 𝛿𝛿 = 𝜙𝜙, Eq. 48 gives 

𝜕𝜕𝑔𝑔
𝜕𝜕𝜙𝜙

− ∇�
𝜕𝜕𝑔𝑔

𝜕𝜕(∇𝜙𝜙)� = 0 (54) 

which combined with Eq. 52 and 53 gives the modified Poisson-Boltzmann equation, 

∇ ⋅ (𝜖𝜖∞∇𝜙𝜙 + 𝑷𝑷) = −(𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑎𝑎)𝑒𝑒0 − 𝜌𝜌ex (55) 

with external charge density 𝜌𝜌ex = (𝑛𝑛cc − 𝑛𝑛e)𝑒𝑒0 . 𝑛𝑛cc  is the background charge density 
contributed by metal cationic cores.  

For 𝛿𝛿 = 𝑷𝑷, Eq. 48 is transformed to, 

𝜕𝜕𝑔𝑔
𝜕𝜕𝑷𝑷

− ∇�
𝜕𝜕𝑔𝑔

𝜕𝜕(∇ ⋅ 𝑷𝑷)� + ∇2 �
𝜕𝜕𝑔𝑔
𝜕𝜕∇2𝑷𝑷

� = 0 (56) 

which gives, 

𝜖𝜖0−1�𝐾𝐾s𝑷𝑷 − 𝐾𝐾𝛼𝛼∇2𝑷𝑷+ 𝐾𝐾𝛽𝛽∇4𝑷𝑷� − 𝛼𝛼c𝑒𝑒0∇𝑛𝑛c + 𝛼𝛼a𝑒𝑒0∇𝑛𝑛a = 𝓔𝓔 (57) 

For 𝛿𝛿 = 𝑛𝑛c,𝑛𝑛a,𝑛𝑛s, Eq. 48 gives the electrochemical potentials of ions and solvent, 

𝜇𝜇�c =
1
𝛽𝛽

log
𝑛𝑛c𝛬𝛬c3

1 − ∑ 𝑛𝑛𝑖𝑖𝛾𝛾𝑖𝑖𝛬𝛬B3𝑖𝑖
+ 𝑒𝑒0(𝜙𝜙 + 𝛼𝛼c∇ ⋅ 𝑷𝑷) + 𝑤𝑤c (58) 

𝜇𝜇�a =
1
𝛽𝛽

log
𝑛𝑛a𝛬𝛬a3

1 − ∑ 𝑛𝑛𝑖𝑖𝛾𝛾𝑖𝑖𝛬𝛬B3𝑖𝑖
− 𝑒𝑒0(𝜙𝜙 + 𝛼𝛼a∇ ⋅ 𝑷𝑷) +𝑤𝑤a 

(59) 

𝜇𝜇�s =
1
𝛽𝛽

log
𝑛𝑛s𝛬𝛬s3

1 − ∑ 𝑛𝑛𝑖𝑖𝛾𝛾𝑖𝑖𝛬𝛬B3𝑖𝑖
−

1
𝛽𝛽

log
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙| + 𝑤𝑤s 
(60) 

which leads to the distributions of electrolyte component 𝑖𝑖, 

𝑛𝑛𝑖𝑖 = 𝑛𝑛max
𝜒𝜒𝑖𝑖𝛩𝛩𝑖𝑖

1 + ∑ 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖(𝛩𝛩𝑖𝑖 − 1)𝑖𝑖
 (61) 

with thermodynamic factors 𝛩𝛩𝑖𝑖 
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𝛩𝛩c = exp(−𝛽𝛽𝑒𝑒0(𝜙𝜙 + 𝛼𝛼c∇ ⋅ 𝑷𝑷) − 𝛽𝛽𝑤𝑤c) (62) 

𝛩𝛩a = exp(𝛽𝛽𝑒𝑒0(𝜙𝜙 + 𝛼𝛼a∇ ⋅ 𝑷𝑷) − 𝛽𝛽𝑤𝑤a) (63) 

𝛩𝛩s =
sinh(𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙|)

𝛽𝛽𝑝𝑝|𝓔𝓔 − ∇𝜙𝜙| exp(−𝛽𝛽𝑤𝑤s) 
(64) 

where 𝜒𝜒𝑖𝑖 = 𝑛𝑛𝑖𝑖
b

𝑛𝑛max
, and 𝑛𝑛𝑖𝑖b is the bulk number density of electrolyte component 𝑖𝑖.  

We can comprehend the physical significance of the introduced auxiliary fields from Eq. 62-64. 
𝜙𝜙c = 𝛼𝛼c∇ ⋅ 𝑷𝑷  and 𝜙𝜙a = 𝛼𝛼a∇ ⋅ 𝑷𝑷  represent the impact of short-range correlations with solvent 
molecules on ionic distributions. 𝓔𝓔  represents the impact of short-range correlations among 
solvent molecules and between ions and solvent molecules on the solvent distribution. 

Considering the possible presence of vacancies number density 𝑛𝑛v𝑏𝑏  in bulk solution, we have 

∑ 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖𝑖𝑖 + 𝜒𝜒v = 1 with 𝜒𝜒v = 𝑛𝑛vb/𝑛𝑛max. Eq. 61 then becomes, 

𝑛𝑛𝑖𝑖 = 𝑛𝑛max
𝜒𝜒𝑖𝑖𝛩𝛩𝑖𝑖

𝜒𝜒v + ∑ 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖𝛩𝛩𝑖𝑖𝑖𝑖
 (65) 

where 𝑛𝑛max = 𝛬𝛬B−3 = �∑ 𝑛𝑛𝑖𝑖b𝛾𝛾𝑖𝑖𝑖𝑖 �/(1− 𝜒𝜒v). Substituting Eq. 65 into Eq. 55 and Eq. 57 results in a 

second-order ordinary differential equation (ODE) in 𝜙𝜙, a fourth-order ODE in 𝑷𝑷, respectively. 
Combined, Eq. 50, 55, 57 constitute a closed set of equations that can be solved for the 
distributions of electron density, electric field, and polarization field in the EDL. 

2.6 Boundary conditions 

We consider a metal-solution interface. The boundary conditions (BCs) in solution bulk, i.e., the 
right boundary conditions (RBCs), are, 

𝑛𝑛𝑒𝑒 = 0,𝜙𝜙 = 0,𝑷𝑷 = 0,∇2𝑷𝑷 = 0 (66) 

where the first identity reflects the fact that metal electrons are absent in solution bulk, the second 
identity corresponds to defining the electric potential in solution bulk as the potential reference, 
the third identity means that solvent molecules are distributed homogenously and orientated 
isotropically in solution bulk. The fourth identity serves as an additional boundary condition 
required for solving the fourth-order ODE of the polarization field. Here we choose the second-
order gradient of the polarization field to be zero, as a consequence of zero polarization charge in 
the solution bulk. This imposes an RBC for the variable introduced below for the reduction of the 
fourth-order ODE in 𝑷𝑷. 

The BCs in metal bulk, i.e., the left boundary conditions (LBCs), are, 

∇𝑛𝑛𝑒𝑒 = 0,∇𝜙𝜙 = 0,𝑷𝑷 = 0,∇2𝑷𝑷 = 0 (67) 

In the simplest scenario, the metal cationic cores are treated as a uniform background of positive 
charge density. In this case, the first and second equations imply that electron density and electric 
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potential remain constant in the metal bulk, viz., at distances far from the metal surface. The 

distance to the left boundary from the metal surface should be large enough, say >10 Å, to ensure 
accessibility to the metal bulk. For the case where size and arrangement of metal cationic cores are 
explicitly considered, we can take the left boundary at the central plane of metal cationic cores. 
The third identity reflects the absence of solvent molecules in the metal phase. The fourth identity 
is obvious. 

In this model, constant-potential conditions are implemented by varying the electrochemical 
potential 𝜇𝜇�e  in Eq. 50 [66]. The electrochemical potential of metal electrons is related to the 
chemical potential 𝜇𝜇e, and the inner potential of the metal, 𝜙𝜙M, by, 

𝜇𝜇�e = −𝑒𝑒0𝜙𝜙M + 𝜇𝜇e (68) 

Eq. 52 represents a nonlinear relation that coupling the auxiliary field 𝓔𝓔 with the polarization field 
𝑷𝑷 and the electric field −∇𝜙𝜙. In numerical implementations, it can be treated as a zeroth order 
differential equation in 𝓔𝓔. In the absence of solvent molecules in the metal bulk, 𝓔𝓔 equals zero, 
while in the solution bulk, 𝓔𝓔 also equals zero due to isotropic short-range interactions. 

2.7 Numerical implementation 

In this work, differential equations are solved in the one-dimensional case with the coordinate 𝑑𝑑. 
In 1D, 𝑷𝑷 and 𝓔𝓔 can be treated as scalar quantities 𝑃𝑃,ℰ, with positive values indicating that the 
fields are directed towards the solution bulk. We define dimensionless variables, marked with an 
overbar, as follows, 

𝑛𝑛�𝑖𝑖 = 𝑎𝑎03𝑛𝑛𝑖𝑖 , �̅�𝑑 =
𝑑𝑑
𝑎𝑎0

,𝜙𝜙� =
𝑒𝑒0𝜙𝜙
𝑘𝑘𝐵𝐵𝑇𝑇

, �̅�𝑝 =
𝑝𝑝

𝑒𝑒0𝑎𝑎0
, 𝜖𝜖∞̅ =

𝜖𝜖∞
𝜖𝜖0

,𝑃𝑃� =
𝜅𝜅𝑎𝑎02𝑃𝑃
𝑒𝑒0

,ℰ̅ =
𝑒𝑒0𝑎𝑎0ℰ̅
𝑘𝑘𝐵𝐵𝑇𝑇

,𝐾𝐾�𝛼𝛼 =
𝐾𝐾𝛼𝛼
𝑎𝑎02

,𝐾𝐾�𝛽𝛽

=
𝐾𝐾𝛽𝛽
𝑎𝑎04

,𝛼𝛼�𝑖𝑖 =
𝜖𝜖0𝛼𝛼𝑖𝑖
𝑎𝑎02

, �̅�𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑎𝑎0 
(69) 

where 𝜅𝜅 = 𝑒𝑒02

𝑘𝑘B𝑇𝑇𝑎𝑎0𝜖𝜖0
 is a constant. The modified Poisson-Boltzmann equation in Eq. 53 is rewritten 

in dimensionless variables as, 

∇�(𝜖𝜖∞̅∇�𝜙𝜙� + 𝑃𝑃�) = −𝜅𝜅(𝑛𝑛�cc − 𝑛𝑛�e + 𝑛𝑛�c − 𝑛𝑛�a) (70) 

where the dimensionless number density of ions and solvent molecules are given as, 

𝑛𝑛�𝑖𝑖 = 𝑛𝑛�max
𝜒𝜒𝑖𝑖𝛩𝛩𝑖𝑖

𝜒𝜒v + ∑ 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖𝛩𝛩𝑖𝑖𝑖𝑖=a,c,s
 (71) 

with 𝛩𝛩𝑖𝑖 expressed in dimensionless variables, 

𝛩𝛩c = exp(−𝜙𝜙� − 𝛼𝛼�c∇�𝑃𝑃� − 𝛽𝛽𝑤𝑤c) (72) 

𝛩𝛩a = exp(𝜙𝜙� + 𝛼𝛼�a∇�𝑃𝑃� − 𝛽𝛽𝑤𝑤a) (73) 

https://doi.org/10.26434/chemrxiv-2024-c5dvr ORCID: https://orcid.org/0009-0000-6894-4145 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-c5dvr
https://orcid.org/0009-0000-6894-4145
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

 

𝛩𝛩s =
sinh��̅�𝑝�ℰ̅ − ∇�𝜙𝜙���

�̅�𝑝�ℰ̅ − ∇�𝜙𝜙��
exp(−𝛽𝛽𝑤𝑤s) 

(74) 

By introducing the second-order derivative field 𝑸𝑸 = ∇2𝑷𝑷 , the fourth-order ODE Eq. 57 is 
transformed to two second-order ODEs in 𝑸𝑸 and in 𝑷𝑷, respectively. In their dimensionless 1D 
form, they are written as, 

𝐾𝐾s𝑃𝑃� − 𝐾𝐾�𝛼𝛼𝑄𝑄� + 𝐾𝐾�𝛽𝛽∇�2𝑄𝑄� − 𝜅𝜅𝛼𝛼�c𝛻𝛻�𝑛𝑛�c + 𝜅𝜅𝛼𝛼�a∇�𝑛𝑛�a = ℰ̅ (75) 

∇�2𝑃𝑃� = 𝑄𝑄� (76) 

where 𝑄𝑄� = (𝜅𝜅𝑎𝑎04/𝑒𝑒0)𝑄𝑄 is the dimensionless derivative field. Eq. 66 and 67 impose the boundary 

conditions 𝑄𝑄� = 0 at both the left boundary and right boundary for Eq. 75. The constitutive relation 
Eq. 53 can be rewritten in dimensionless variables as, 

𝑃𝑃� = −
𝜅𝜅�̅�𝑝𝑛𝑛�sℒ��̅�𝑝�ℰ̅ − ∇�𝜙𝜙���

�ℰ̅ − ∇�𝜙𝜙��
(ℰ̅ − ∇�𝜙𝜙�) (77) 

We substitute 𝜓𝜓 = (𝑛𝑛�e)
1
3 to get rid of fractional exponents of 𝑛𝑛�e [54]. In this scheme, Eq. 50 can 

then be rewritten as, 

∇�∇�𝜓𝜓 +
𝜃𝜃T𝑑𝑑

2(𝜃𝜃T𝑑𝑑 − 𝜃𝜃XC)𝜓𝜓
(∇�𝜓𝜓)2 =

20
9
𝜓𝜓

𝑑𝑑
(𝜃𝜃T𝑑𝑑 − 𝜃𝜃XC)�

𝜕𝜕𝑡𝑡TF0

𝜕𝜕𝑛𝑛�e
+
𝜕𝜕𝑢𝑢X0

𝜕𝜕𝑛𝑛�e
+
𝜕𝜕𝑢𝑢C0

𝜕𝜕𝑛𝑛�e
−

(𝜇𝜇�e + 𝑒𝑒𝜙𝜙)
𝑒𝑒au

� (78) 

Eq. 70, and 75-78 are solved in COMSOL. Technical details on the numerical implementation are 
provided in Supporting Information (SI). 

3. Results and discussions 

3.1 Model parameterization and calibration 

The model parameters used in the base case are listed in Tables 1 to 4, respectively. Most 
parameters are adapted from the literature, with the remaining parameters calibrated by fitting the 
experimental double-layer capacitance at the Ag(110)-KPF6 aqueous interface [18]. Specific 
adsorption of ions is very weak at this interface, eliminating the need for considering specific 
adsorption, which were treated with the Newns-Anderson Hamiltonian in a previous work [67]. 

Table 1. General parameters of the base case 

Symbol Item Value 

𝑘𝑘B Boltzmann constant 1.38 × 10−23 J ⋅ K−1 

𝑇𝑇 temperature 298 K 

𝑒𝑒0 elementary charge 1.6 × 10−19 C 

𝑎𝑎0 Bohr radius 5.29 × 10−11 m 

𝜖𝜖0 vacuum permittivity 8.85 × 10−12 F ⋅ m−1 
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𝑁𝑁A Avogadro constant 6.02 × 1023 mol−1 

𝑒𝑒au energy constant from a.u. to SI 𝑒𝑒02/(4𝜋𝜋𝜖𝜖0𝑎𝑎0) 

𝜅𝜅 dimensionless constant 𝑒𝑒02/(𝑘𝑘B𝑇𝑇𝜖𝜖0𝑎𝑎0) 

 

Metal cationic cores are described in the simplest case using a uniform background with a 
dimensionless positive charge density 𝑛𝑛�cc0 , namely, 

𝑛𝑛�cc = 𝑛𝑛�cc0 𝜃𝜃(�̅�𝑑M − �̅�𝑑) (79) 

where 𝜃𝜃(𝑑𝑑) is the Heaviside step function, with �̅�𝑑M denoting the dimensionless position of the 

metal surface, and 𝑛𝑛cc0 = 4𝑁𝑁Ag �
𝑎𝑎0
𝑎𝑎Ag

�
3

= 0.408  with 𝑁𝑁Ag = 47  representing the number of 

electrons of a silver atom. Moreover, 𝑎𝑎Ag = 4.08 Å is the length of the cubic closed-packed cell of 

Ag, which contains four silver atoms. We consider all electrons, and we use the vacuum 
permittivity 𝜖𝜖0 as the high-frequency dielectric permittivity in the metal bulk, implying 𝜖𝜖∞̅,M = 1. 

We use the PBE functional with 𝜃𝜃X = 0.1235 and 𝜃𝜃C = 0.046 [59]. The only free parameter in 
electronic functionals is the coefficient in the kinetic energy, 𝜃𝜃T, which is calibrated according to 
the experimental potential of zero charge. This is a simplified treatment that lumps interactions 
between electrons in different orbitals into a single parameter 𝜃𝜃T. However, this simple treatment 
is sufficient for our purpose because there is no formation or cleavage of chemical bonds at this 
interface. 

Table 2. Metal parameters of the base case 

Symbol Item Value 

𝑎𝑎1 coefficient in the PBE functional 0.0310907 

𝑎𝑎2 coefficient in the PBE functional 0.2137 

𝑎𝑎3 coefficient in the PBE functional 7.5957 

𝑎𝑎4 coefficient in the PBE functional 3.5876 

𝑎𝑎5 coefficient in the PBE functional 1.6382 

𝑎𝑎6 coefficient in the PBE functional 0.49294 

𝜃𝜃X gradient coefficient in the exchange functional 0.1235 

𝜃𝜃C gradient coefficient in the correlation functional 0.046 

𝜃𝜃T gradient coefficient in the kinetic energy functional 1.663 

𝜖𝜖∞,M high-frequency dielectric permittivity in the metal bulk 𝜖𝜖0 

𝑛𝑛�cc0  dimensionless charge density of metal cationic cores 0.408 

 

On the solution side, we use 𝑅𝑅sol = 2.75 Å as the diameter of water molecules [68], which is 
taken as the reference size, i.e., 𝛬𝛬B = 𝑅𝑅sol. For K+ cations, its solvation shell comprises first-layer 
water molecules that are tightly bound and outer water molecules that are loosely bound. 
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Therefore, we consider the cation with its first solvation shell as a whole, and introduce 𝛼𝛼c to 
account for the short-range interactions between the solvated cation and outer water molecules. 
Molecular dynamics (MD) simulations have determined the distance between K+ and the oxygen 

in its first solvation shell to be within the range of 2.6− 3.6 Å [69], and we use the upper limit, 

3.6 Å, as the radius of solvated cations. PF6− anions bind surrounding water molecules weaker than 
the cations. Hence, the radius of anions correspond to bare anions, and we introduce 𝛼𝛼a to describe 
the short-range interactions between the bare anions and the solvating water molecules. The radius 

of a solvated PF6− is determined to be within 4− 6 Å [70], and we use an effective radius of PF6− 
to be around 2.7 Å by subtracting the water diameter. The fraction of vacancy lattice sites in the 

solution bulk is then calculated as 𝜒𝜒v = 1 − 𝛬𝛬B3 ∑ 𝑛𝑛𝑖𝑖b𝛾𝛾𝑖𝑖𝑖𝑖 , with 𝑛𝑛sb = 55.6 mol ⋅ m−3.  

Under quasi-static conditions, when the frequency of the electric field tends to zero, the 
polarization field responds linearly to the electric field. This implies that in Eq. 52, 𝓔𝓔 is linear with 
𝑷𝑷. The linear relationship is given by Eq. 56, 𝓔𝓔 = 𝜖𝜖0−1𝐾𝐾s𝑷𝑷. Substituting this relationship into Eq. 

53 and taking the case into the solution bulk, we obtain the static dielectric permittivity 𝜖𝜖s in the 
solution bulk, 

𝜖𝜖s = 𝜖𝜖∞,S +
𝛽𝛽𝑝𝑝2𝑛𝑛sb

3𝜖𝜖0 + 𝛽𝛽𝑝𝑝2𝑛𝑛sb𝐾𝐾s
𝜖𝜖0 (80) 

where 𝑝𝑝, 𝜖𝜖∞,S and 𝐾𝐾s describe the contribution of low-frequency orientational polarization, high-

frequency polarization, and short-range correlations of solvent molecules to the static dielectric 
permittivity, respectively. 𝜖𝜖∞,S  and 𝜖𝜖s  are 4.5 and 78.5, respectively, based on the dielectric 

dispersion spectrum of water [71]. Setting 𝐾𝐾s to zero in Eq. 80, we obtain an effective dipole 

moment �3�𝜖𝜖s−𝜖𝜖∞,S�
𝛽𝛽𝑛𝑛sb

 as 4.66 Debye, into which the short-range correlation effects of solvent 

molecules have been incorporated. The continuous transition of the high-frequency dielectric 
constant at the metal surface is described as [54], 

𝜖𝜖∞̅(�̅�𝑑) = 𝜖𝜖∞̅,M +
𝜖𝜖∞̅,S − 𝜖𝜖∞̅,M

2 �1 − erf �−�̅�𝛽∞(�̅�𝑑 − �̅�𝑑M)�� (81) 

with the error function erf(�̅�𝑑). �̅�𝛽∞  is a dimensionless coefficient controlling the width of the 
transition region, and we use the value of 1 inherited from Ref. [54]. In principle, the coefficients 
𝐾𝐾𝛼𝛼 and 𝐾𝐾𝛽𝛽  can be obtained by fitting the response function of the static longitudinal dielectric 

property to spatial dielectric dispersion spectrum of water as in Refs. [39,48]. The fundamental 
formalism of the dielectric response function and its comparison to experimental and simulated 
results will be addressed in future works. Here, 𝐾𝐾𝛼𝛼 ,𝐾𝐾𝛽𝛽, together with 𝛼𝛼c,𝛼𝛼a, are determined by 

calibrating with experimental 𝐶𝐶dl data. As shown in Table 3, the calibrated 𝛼𝛼c and 𝛼𝛼a are negative 
values, suggesting that short-range correlations between ions and solvent molecules make the 
solvation energies less negative. In other words, negative 𝛼𝛼c  and 𝛼𝛼a  mean that the solvation 
energies are overestimated on the mean-field level. We note that the solvation energy predicted by 
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Born model, based on the mean-field electrostatic interactions, is more negative than the 
experimental value especially for small ions. Another reason for this discrepancy is that spatial 
correlations between solvent molecules reduce the effective dielectric permittivity in regions 
within characteristic correlation distances from the ion, known as dielectric saturation [72], which 
is also considered in our present model.  

Table 3. Solution parameters of the base case 

Symbol Item Value 

𝑐𝑐sb bulk solvent concentration 55600 mol ⋅ m−3 

𝑟𝑟c radius of solvated cations 3.6 Å 

𝑟𝑟a radius of bare anions 2.7 Å 

𝑅𝑅sol diameter of solvent molecules 2.75 Å 

𝜖𝜖∞,S high-frequency dielectric permittivity in the solution bulk 4.53 𝜖𝜖0 

𝜖𝜖s static dielectric permittivity of solution bulk 78.5 𝜖𝜖0 

𝐾𝐾𝛼𝛼 
coefficient in the short-interaction functional of solvent 
molecules 

−0.35 𝑎𝑎02 

𝐾𝐾𝛽𝛽 
coefficient in the short-interaction functional of solvent 
molecules 

0.145 𝑎𝑎04 

𝛼𝛼c 
strength of short-range interactions between solvated 
cations and surrounding water molecules 

−0.05 𝑎𝑎02/𝜖𝜖0 

𝛼𝛼a 
strength of short-range interactions between bare anions 
and surrounding water molecules 

−0.081 𝑎𝑎02/𝜖𝜖0 

 

Parameters of the Morse potentials describing metal solution interactions can be acquired from 
Kohn-Sham DFT calculations [73]. In the present model, we simply use the repulsive part of the 
Morse potential to prevent ions and solvent molecules from penetrating into the metal phase. In 
this case, Eq. 46 can be equivalently recast into, 

𝑤𝑤𝑖𝑖 = 𝛽𝛽−1 exp �−2𝛽𝛽𝑖𝑖�𝑑𝑑 − 𝑑𝑑𝑖𝑖M�� (82) 

with, 

𝑑𝑑𝑖𝑖M = 𝑑𝑑𝑖𝑖 +
ln(𝛽𝛽𝐷𝐷𝑖𝑖)

2𝛽𝛽𝑖𝑖
 (83) 

where 𝑑𝑑𝑖𝑖M represents an effective equilibrium distance of electrolyte component 𝑖𝑖 from the metal 

surface. The parameters 𝐷𝐷𝑖𝑖  and 𝑑𝑑𝑖𝑖  are combined into the single effective parameter 𝑑𝑑𝑖𝑖M , with 

smaller values indicating that the electrolyte component 𝑖𝑖 can be drawn closer to the metal surface 

due to stronger short-range interactions with the metal surface. The values of 𝑑𝑑𝑖𝑖M and 𝛽𝛽𝑖𝑖 in Eq. 82 

are calibrated with experimental 𝐶𝐶dl  data, as shown in Table 4. The calibrated values of 𝑑𝑑𝑖𝑖M 
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capture the phenomenon that ions are farther from the metal surface compared to water molecules. 

Table 4. Metal-Solution interaction parameters of the base case 

Symbol Item Value 

�̅�𝛽s dimensionless coefficient in the Morse potential of solvent molecules 0.95 

�̅�𝛽c dimensionless coefficient in the Morse potential of cations 0.19 

�̅�𝛽a dimensionless coefficient in the Morse potential anions 4.5 

𝑑𝑑sM effective equilibrium distance of solvent molecules 6.6 𝑎𝑎0 

𝑑𝑑cM effective equilibrium distance of cations 13.3 𝑎𝑎0 

𝑑𝑑aM effective equilibrium distance of anions 11.6 𝑎𝑎0 

 

As discussed above, unknown parameters, including 𝜃𝜃T,𝐾𝐾𝛼𝛼 ,𝐾𝐾𝛽𝛽 ,𝛼𝛼𝑖𝑖 ,𝑑𝑑𝑖𝑖M,𝛽𝛽𝑖𝑖 , are estimated by fitting 

𝐶𝐶dl curves at three concentrations measured by Valette [18]. The impact of these parameters on the 
model results will be gauged in a parametric analysis in section 3.3. In the model, 𝐶𝐶dl is calculated 
by differentiating the surface free charge 𝜎𝜎free with respect to 𝜙𝜙M, 

𝐶𝐶dl =
𝜕𝜕𝜎𝜎free
𝜕𝜕𝜙𝜙M

= −𝑒𝑒0
𝜕𝜕𝜎𝜎free
𝜕𝜕𝜇𝜇�e

=
𝑒𝑒02

𝑎𝑎02
𝜕𝜕
𝜕𝜕𝜇𝜇�e

�𝑑𝑑�̅�𝑑(𝑛𝑛�c − 𝑛𝑛�a) =
𝑒𝑒02

𝑎𝑎02
𝜕𝜕
𝜕𝜕𝜇𝜇�e

�𝑑𝑑�̅�𝑑(𝑛𝑛�e − 𝑛𝑛�cc )  (84) 

with the surface free charge 𝜎𝜎free = 𝑒𝑒0
𝑎𝑎02
∫ 𝑑𝑑�̅�𝑑(𝑛𝑛�c − 𝑛𝑛�a) = 𝑒𝑒0

𝑎𝑎02
∫ 𝑑𝑑�̅�𝑑(𝑛𝑛�e − 𝑛𝑛�cc ) . The electrode 

potential measured in experiments [18], which is on the saturated calomel electrode (SCE) scale 
and denoted as 𝐸𝐸SCE, can be converted with 𝜇𝜇�e through the following relation, 

−𝜇𝜇�e = 𝑒𝑒0(𝐸𝐸SCE + 𝐸𝐸SHE∗ + 0.2415 V)− 𝑒𝑒0𝜒𝜒s  (85) 

where 0.2415 V is used to transform the electrode potential from SCE scale to standard hydrogen 
electrode (SHE) scale. 𝐸𝐸SHE∗  represents the absolute electrode potential of SHE, for which we use 

the value of 4.44 V  [74]. The last term arises from the consideration that we take the inner 
potential of the electrolyte solution as the potential reference [75]. 𝜒𝜒s is the surface potential of the 
solution-vacuum interface, and we adopt the recommended value of 0.17 V for the water-vacuum 
interface [74]. 

Figure 1 compares the model-based and experimental 𝐶𝐶dl at the Ag(110)-KPF6 aqueous interface 
at KPF6 concentrations of 20, 40, and 100 mM. The electrode potential is rescaled with reference 
to the potential of zero charge (PZC), where the Gouy Chapman minimum is located. At the Gouy 
Chapman minimum, 𝜇𝜇�e = −3.53 eV , corresponding to a potential of zero charge (PZC) of 
−0.98 V vs saturated calomel electrode (SCE), is reproduced by the model. It’s worth noting that 
the PZC is taken directly as an EDL parameter in classical models, while the present model is able 
to derive it from an orbital-free description of metal electrons. The model results at three 
concentrations are calculated using the same set of model parameters in Tables 1-4. The model can 
well reproduce the camel shape of the 𝐶𝐶dl  curves, as well as the trend of the 𝐶𝐶dl  curve with 
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concentration, namely the decrease in the Gouy-Chapman minimum and the larger distance 
between two camel peaks as the concentration decreases. The agreement between model and 
experiment has been greatly improved compared to a previous work [54]. The improvement is 
discernable in the magnitude of 𝐶𝐶dl and the distance between the two peaks in 𝐶𝐶dl curves. The 
microscopic structure of the EDL behind the 𝐶𝐶dl  curves, as well as the influence of model 
parameters on the interfacial structure and consequently on the profiles of 𝐶𝐶dl  curves, will be 
discussed in sections 3.2 and 3.3. 

 

Figure 1. Model (lines) and experimental results (circles) of the differential double layer 
capacitance (𝐶𝐶dl) at the Ag(110)-KPF6 aqueous interface, at KPF6 concentrations of 20, 40, and 
100 mM, respectively. 𝐸𝐸pzc is the electrode potential referenced to the potential of zero charge 

(PZC). The experimental data, measured by Valette, are corrected using a roughness factor of 1.15 
as suggested [18]. The same set of parameters is used across all three concentrations. 

3.2 Interfacial structure 

The model can delineate a spatially-resolved, atomistic scale picture of the EDL. Toward a more 
realistic description of the metal-solution interface, we consider a one-dimensional, discrete, 
periodic arrangement of metal cationic cores. The charge distribution of metal cationic cores in 
this case is written as [67], 

𝑛𝑛�cc(𝑑𝑑)
𝑛𝑛�cc0

= 𝜃𝜃(𝑑𝑑)− 𝜃𝜃 �𝑑𝑑 −
𝑎𝑎cc
2 �+ 𝜃𝜃 �𝑑𝑑 −

𝑎𝑎cc
2
− 𝑡𝑡� − 𝜃𝜃 �𝑑𝑑 −

3𝑎𝑎cc
2

− 𝑡𝑡� + 𝜃𝜃 �𝑑𝑑 −
3𝑎𝑎cc

2
− 2𝑡𝑡�

− 𝜃𝜃 �𝑑𝑑 −
5𝑎𝑎cc

2
− 𝑡𝑡� + 𝜃𝜃 �𝑑𝑑 −

5𝑎𝑎cc
2

− 3𝑡𝑡� − 𝜃𝜃 �𝑑𝑑 −
7𝑎𝑎cc

2
− 3𝑡𝑡�

+ 𝜃𝜃 �𝑑𝑑 −
7𝑎𝑎cc

2
− 4𝑡𝑡�  − 𝜃𝜃 �𝑑𝑑 −

9𝑎𝑎cc
2

− 4𝑡𝑡� 

(86) 

where 𝑎𝑎cc is the diameter of metal cationic cores, 𝑡𝑡 the separation distance between two metal 
cationic cores, 𝑛𝑛�cc0  the dimensionless charge density of metal cationic cores. In this scheme, only 
valency electrons are considered, while core electrons are embedded into metal cationic cores. The 
atomic and electronic polarization of metal cationic cores results in a high-frequency dielectric 
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permittivity larger than the vacuum permittivity. These parameters can be obtained using DFT 

calculations. Here, we use 𝑎𝑎cc = 1.1 Å, 𝑡𝑡 = 1.25 Å,𝑛𝑛�cc0 = 0.2042  and 𝜖𝜖∞̅,M = 2  as in ref. [67]. 

Other parameters remain the same as in Tables 1-4. Figure 2 and Figure 3 displays the model 
results of distributions of electron density, polarization field, electric potential, and number density 
of solution components for the Ag(110)-0.1 M KPF6 aqueous interface at five electrode potentials 
referenced to the PZC. In these plots, the metal edge is located to 𝑑𝑑 = 0. 

3.2.1 Oscillation 

In Figure 2a, due to the discreteness of metal cationic cores, the electron density and electric 
potential oscillate in the metal phase. The electrons spill out of the metal edge by approximately 

2 Å, with the extent of spillover increasing at more negative electrode potentials. This is because 
the electrochemical potential of electrons is more positive at more negative electrode potentials, 
enabling electrons spill out further into the solution compartment. Figure 2b illustrates the 
oscillatory distribution of the polarization field. The amplitude of the oscillation decreases 
gradually as it moves away from the metal surface and eventually vanishes in the solution bulk. 
The oscillatory polarization field results in an oscillatory distribution of the polarization charge. 
Therefore, an oscillatory electric potential is generated on the solution side, as depicted in the inset 
of Figure 2c. The formation of the oscillatory polarization field stabilizes the interface through the 

term 𝐾𝐾𝛼𝛼(∇ ⋅ 𝑷𝑷)2 = 𝐾𝐾𝛼𝛼𝜌𝜌b2 in the grand potential with a negative 𝐾𝐾𝛼𝛼. In the presence of a negative 
polarization field near the metal surface, the oxygen atoms of water molecules direct towards the 
metal surface, forming the oxygen-down configuration [76], whereas a positive polarization field 
means the hydrogen-down configuration. The valleys and peaks in Figure 2b represent water 
molecules in opposite orientations, with an alternating distribution. The water molecules closest to 
the metal surface exhibits a preference for the oxygen-down configuration, as observed in 
molecular dynamics (MD) simulations [30,77]. This is attributed to the metal electronic effects. 
The electron spillover from the metal surface generates a strong positive electric field within a ~2 
Å region adjacent to the metal surface. This built-in positive electric field tends to orient the 
oxygen atom of water molecules in the first layer towards the metal surface. Compared to the 
AIMD results [30,77,78], the water layers are slightly farther way from the metal surface in our 
model. This is due to our simplified consideration of the repulsive interactions between water 
molecules and the metal surface. As the electrode potential gradually becomes more negative, the 
overall polarization field becomes more positive, as shown in Figure 2b. This implies that the 
hydrogen-down configuration is more favored in a more negative electric field, as reported in 
computational [30,79] and experimental studies [76,80–82]. 
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Figure 2. Model results for the Ag(110)-0.1 M KPF6 aqueous interface at five electrode potentials, 
referenced to the PZC, as indicated in the legends of (b): (a) distribution of the dimensionless 
electron density, with the inset presenting an enlarged view near the metal surface, (b) distribution 
of the polarization field, (c) distribution of the electric potential, with the inset presenting an 
enlarged view on the solution side. In all these plots, the metal edge is located at 𝑑𝑑 = 0. The top 
figure shows a schematic illustration of the EDL structure, with periodically arranged metal 
cationic cores, and layered distributions of ions and solvent molecules near the metal surface. 

3.2.2 Layering 

An oscillatory water polarization indicates water layering, which has recently been observed at the 
Ag(hkl)-NaOH aqueous interfaces using in situ surface X-ray diffraction measurements [83]. 
Figure 3a depicts the layered distribution of water molecules at the interface. As the electrode 
potential becomes more negative, the concentration of the oxygen-down water increases, while 
that of the hydrogen-down water decreases. These changes depict reorientation of water dipoles in 
response to the varying electric field at the interface. The alternating layers of water molecules 
with different net orientations generate local minima and maxima in electric potential, as shown in 
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Figure 2c. The oscillatory electric field, along with short-range correlations with water molecules, 
leads to a layered pattern of ion distributions, as shown in Figure 3b and 3c. Both anions and 
cations are distributed in an alternating layered structure, with their peak concentrations rapidly 
decaying to bulk concentrations as they move away from the metal surface. Furthermore, due to 
weaker interactions with the metal surface, ions are unable to penetrate the water layers closest to 
the metal surface.  

The layering phenomenon of ions determines the position of the reaction plane of electrochemical 
reactions, usually referred to as the position of the peak concentration of ions in the first layer. 
Interestingly, despite with larger sizes and effective equilibrium distances, cations are noticeably 
closer to the metal surface compared to anions, as shown in Figure 3b and 3c. This highlights the 
significant impact of interfacial oscillations on the EDL structure. We also observe that as the 
potential becomes more negative, the anion concentration in the first layer gradually decreases. 
However, as shown in the inset of Figure 3b, even at a potential as negative as −0.2 V vs PZC, the 
concentration of anions in the first layer remains ca. one-third compared to the bulk solution. In 
fact, at a potential at −0.1 V vs PZC, the concentration of anions in the first layer is even slightly 
higher than the bulk concentration. The situation is opposite for cations, as shown in Figure 3c. 
This contrasts with classical double layer theory, where ions near the metal surface carrying 
excess charge with the same sign would exhibit lower concentrations compared to those in the 
bulk solution. The anomalous anion accumulation near a negatively charged surface is due to the 
structured solvent stabilizing the ions near the metal surface. Recently, Lukatskaya et al. have 
observed the apparent anion effect in the electrochemical CO2 reduction reaction (eCO2RR) [84]. 
Their experiments show that inorganic anions, i.e., perchlorate, sulfate, chloride, lead to higher 
overpotentials of eCO2RR. This observation could be attributed to the non-negligible 
concentration of anions near the metal surface that remains even at negative surface charge. 
Anions near the metal surface may destabilize the negatively charged transition and final state of 

the first elementary step in eCO2RR [85], namely the formation of partially charged CO2
δ− from 

CO2 adsorption, which is generally accepted to be the rate-determining step (RDS) of 
eCO2RR [86,87]. 
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Figure 3. Model results for the Ag(110)-0.1 M KPF6 aqueous interface at five electrode potentials, 
referenced to the PZC, as indicated in the legend of (a): (a) distribution of the solvent 
concentration, (b) distribution of the anion concentration, with the inset presenting an enlarged 
view at negative potentials, (c) distribution of the cation concentration, with the inset presenting 
an enlarged view at positive potentials. In all of these plots, the metal edge is located at 𝑑𝑑 = 0. 

In summary, our theory depicts a microstructure of the EDL that differs dramatically from 
classical EDL theories. The periodic arrangement of metal cation cores within the metal phase 
leads to a periodic distribution of electron density and potential within the metal phase, as 
illustrated in the top schematic figure of Figure 2. Interfacial solvent molecules, due to short-range 
correlations, form a layered structure with alternating orientations, resulting in an oscillatory 
distribution of the electric potential on the solution side. Anions and cations also exhibit layered 
distributions, sandwiched between the solvent layers. Moving towards the bulk electrolyte 
solution, the layered distributions gradually vanish. 

3.3 Parametric analysis 

In this section, we use the calibrated model to explore the influence of model parameters on 
capacitance curves and EDL structure. The parametric analysis will be conducted in three groups. 
The first group contains parameters related to metal electronic structure, including the gradient 
coefficient in electronic kinetic functional, 𝜃𝜃T, and the metal cationic charge density 𝑛𝑛�cc0 . The 
second group focuses on the influence of ionic properties, including the radii of anions and cations, 
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𝑟𝑟a and 𝑟𝑟c, the strengths of their short-range correlations with solvent molecules, 𝛼𝛼a and 𝛼𝛼c, the 

parameters describing the short-range interactions between ions and the metal surface, 𝑑𝑑aM,𝑑𝑑cM,𝛽𝛽a 
and 𝛽𝛽c. The third group consists of parameters related to the solvent, including the static dielectric 
permittivity 𝜖𝜖s , the optical permittivity 𝜖𝜖∞,S , the correlation coefficients, 𝐾𝐾𝛼𝛼  and 𝐾𝐾𝛽𝛽 , and the 

parameter describing the short-range interactions between solvent molecules and the metal surface, 

𝑑𝑑sM and 𝛽𝛽s. 

3.3.1 Electronic structure parameters 

 

Figure 4. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�𝑒𝑒, which can be transformed to the electrode potential up to a constant. 
The (a) gradient coefficient 𝜃𝜃T, (b) dimensionless 𝑛𝑛cc0 , are varied at three levels. respectively. In 
this one-factor-at-a-time study, other parameters except the one under evaluation have their base 
values.  

Figure 4a and 4b shows the 𝐶𝐶dl  curve as a function of −𝜇𝜇�e  at three values of 𝜃𝜃T  and 𝑛𝑛cc0 , 
respectively. Other parameters except the one under evaluation have their base values listed in 
Tables 1-4. According to Eq. 68, −𝜇𝜇�e is proportional to 𝜙𝜙M. As 𝜃𝜃T varies toward more positive 
values, the 𝐶𝐶dl curves shift to the right along the −𝜇𝜇�e axis. The value of −𝜇𝜇�e corresponding to the 
PZC, denoted as −𝜇𝜇�e,pzc, becomes more positive with a larger value of 𝜃𝜃T. −𝜇𝜇�e,pzc is decomposed 

as, 

 −𝜇𝜇�e,pzc = −𝜇𝜇e + 𝑒𝑒0𝜙𝜙M,pzc (87) 

where 𝜙𝜙M,pzc is the inner potential of the bulk metal at PZC, which is mainly influenced by the 

surface dipoles, formed by spillover of electrons and orientational polarization of solvent 
molecules [88,89]. The chemical potential of metal electrons in the bulk metal can be expressed as 

𝜇𝜇𝑒𝑒 =
𝜕𝜕𝑡𝑡ni
𝜕𝜕𝑛𝑛e

+
𝜕𝜕𝑢𝑢X
𝜕𝜕𝑛𝑛e

+
𝜕𝜕𝑢𝑢C
𝜕𝜕𝑛𝑛e

 

= 𝑒𝑒au �
𝜕𝜕𝑡𝑡TF
𝜕𝜕𝑛𝑛�e

+ (1 + 𝜃𝜃X𝑠𝑠2)
𝜕𝜕𝑢𝑢X0

𝜕𝜕𝑛𝑛�e
+
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� −
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(88) 
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As shown in Eq. 88, 𝜇𝜇e is independent on 𝜃𝜃T due to uniform electron density in the jellium metal. 
However, the electrons at the metal surface possess higher kinetic energy, which enables electrons 
spillover farther from the metal surface. Greater spillover leads to a larger surface dipole potential 
at the metal surface, shifting the PZC positively, as shown in Figure 4a. 

Different metals have different values of 𝑛𝑛cc0 , which exerts a significant impact on 𝐶𝐶dl, especially 
the Helmholtz layer capacitance [31]. As shown in Figure 4b, the 𝐶𝐶dl curve is elevated at larger 
𝑛𝑛cc0  because more electrons are presented to screen the electric field in the EDL. A nonmonotonic 
dependence of −𝜇𝜇�e,pzc on 𝑛𝑛cc0  is observed. In the examined range, −𝜇𝜇e decreases with increasing 

𝑛𝑛cc0  in Eq. 87 [54]. However, 𝜙𝜙M,pzc  increases since more electrons spillover from the metal 

surface, resulting in larger surface dipole potential and, consequently, larger 𝜙𝜙M,pzc . This is 

supported by the calculated dipole potential using a jellium-hard-sphere-electrolyte model [31], 
which exhibits a monotonically increasing trend of dipole potential with 𝑛𝑛cc0 , aligning closely with 
the experimentally estimated dipole potential at different metals [90]. The opposing trends in −𝜇𝜇e 
and 𝜙𝜙M,pzc with respect to 𝑛𝑛cc0  lead to the non-monotonic variation of the PZC.  

The same metal but with different crystal faces should have the same values of 𝑛𝑛cc0 , but different 
values of 𝜃𝜃T are expected. Figure 5 compares the experimentally measured 𝐶𝐶dl profiles of Ag(110) 
and Ag(100) in a 0.1 M KPF6 aqueous solution, exhibiting a positive shift of 0.11 V in the PZC 
from Ag(110) to Ag(100) interface. By solely tuning the values of 𝜃𝜃T from 1.663 at the Ag(110) 
interface to 1.777 at the Ag(100) interface, while keeping all other parameters at their base values, 
the simulated results agree well with the experimental 𝐶𝐶dl profile at the Ag(100) interface. This 
implies that electrons at the Ag(100) surface possess higher kinetic energy and exhibit greater 
spillover. This metal electronic effect contributes to the observed positive shift in the PZC. 

 

Figure 5. Model (lines) and experimental results (circles) of the differential double layer 
capacitance (𝐶𝐶dl) at Ag(110) and Ag(100) in 0.1 M KPF6 aqueous solution as a function of the 
electrochemical potential of electrons, −𝜇𝜇�𝑒𝑒, which can be transformed to the electrode potential up 
to a constant. The experimental data at Ag(110) and Ag(100), measured by Valette, are corrected 
using a suggested roughness factor of 1.15 [18] and 1.07 [16], respectively. In the modelling of 
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Ag(100)-0.1 M KPF6, only 𝜃𝜃T is tuned to 1.777 while all other parameters are maintained at their 
base values. 

3.3.2 Ion properties 

Figure 6a and 6b shows the influence of anion and cation size on the 𝐶𝐶dl profile, respectively. The 
anionic peak of the 𝐶𝐶dl curve, corresponding to anion crowding, is smaller and appears at less 
positive potential for larger anions. Similar behaviors are observed for the cationic peak 
corresponding to cation crowding. The size behaviors are similar to classical EDL theories [91]. 
However, as shown in Figure 9, Valette’s experiments reveal that the electrode potential at the 
anionic peak remains nearly the same at both the Ag(110)-KPF6 and Ag(110)-NaClO4 aqueous 
interfaces. Nevertheless, the anionic peak is more pronounced at the Ag(110)-NaClO4 aqueous 
interface. Additionally, the capacitance at PZC is higher at the Ag(110)-NaClO4 aqueous interface 
compared to the Ag(110)-KPF6 aqueous interface. These indicate that the parameter of ionic size 
alone is insufficient to fully explain the effects of ion properties on the 𝐶𝐶dl curve. As a refinement 
beyond the classical EDL theory, our model considers not only the size of ions but also their short-
range correlations with solvent molecules and their short-range interactions with the metal.  

 

Figure 6. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�e, which can be transformed to the electrode potential up to a constant. 
The (a) anion radius, (b) cation radius, (c) dimensionless 𝛼𝛼a, (d) dimensionless 𝛼𝛼c, are varied at 
three levels. respectively. In this one-factor-at-a-time study, other parameters except the one under 
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evaluation have their base values.  

Figure 6c shows the 𝐶𝐶dl curves at three different values of 𝛼𝛼a. As 𝛼𝛼a becomes less negative, the 
anionic peak of 𝐶𝐶dl curve narrows. Similarly, Figure 6d shows that the cationic peak of 𝐶𝐶dl curve 
narrows as the magnitude of negative 𝛼𝛼c decreases. To elucidate the origin of this behavior, we 
will focus on the effect of 𝛼𝛼a on 𝐶𝐶dl curve as an example. The distributions of the electric potential 
at the PZC for various values of 𝛼𝛼a are shown in Figure 7a. It can be seen that 𝛼𝛼a has a negligible 
effect on the oscillations of the electric potential, which also implies a negligible impact on the 
interfacial solvent structure. However, as discussed in Eq. 17, a less negative 𝛼𝛼a indicates that the 
short-range correlations between anions and solvent molecules screen the electrostatic forces of 
solvent molecules on anions to a less extent. Consequently, the influence of the local maximum 
electric potential on anions, which originates from the electrostatic potential of structured solvent 
dipoles, augments as 𝛼𝛼a becomes less negative. As a result, a less negative 𝛼𝛼a strengthens the 
anionic layering and leads to a preferable distribution of anions between solvent layers, as shown 
in Figure 7b. 

 

Figure 7. The distributions of (a) the electric potential and (b) the anion concentration at the PZC 
of the 𝐶𝐶dl curves in Figure 6c, at different values of 𝛼𝛼�a, as indicated in Figure 7a. The metal edge 
is located at 𝑑𝑑 = 0. 

Therefore, as 𝛼𝛼a becomes less negative, more anions can be accommodated within anion layers, 
reducing the effective thickness of the EDL. This results in an increase in 𝐶𝐶dl in the potential 
region just above the PZC, and a less positive potential of the anionic peak due to a promoted 
anion crowding. Additionally, anions are drawn closer to the metal surface, especially the first 
anion layer, where the solvent screening effects become more pronounced. This leads to a lower 
effective dielectric permittivity at less negative 𝛼𝛼a, which in turn causes a steeper decrease in the 
𝐶𝐶dl  curve at more positive potentials. Overall, the enhanced anion layering accounts for the 
narrower anionic peak observed in the 𝐶𝐶dl profile at less negative values of 𝛼𝛼a. The impact of 𝛼𝛼c 
on the cationic peak of the 𝐶𝐶dl profile is the same.  
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Different ions exhibit varying strengths of short-range interactions with the metal. Figure 8 shows 
the impact of related parameters on the 𝐶𝐶dl  profiles, including previously defined effective 

equilibrium distances and coefficients from Morse potentials. A smaller value of 𝑑𝑑aM indicates a 
weaker repulsive force between anions the metal surface, allowing anions to approach closer to 
the metal surface at potentials positive to the PZC. As discussed, this reduces the effective 
thickness and dielectric permittivity of the EDL, leading to a narrower anionic peak in the 𝐶𝐶dl 

profile at smaller 𝑑𝑑aM values, as shown in Figure 8a. The impact of 𝑑𝑑cM on the cationic peak of the 
𝐶𝐶dl profile, as shown in Figure 8b follows a similar pattern. As for the coefficients in the Morse 
potentials of ions (𝛽𝛽a and 𝛽𝛽c), they have negligible impact on the 𝐶𝐶dl profile, as shown in Figure 
8c and 8d. 

 

Figure 8. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�e, which can be transformed to the electrode potential up to a constant. 

The (a) effective equilibrium distance of anions 𝑑𝑑aM, (b) effective equilibrium distance of cations 

𝑑𝑑cM, (c) dimensionless 𝛽𝛽a, (d) dimensionless 𝛽𝛽c, are varied at three levels. respectively. In this one-
factor-at-a-time study, other parameters except the one under evaluation have their base values. 

The ion parameters 𝑟𝑟𝑖𝑖 ,𝛼𝛼𝑖𝑖 and 𝑑𝑑𝑖𝑖M significantly impact the position and shape of the ionic peaks in 

the 𝐶𝐶dl curves. Additionally, a smaller 𝑑𝑑𝑖𝑖M or a less negative 𝛼𝛼𝑖𝑖 can yield a larger capacitance at 

PZC. This is because reducing 𝑑𝑑𝑖𝑖M and decreasing the negativity of 𝛼𝛼𝑖𝑖 respectively increase the 
thickness of the diffuse layer and the capacity of the solvent layers to accommodate ions, both of 
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which inherently enhance EDL’s ability to store ionic charges. Naturally, these two parameters are 
not only related to the type of ions but also to the types of metals and solvents. Through the 
combined influence of these ion properties, the 𝐶𝐶dl curve at the Ag(110)-NaClO4 aqueous interface 
can be reproduced, as shown in Figure 9. We emphasize that only the ion parameters are altered, 
while all other parameters are maintained at their base values, in this case. The ion parameters for 
KPF6 and NaClO4 electrolytes are listed in Table 5. The solvated Na+ cations are smaller than the 
solvated K+ cations [69], while the sizes of PF6− and ClO4

− anions are comparable. Compared to 
the KPF6 electrolyte solution, the NaClO4 electrolyte solution possesses less negative 𝛼𝛼𝑖𝑖 values for 
Na+ and ClO4

−, resulting in increased capacitance at both the ionic peaks and PZC. Additionally, 
ClO4

− can approach the Ag(110) surface more closely than PF6−, consistent with Valette’s findings 
that ClO4

− has a stronger strength of specific adsorption compared to PF6− [18]. 

 

Figure 9. Model (lines) and experimental results (circles) of the differential double layer 
capacitance (𝐶𝐶dl) at Ag(110) in 0.1 M KPF6 and 0.1 M NaClO4 aqueous solution as a function of 
the electrochemical potential of electrons, −𝜇𝜇�e , which can be transformed to the electrode 
potential up to a constant. The experimental data at Ag(110), measured by Valette, are corrected 
using a suggested roughness factor of 1.15 [18]. In the simulation of Ag(110)-0.1 M NaClO4 
aqueous interface, only the ion properties, as shown in Table 5, are tuned while all other 
parameters are maintained at their base values obtained for the Ag(110)-KPF6 aqueous solution 
interface. 

Table 5. Parameters of ion properties  

Ion parameters 𝑟𝑟𝑖𝑖/Å 𝛼𝛼�𝑖𝑖 𝑑𝑑𝑖𝑖M/𝑎𝑎0 �̅�𝛽𝑖𝑖 

Solvated K+ 3.6 -0.05 13.3 0.19 

Solvated Na+ 3.25 -0.022 13.3 0.15 

Bare PF6− 2.7 -0.081 11.6 4.5 

Bare ClO4
− 2.75 -0.04 9.4 1 
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3.3.3 Solvent properties 

The solvent significantly influences the Helmholtz layer [23,92] and the diffuse layer [93] of the 
EDL structure. In the present context, these solvent properties include basic static dielectric 
properties, short-range correlations between solvent molecules, and short-range interactions 
between the solvent and the metal surface. The solvent dependence of 𝐶𝐶dl is determined by all 
solvent properties, rendering it difficult to decouple the influence of a single property without the 
aid of a model [73,94]. 

 

Figure 10. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�e, which can be transformed to the electrode potential up to a constant. 
The (a) effective dipole moment 𝑝𝑝, (b) high-frequency dielectric permittivity 𝜖𝜖∞,S, are varied at 

three levels. respectively. In this one-factor-at-a-time study, other parameters except the one under 
evaluation have their base values. 

In our theoretical model, the static dielectric properties of the solvent, which dictate its ability to 
screen the electric field, are delineated by two key parameters: the high-frequency dielectric 
permittivity (𝜖𝜖∞,S) and the effective dipole moment (𝑝𝑝) of solvent. Their influences on 𝐶𝐶dl curves 

are displayed in Figure 10a and 10b. As expected, an elevated 𝐶𝐶dl profile is obtained at larger 𝜖𝜖∞,S 

and 𝑝𝑝. When 𝑝𝑝 increases, the solvent can better screen the electric field generated by electron 
spillover near the metal surface. This leads to a decrease in 𝜙𝜙M,pzc and, as a result, a negative shift 

in the PZC. Similarly, increasing 𝜖𝜖∞,S  also improves the solvent’s screening capability, but its 

primary impact on the PZC arises from the enhancement of local screening within the region ~2 Å 
above the metal edge, as shown in Eq. 81. In a recent work, we have discussed the influence of 
static dielectric properties on the PZC at the Au(111)-KPF6 interface [73]. The static dielectric 
properties primarily influence the overall magnitude and the PZC of 𝐶𝐶dl curves but have little 
impact on their shapes. 
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Figure 11. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�e, which can be transformed to the electrode potential up to a constant. 
The (a) dimensionless 𝐾𝐾𝛼𝛼, (b) dimensionless 𝐾𝐾𝛽𝛽, are varied at three levels. respectively. In this 

one-factor-at-a-time study, other parameters except the one under evaluation have their base 
values. 

In addition to the static dielectric properties, our theory also incorporates short-range correlations 
between solvent molecules, controlled by 𝐾𝐾𝛼𝛼 and 𝐾𝐾𝛽𝛽 , into the description of the solvent. Their 

influences on 𝐶𝐶dl are shown in Figure 11a and 11b. When 𝐾𝐾𝛼𝛼 becomes more negative or when 𝐾𝐾𝛽𝛽 

decreases, the 𝐶𝐶dl at PZC is elevated, the anionic and cationic peaks are closer, and the PZC shifts 
to more negative potentials. It is observed that a more negative value of 𝐾𝐾𝛼𝛼  leads to a more 
oscillatory solvent polarization, as shown in Figure 12a. As 𝐾𝐾𝛼𝛼 approaches zero, the oscillations 
gradually diminish. A more oscillatory polarization field implies that solvent molecules near the 
metal surface more effectively screen the electric field generated from metal electron spillover, 
thereby lowering 𝜙𝜙M,pzc and shifting PZC to a more negative value. The increased oscillation at 

more negative 𝐾𝐾𝛼𝛼 generate a more oscillatory distribution of the electric potential on the solution 
side, facilitating a more layered structure of ions, as shown in Figure 12b. The more layered 
structure allows more ions to be present within the solvent layers, causing an increase in 𝐶𝐶dl at 
PZC. As discussed, a more layered structure of ions narrows the ionic peak in the 𝐶𝐶dl profile. 
Additionally, at a more negative 𝐾𝐾𝛼𝛼 , Figure 12a shows that solvent molecules exhibit a more 
ordered orientation within each layer. This implies a lower dielectric permittivity at the interface, 
which in turn leads to a steeper decrease in 𝐶𝐶dl at potentials far from PZC. The mechanism of how 
𝐾𝐾𝛽𝛽 affects the 𝐶𝐶dl curve is similar, as Figure S1 shows a more oscillatory solvent polarization and 

a more layered interface at smaller 𝐾𝐾𝛽𝛽, akin to the situation observed with a more negative 𝐾𝐾𝛼𝛼. 

The consideration of short-range correlations among solvent molecules, which lead to a layered 
structure at the interface, contributes to the increase in capacitance at PZC and narrowing of ionic 
peaks. This is primary reason why the model results of DPPFT better align with experimental 
observations. 

https://doi.org/10.26434/chemrxiv-2024-c5dvr ORCID: https://orcid.org/0009-0000-6894-4145 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-c5dvr
https://orcid.org/0009-0000-6894-4145
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 

 

 

Figure 12. The distributions of (a) the polarization field and (b) anion concentration at PZC of the 
𝐶𝐶dl curve in Figure 11a, at different value of dimensionless 𝐾𝐾𝛼𝛼, as indicated in Figure 12a. The 
metal edge is located at 𝑑𝑑 = 0. 

The DPPFT inherently accounts for the effects of short-range interactions between solvent 
molecules and the metal surface on the interfacial structure and properties. This consideration is 
not explicitly considered in the theory proposed by Berthoumieux and Kornyshev [39], as well as 
in that by Blossey and Podgornik [50,51]. Figure 13 highlights the significant impact of the short-

range interaction parameters 𝑑𝑑sM and 𝛽𝛽s on the 𝐶𝐶dl profile. At a smaller 𝑑𝑑sM, we observe a more 
negative PZC, a higher 𝐶𝐶dl at PZC, and a reduced distance between anionic peak and cationic peak 
of the 𝐶𝐶dl curve. A similar trend is evident for 𝛽𝛽s at a smaller value, as shown in Figure 13b. 

 

 

Figure 13. Differential double layer capacitance (𝐶𝐶dl) curves as a function of the electrochemical 
potential of electrons, −𝜇𝜇�e, which can be transformed to the electrode potential up to a constant. 

The (a) effective equilibrium distance of solvent molecules 𝑑𝑑sM, (b) dimensionless 𝛽𝛽s, are varied at 
three levels. respectively. In this one-factor-at-a-time study, other parameters except the one under 
evaluation have their base values. 
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Figure 14 shows the distributions of the polarization field for various values of 𝑑𝑑sM and 𝛽𝛽s. The 

EDL becomes more oscillatory and, therefore, more layered at smaller values of 𝑑𝑑sM or 𝛽𝛽s. A more 
layered interface, as previously discussed, accounts for the observed trends in the 𝐶𝐶dl profile with 

decreasing 𝑑𝑑sM  and 𝛽𝛽s  in Figure 13. We also notice that the oscillatory distribution of the 

polarization field shifts closer to the metal surface at smaller 𝑑𝑑sM and 𝛽𝛽s . This promotes ionic 
layering nearer to the metal surface, thereby facilitating the electron transfer between ions and the 
metal surface. The effects of 𝑑𝑑sM and 𝛽𝛽s on the interfacial structure can be attributed to the impact 

of metal electronic effect on solvent molecules. Smaller values of 𝑑𝑑sM  and 𝛽𝛽s  allow solvent 
molecules to approach the metal surface more closely, where they experience a stronger electric 
field generated by electron spillover. This induces a greater extent of oxygen-down orientation in 
the first solvent layer to screen the stronger electric field. The electrostatic interactions between 
solvent layers lead to more ordered orientations of solvent molecules in the subsequent layers. The 
more ordered orientation of solvent molecules in each layer contributes to a more oscillatory 
distribution of the polarization field. 

 

Figure 14. The distributions of the polarization field of the 𝐶𝐶dl curve in Figure 13, at different 

value of (a) 𝑑𝑑sM and (b) �̅�𝛽s, as indicated. The metal edge is located at 𝑑𝑑 = 0. 

4 Conclusions 

We have developed a computationally-efficient density-potential-polarization functional theory 
(DPPFT) for the modeling of electric double layers (EDLs) under constant-potential conditions. 
Compared to the previous density-potential functional theory (DPFT) [54,67,95], the DPPFT 
model provides a more realistic and refined description of the electrolyte solution within the EDL. 
In addition to electrostatic interactions, DPPFT incorporates short-range correlations among 
classical particles in the electrolyte solution. In comparison with the theories of Berthoumieux and 
Kornyshev [39], as well as Blossey and Podgornik [50,51], we incorporate a quantum mechanical 
treatment of metal electrons. Therefore, the DPPFT model provides a holistic approach to the EDL.  

The DPPFT approach captures major phenomena at electrified interfaces, including metal 
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electronic effects, oscillatory electric and polarization fields, and the layered distributions of ions. 
Calibrated with existing capacitance data of the Ag(110)-KPF6 aqueous interface [18], the model 
unveils details of the microscopic interfacial structure associated with profiles of double layer 
capacitance. Specifically, solvent molecules form layers with alternating orientation near the metal 
surface, that induces a layering of anions and cations within these solvent layers. The layered 
structure allows explain why excess co-ions do exist in the EDL, a phenomenon that is absent in 
the classical EDL theories. This novel finding opens avenues to understand anion adsorption at 
negatively charged surfaces and their leap effects on electrocatalytic reactions. 

We conducted a parametric analysis on the calibrated model to explore how model parameters, 
including metal electronic parameters, ion properties, solvent properties, influence the 
microscopic interfacial structure and double layer capacitance. Thanks to an explicit account for 
metal electronic effects and combined effects of ion properties, the model well reproduces and 
explains the experimental capacitance observed across different crystal faces and in various 
electrolyte solutions. The coefficient in the gradient term of electronic kinetic energy affects the 
PZC monotonically via altering the surface potential, while the charge density of metal cationic 
cores exhibits a nonmonotonic relation with the PZC by simultaneously tuning the surface 
potential and the electron chemical potential in the bulk metal. The model delineates static 
dielectric properties of the solvent as effects of two key parameters: the solvent’s high-frequency 
dielectric permittivity and effective dipole moment. The solvent with larger values of those 
parameters can more effectively screens the interface electric field, resulting in an increase in 
capacitance and a negatively shift in PZC. 

We revealed that intensified ion layering results in an elevated capacitance at PZC and narrowed 
ionic peaks in the double layer capacitance profile. Ion layering is influenced strongly by short-
range correlations/interactions between ions and solvent molecules, between solvent molecules, 
and between solvent molecules and the metal surface. Weaker short-range correlations between 
ions and solvent molecules result in less effective screening of the electrostatic potential between 
solvent layers, enabling more ions to be accommodated within these layers. The interfacial 
oscillations are enhanced in the presence of stronger short-range correlations between solvent 
molecules, and stronger short-range interactions between solvent molecules and the metal surface. 
The latter is attributed to enhanced metal electronic effects on the interfacial solvent molecules. A 
more oscillatory interface causes a negative shift in PZC and promotes a more layered ion 
structure. 
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Materials and Technologies for the Energy Transportation under the Topic Chemical Energy 
Carriers and the Subtopic Electrochemistry for hydrogen.  
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