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Abstract
Naming chemical compounds systematically is a complex task governed by a set of rules
established by the International Union of Pure and Applied Chemistry (IUPAC). These rules are
universal and widely accepted by chemists worldwide, but their complexity makes it challenging
for individuals to consistently apply them accurately. A translation method can be employed to
address this challenge. Accurate translation of chemical compounds from SMILES notation into
their corresponding IUPAC names is crucial, as it can significantly streamline the laborious
process of naming chemical structures. Here, we present STOUT (SMILES-TO-IUPAC-name
translator) V2.0, which addresses this challenge by introducing a transformer-based model that
translates string representations of chemical structures into IUPAC names. Trained on a dataset
of nearly 1 billion SMILES strings and their corresponding IUPAC names, STOUT V2.0
demonstrates exceptional accuracy in generating IUPAC names, even for complex chemical
structures. The model's ability to capture intricate patterns and relationships within chemical
structures enables it to generate precise and standardised IUPAC names.
Deterministic algorithms for systematically naming chemical structures have been available for
many years. Also, this work has only been possible through an academic license for OpenEye’s
Lexichem software.

Scientific Contribution:

STOUT V2.0, built upon transformer-based models, is a significant advancement from our
previous work. The user-friendly web application enhances its accessibility and utility. By making
the model and source code fully open and well-documented, we aim to promote unrestricted
use and encourage further development.
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Introduction
Chemists usually assign chemical structures a name when they are discovered or synthesised
for the first time. These names can be trivial or systematic. The systematic names must follow a
set of rules specified by the International Union of Pure and Applied Chemistry (IUPAC) [1] [2–4]
[5]. These rules are comprehensive and complex, making it difficult to apply them consistently,
especially for large datasets of chemical compounds or highly complex chemical structures.

Several commercial software packages are available to generate IUPAC names from chemical
structures [6–9]. Chemaxon [10] and OpenEye [11] offer their rule-based software under an
academic license to generate IUPAC names. This software enables chemists to create IUPAC
names for specified structures automatically. Due to their deterministic algorithms, these
rule-based software packages are reliable and widely used. The work presented here was only
possible due to their existence (see below).

Machine learning, particularly deep neural networks, has shown promise in various domains
[12,13], including natural language processing (NLP) [14]. It has been successfully applied in
tasks like language translation [15], demonstrating the ability to learn complex patterns and
relationships from large datasets [16,17].

This success has inspired researchers to explore the application of neural networks in
cheminformatics, particularly in tasks like predicting chemical reactions [18], Optical Chemical
Structure Recognition (OCSR) [19], drug discovery [20], generating novel molecules [21,22],
molecular design and optimising [23] and many more [24].

Recent studies have explored the use of sequence-based neural networks for translating
between chemical representations, such as SMILES strings and IUPAC names [25–27]. These
studies highlight the potential of machine learning to address the challenges associated with
IUPAC name generation, paving the way for more accessible and efficient tools for chemists.
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However, we have no intention of competing with commercial rule-based tools that are more
reliable due to their deterministic nature.

In recent years, OPSIN (Open Parser for Systematic IUPAC Nomenclature) [28] has been
developed as the only open-source rule-based system for parsing IUPAC names into SMILES
strings. It uses a regular grammar approach to guide tokenisation and constructs an XML parse
tree from the IUPAC name, which is then processed to reconstruct the chemical structure. In this
work, we use OPSIN to retranslate the IUPAC names generated by STOUT.

In our previous work [26], we introduced STOUT (SMILES-TO-IUPAC-name translator), a deep
learning model based on a sequence-to-sequence (seq2seq) architecture with an encoder and
decoder using Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) [26].
STOUT was trained on a dataset of 60 million molecules from PubChem [29] and corresponding
IUPAC names generated with ChemAxon’s molconvert software [30]. The model achieved
promising results, with an average BLEU score of approximately 90% and a Tanimoto similarity
index of over 0.9, indicating high accuracy in predicting IUPAC names from SMILES strings and
vice versa. However, there were still areas for improvement, particularly in model architecture,
tokenisation strategies, and the handling of stereochemical information.

This work presents STOUT V2.0, a transformer-based model for SMILES to IUPAC name
translation (see Figure 1). The model was trained on a dataset of nearly 1 billion SMILES and
corresponding IUPAC names, generated using OpenEye's Lexichem software. This new version
achieves very high accuracy on test and benchmark datasets, demonstrating improved
capability in producing longer IUPAC names with fewer errors overall. The models were trained
entirely on TPU VMs, and after finalising the training, they were optimised using TensorFlow to
run efficiently on CPUs. and have been made available along with the accompanying code as
open-source resources. To enhance accessibility for users with limited or no programming
experience, a web application has been developed and is accessible at https://stout.decimer.ai.
We demonstrate that neural networks can accurately perform the non-trivial task of converting
SMILES to IUPAC names. However, we accomplished this with the generous access to
Lexichem software that OpenEye provided us. The use of deterministic algorithms for
generating IUPAC names, such as Lexichem, in production environments is always
recommended due to the higher error rates associated with neural machine translation.
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Figure 1: Workflow of SMILES to IUPAC name translator version 2.0

Methods
In STOUT V2, the main focus was improving the model and determining the appropriate token
space and the maximum length of the input and output strings during training. In addition, an
appropriate string representation and the assessment of the models' performance concerning
training set size were investigated.

Datasets
Most of the approaches in this work were carried out using structures from PubChem, one of the
largest databases for chemical structures. For large-scale training and analysis, the whole ZINC
15 database was used. PubChem was primarily selected because it publishes SMILES strings
of chemical structures and their IUPAC names. PubChem contains IUPAC names systematically
generated using the OpenEye Lexichem software [31].

Training Dataset Generation
The training datasets were downloaded from the respective data sources as SMILES. The
downloaded SMILES strings were parsed through RDKit to obtain kekulised canonical SMILES
and stereochemical information.
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Experiment 1: Impact of Dataset Size and Tokenisation on Model Performance:

This experiment investigated the impact of dataset size and tokenisation on model performance
using data from the PubChem database. The SMILES of each chemical structure and its
system-generated IUPAC name were directly downloaded from PubChem and used as-is, with
all stereochemical information retained.

From the 110 million compounds downloaded from PubChem[29] using the chemfp[32]
implementation of the MaxMin[33] algorithm, approximately 51 million were selected as a
subset. From this subset, a training dataset of 50 million compounds and a testing dataset of 1
million compounds were chosen. Furthermore, from the 50 million subset, an additional 11
million compound subset was selected using the MaxMin algorithm. From this, a training set of
10 million compounds and a test set of 1 million compounds were selected. As a final step, from
the 11 million compounds subset, a 1 million compound training set and a 250,000 test set were
selected using the MaxMin algorithm.

The tokenisation methods for SMILES followed the procedures outlined in Appendix 1 and
Figure 2. IUPAC names were tokenised both by meaningful segments and character-wise,
resulting in additional training datasets. Here, characterwise splitting means that each character
in the IUPAC name has been separated into a token, increasing the maximum length of the
tokenised IUPAC names.

Figure 2: Comparison of tokenisation methods for the chemical compound caffeine. The figure
illustrates SMILES representation of its respective tokenisation processes and contrasts IUPAC
name character-level splitting with token-level splitting. The molecular structure image is
included for reference.
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The effect of increasing dataset size on the number of unique tokens and the maximum length
of split strings was also analysed. Table 1 summarises the datasets used for training the models
for SMILES strings to IUPAC name translations, with the IUPAC names split by characters or
tokens. In total, 6 combinations of training datasets were generated.

Table 1: Summary of Datasets for SMILES to IUPAC Name Translation with Character and
Token splits

IUPAC name character split IUPAC name token split

Input
token
size

Max
length

Output
token
size

Max
length

Input
token
size

Max
length

Output
token
size

Max
length

1 Mio 125 150 64 150 125 150 855 150

10 Mio 126 200 64 300 126 200 1,199 300

50 Mio 132 400 66 400 132 400 1,501 400

Experiment 2 - Training with Increased Data and Longer Sequences:

The final model selected from experiment 1 was trained on 110 million compounds and
corresponding IUPAC names retrieved from PubChem. The datasets were retained as they are.
However, SMILES strings longer than 600 characters were removed from the training dataset
along with the corresponding IUPAC names, which retained a dataset size of 111,104,000
molecules. From this, one million molecules were selected using the chemfp implementation of
the MaxMin algorithm to test the final model.

SMILES were used as input, and IUPAC names were tokenised by character. This contained
132 unique SMILES tokens with a maximum length of 600 characters, while the IUPAC name
contained 68 unique tokens with a maximum length of 600 characters. Compared with the 50
million datasets, the maximum length of input and output tokens has increased by 200
characters, while the size of input and output tokens has remained relatively unchanged.

Experiment 3 - Large-Scale Training and Generalization Analysis:

The training dataset for this experiment was generated using the ZINC 15 dataset combined
with PubChem molecules. The ZINC 15 dataset was downloaded as SMILES and parsed
through RDKit to generate canonical SMILES with stereochemical information and kekulised.
Any SMILES that did not parse through RDKit were rejected. The final set of SMILES strings
was used to generate IUPAC names using the OpenEye Lexichem software. Several factors,
including consistency with PubChem, influenced this decision: PubChem employs OpenEye
Lexichem to generate IUPAC names. Using the same software ensured consistency with a
major reference in the field. Also, OpenEye offers academic licenses, allowing us to use the
software for scientific purposes without prohibitive costs.
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The resulting dataset contains 883,897,289 SMILES, along with their corresponding IUPAC
names. This dataset was then combined with the PubChem dataset from Experiment 4.
SMILES strings with lengths above 600 characters were removed from the dataset for being
less frequent in the dataset, resulting in a total of 999,637,326 molecules. The SMILES strings
were tokenised as described previously, and the IUPAC names were split
character-by-character. The resulting tokens included 132 SMILES tokens and 76 unique IUPAC
name tokens. The maximum length of the SMILES input was set to 600 characters. In
comparison, the maximum length of the IUPAC names was set to 700 characters, and after
training for predictions, nearly 1,000 characters were allowed.

The SMILES to IUPAC and the IUPAC to SMILES models were trained using the same dataset.

Testing datasets
Experiment 1 - Impact of Dataset Size and Tokenisation on Model Performance:

The resulting six models were tested on three testing datasets: one with 250,000 molecules,
one with 972,817 molecules, and another with 1 million molecules. To obtain the same token
space as the 10 million training dataset, the test dataset has been reduced from 1 million
molecules to 972,817 molecules for testing the model trained on the 10 million molecules.

The test datasets were split into meaningful segments, and character splits, resulting in three
more testing datasets. Six combinations of test datasets were generated in total. Table 2
provides a comprehensive summary of the test datasets corresponding to the training datasets.

Table 2: Test Datasets Compared to Training Datasets

IUPAC character-wise IUPAC tokenised

Train data
size 1 million 10 million 50 million 1 million 10 million 50 million

Test data
size 265,332 972,817 1,024,000 265,332 972,817 1,024,000

Experiment 2 - Training with Increased Data and Longer Sequences:
As mentioned before, a test dataset of 1 million data points was selected from the downloaded
data set from PubChem. After filtering this set to match the maximum lengths of IUPAC names
and SMILES, 834,774 molecules remained.

Experiment 3 - Large-Scale Training and Generalization Analysis:
In experiment 3, the dataset from experiment 2 was used to test the model.
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For external validation, we tested the final model using the ChEBI database molecules not
included in the Training dataset from experiment 3. Lexichem software from OpenEye was used
here to generate the IUPAC names for the molecules found on the ChEBI dataset. A diverse set
of 1,500 examples was selected from this dataset. SMILES with lengths exceeding 600
characters were removed, resulting in 1,485 data points. The IUPAC names for these data
points were generated using OpenEye Lexichem and then predicted using the STOUT models
trained on datasets of 50 million, 100 million, and approximately 1 billion samples.

TFRecord Generation
It is recommended that TFRecords be used as a basic data structure to speed up the training
process using TPUs. All STOUT training datasets were converted from string format to
TFRecord files and saved in 100MB chunks. This approach enhances the speed of reading
TFRecords through the network. After generating the TFRecords, they were moved to Google
Cloud Buckets in the same location where the TPUs were created.

Model selection
In this work, the model implemented was from the 2017 publication “Attention is All You Need”
by Vaswani et al. [34]. The transformer model implemented follows a contemporary architecture
for sequence-to-sequence tasks, drawing on key elements from recent advances in deep
learning. Here, the model features a stack of 4 transformer layers, each incorporating a
multi-head attention mechanism with 8 heads and feed-forward networks with an internal
dimension (dff) of 2048 and an embedding size (d_model) of 512, as detailed in the architecture
proposed by Vaswani et al. A dropout rate of 0.1 is applied to prevent overfitting.

The optimisation process employs the Adam optimiser with a custom learning rate scheduler
that adjusts based on the model dimensions, as suggested in the transformer model's original
implementation. A custom schedule function defines this learning rate schedule, dynamically
modifying the learning rate throughout training. The loss is calculated using the Sparse
Categorical Cross-Entropy loss function, with a mechanism to ignore padding tokens. This is
achieved by applying a boolean mask that excludes padded elements from the loss
computation, ensuring the model does not learn from these irrelevant input parts. Key metrics
for evaluation include training loss, which is tracked using a Keras Mean metric, and training
accuracy, which is measured using Sparse Categorical Accuracy. These metrics provide critical
insights into the model's performance and guide adjustments during the training process.

The transformer is initialised with specific parameters for input and output vocabulary sizes and
maximum sequence lengths for both input and target sequences. This comprehensive
configuration and detailed implementation demonstrate the model's capability to handle complex
language translation tasks, aligning with the current popular methodologies in neural machine
translation.
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Model Training
All STOUT models were completely trained on the Google Cloud Platform (GCP) using TPU V4
VMs. Training larger models requires considerable time, and using TPUs helps accelerate the
training process. GCP offers a variety of TPUs; in this work, the models were trained on a TPU
VM pod slice with 128 nodes. To enable training on TPU devices, all datasets were converted to
TFRecord files.

TPUs (Tensor Processing Units) are specialised hardware accelerators designed to optimise
machine learning workloads, specifically neural network training. The choice of TPU V4 and the
configuration used in this study are among the most advanced, offering high computational
power and efficiency, which are crucial for handling the complexity and scale of modern deep
learning models. Converting datasets to the TFRecord format ensures efficient data loading and
preprocessing, further enhancing the training performance.

The models were trained using a batch size of 96 per node and an overall batch size of 6144.
Training scripts and models were written in Python 3 with Keras and TensorFlow 2.15.0, and the
training was done using TensorFlow 2.15.0-pjrt.

Testing metrics
SMILES to IUPAC name translation testing:

All model test results were evaluated for identical predictions for the SMILES to IUPAC
translation. The predicted IUPAC name string was compared with the original string to
determine whether it matched. If the predicted string was not identical to the original, it was
rejected as not identical.

Only in Experiment 3 were all the generated IUPAC names retranslated back into SMILES using
OPSIN. OPSIN was chosen because it systematically parses IUPAC names with a defined set
of rules. The retranslated SMILES strings were compared with the original SMILES strings to
determine the similarity between the original and predicted structures. Identical structures and
the Tanimoto similarity indices (using PubChem fingerprints) were evaluated.

The overall average of these values was used for the final assessment of a model's accuracy.

IUPAC name to SMILES translation testing:

The IUPAC to SMILES test results were evaluated by performing a one-to-one string match
between the original and predicted SMILES to determine how similar the predicted structures
were to the original structures. To assess the structural similarity, a Tanimoto similarity index
calculation (using PubChem fingerprints) was performed between the original and predicted
SMILES strings.
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The overall average of the prediction accuracy and the Tanimoto similarity were considered for
evaluating a model's accuracy.

Web App implementation

The web service implementation combines the strengths of Streamlit [35] for the front end and
FastAPI for the back end, ensuring an efficient and user-friendly interface paired with a robust
API.
FastAPI, chosen for its speed and efficiency, forms the backbone of the API, enabling the
creation of advanced, scalable RESTful endpoints and helping to integrate with Python
functions seamlessly. This choice facilitates rapid development and deployment of the backend
services while ensuring high performance and reliability. The front end and the back end are
containerised using Docker. Containerisation with Docker ensures consistent application
execution across different environments, simplifying dependency management and streamlining
the deployment process. Semantic versioning principles are meticulously applied to track
changes in the codebase and toolkit versions, ensuring clear and manageable updates and
backward compatibility. This holistic approach results in a seamless, high-performance web
service capable of handling complex tasks efficiently, offering a seamless experience for users
while maintaining robustness and scalability on the backend.
The web app constitutes functions to convert SMILES to IUPAC names, a Bulk Translate option
to translate more than a single SMILES string, and the ability to retranslate them back into
SMILES using OPSIN to verify the correct translation. It also offers an option to translate IUPAC
names back into SMILES using STOUT or OPSIN and search for IUPAC names in PubChem
using pubchempy.

Results and Discussion
The development of STOUT V2 demonstrates the transformer models' capacity and the fact that
neural networks can accurately perform the non-trivial task of converting SMILES to IUPAC
names. This work was solely possible due to the access of much-established rule-based
systems like OpenEye’s Lexichem software. Our primary goal of this work is to make this work
available to a wider audience, including those without a programming background, to simplify
their IUPAC naming tasks. The development process was centred on creating an accurate,
user-friendly tool that leverages the capabilities of the transformer-based models rather than
competing with any existing rule-based systems.

Experiment 1 - Impact of Dataset Size and Tokenisation on Model Performance:

In this experiment, a series of models were trained with SMILES as inputs and IUPAC names as
outputs, progressively increasing the dataset size.
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The IUPAC names were divided into tokens using two separate methods: token-wise splitting
and character-wise splitting (see appendix). Three models were trained for each combination
based on 1 million, 10 million, and 50 million training data points selected from PubChem.

Table 3: SMILES to IUPAC names translation performance comparison with increasing dataset
size.

IUPAC character-wise IUPAC token-wise

Train data 1 million 10 million 50 million 1 million 10 million 50 million

Test data 265,332 972,817 1,024,000 265,332 972,817 1,024,000

SMILES 83.42% 92.38% 94.70% 83.46% 92.04% 94.59%

In this study, all models were tested against the respective test datasets discussed in the
dataset section. Each model was compared on its ability to predict IUPAC names based only on
one-to-one string matches since we are primarily interested in a model that can produce more
accurate IUPAC names overall.

According to Table 3, the performance of SMILES models improves with increasing dataset
size, while the increment with unique tokens and maximum length has little effect on
performance. This trend can be seen with increasing dataset size, as illustrated in Figure 3.
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Figure 3: Comparison of SMILES representation performance using IUPAC character-wise and
tokenised approaches across different dataset sizes (1 Million, 10 Million, and 50 Million
molecules).

When examining IUPAC names tokenised by rules versus tokenided by character, the
character-level tokenisation demonstrates better performance in models trained with more than
1 million data points. Overall, the IUPAC split by characters performs better when used as
output using SMILES as input.

Experiment 2 - Training with Increased Data and Longer Sequences:

From Experiment 1, it was evident to use a Transformer model with SMILES as Input and
IUPAC names character-by-character as output. With this information, a bigger dataset obtained
from PubChem was used to train the same model to understand the performance gain and to
see whether there is an impact on the performance by doubling the input and output maximum
lengths of the strings.

The model was tested on 834,774 data points, and it was observed that it could produce
89.86% of accurate SMILES to IUPAC name translation when checked by a one-to-one string
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match. This reduction of accuracy was observed due to long complex names that were
introduced, and the longer string prediction was also made to create errors.

Using the same dataset, when an IUPAC name-to-SMILES model was trained, the model
performed with an accuracy of 94.46%, a Valid SMILES prediction of 99.54%, a Tanimoto 1.0
count of 97.47%, and an average Tanimoto of 0.99, indicating robust performance and
high-quality predictions.

Experiment 3 - Large-Scale Training and Generalisation Analysis:

This experiment aimed to investigate the impact of significantly increasing the training dataset
size on the performance of a transformer model for IUPAC name translation. Expanding the
dataset tenfold provided the model with a substantially larger number of examples,
hypothesising that this would lead to improved learning of IUPAC name translation patterns and
better overall generalisation.

The model for this study was trained on a dataset of nearly one billion data points, as described
in the methods section. The training was carried out on a TPU v4 VM with a 256-node pod slice,
with each epoch taking an average of 15 hours and 2 minutes. A second model was also
developed to perform the reverse task: IUPAC names were translated back into SMILES strings.
This model used the same dataset but with the input and output string representations reversed.
The approach was used to explore bidirectional conversion between chemical structures and
their standardised names.

The model was then evaluated using the test dataset from Experiment 2, yielding a performance
of 83.52% for exact string match in SMILES to IUPAC name translation.

For IUPAC to SMILES performance on the same test set, the model achieved a test accuracy of
90.46% with a Valid SMILES prediction of 99.1%, Tanimoto 1.0 count of 95.11% and a Tanimoto
average of 0.99.

This observed decrease in accuracies compared to Experiment 2 could be due to the larger and
more diverse dataset. While this approach enhances generalisability, it can also lead to a slight
decrease in performance on any single test set. The exposure to a broader range of examples
increased the likelihood of generating errors. Adding additional examples from sources other
than PubChem may have caused a data distribution shift [36,37]. This shift could have
introduced training examples that differ significantly from those in the test dataset, potentially
leading to reduced model performance on the original test set.

By increasing the maximum length of IUPAC names in training and predictions, the model can
learn from longer complex names, but it also increases prediction errors.
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A benchmark study using the ChEBI dataset was conducted to understand whether the model
improved overall. This experiment checked the models' ability to generalise and handle
previously unseen data, thus providing insights into their real-world applicability.

This test assessed the model's ability to generate correct IUPAC names by comparing the
predicted and original names using exact string matching.

To ensure that the predicted IUPAC names represent a valid chemical structure, a two-step
verification process was implemented. The predicted IUPAC names were reverse-translated
back into SMILES notation using OPSIN, and the resulting SMILES strings were then compared
to the original input SMILES strings to verify how similar the original and the retranslated
structures are using Tanimoto similarity using PubChem fingerprints incorporated in Chemistry
Development Kit (CDK) [38,39]. See Figure 4 for more details.

Figure 4: Performance of the SMILES to IUPAC name translation model with increasing dataset
size. Comparing the identical predictions, Percentage of IUPAC names retranslation, Tanimoto
1.0 percentage and Average Tanimoto for models.

Looking at the results in Figure 4, the identical predictions and the retranslation accuracy
increase with more training data, implying that the model's predicted IUPAC names become
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more consistent and fluent with more extensive training. Tanimoto 1.0 and Average Tanimoto
also improve significantly with more training data, reflecting a higher quality in the model's
predictions as it is trained on larger datasets. Overall, this suggests that increasing the training
data improves the model's generalisability, and one could get better and more accurate IUPAC
names.

To further understand the implications of the length of predicted IUPAC names, the predictions
were categorised according to the input SMILES length, and the prediction quality was then
analysed in detail.

As shown in Table 4, the prediction quality of the model trained on 100 million data points
reduces as the length of the SMILES increases. In contrast, the model trained on 1 billion data
points maintains better prediction quality across accuracy, retranslation using OPSIN, and
average Tanimoto similarity despite the increased complexity of the IUPAC names.

The retranslation fails for longer IUPAC names generated by the 100 million data points model
due to errors such as missing spaces, incorrect group order, formatting issues, incorrect
valency, and other OPSIN-related errors encountered during the retranslation of these names.
As seen in Figure 5, the poor quality of the retranslation decreases the overall average
Tanimoto similarity.

Table 4: Accuracy and Tanimoto Similarities by SMILES String Lengths for Different Data Sizes

Accuracy Retranslated Average Tanimoto

Group
characters
length

100
million 1 billion

100
million 1 billion 100 million 1 billion

1 0-60 92% 100% 99% 99% 0.98 0.99

2 61-120 84% 99% 96% 98% 0.94 0.98

3 121-180 62% 93% 84% 97% 0.82 0.97

4 181-240 47% 89% 72% 94% 0.71 0.94

5 241-300 23% 84% 68% 93% 0.65 0.93

6 301-360 8% 78% 42% 96% 0.39 0.96

7 361-420 26% 59% 32% 97% 0.31 0.96

8 421-480 18% 60% 27% 100% 0.26 1.00

9 481-540 0% 20% 40% 60% 0.40 0.60

10 541-600 0% 100% 0% 100% 0.00 1.00
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Figure 5: a) IUPAC Name Prediction Accuracy and Retranslation Quality Across SMILES String
Length Groups; b) Average Tanimoto Similarities Compared Across Various SMILES String
Length Groups

Similarly, the IUPAC to SMILES translation models, trained on 100 million and approximately 1
billion data points, were also compared using the ChEBI dataset. As seen in Table 5 the models
trained on 100 million and 1 billion data points perform almost similarly. However, the model
trained on 1 billion data points, which included IUPAC names longer than 600 characters, had to
learn more complex IUPAC names. This complexity slightly reduced the model's performance
compared to the 100 million data point model. In general, the performance of both models is
comparable.

Table 5: Performance of IUPAC to SMILES models trained on increasing training data

Training data
size Valid SMILES Identical Predictions

Tanimoto
1.0

Average
Tanimoto

100 million 99.80% 96.97% 99.12% 0.99

~ 1 billion 99.60% 96.23% 99.06% 0.99

In this work, the IUPAC names predicted to be different from the original IUPAC names were
entirely discarded during the accuracy calculation, as chemists prefer only 100% accurate
IUPAC names. Slightly different names are still considered incorrect.
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To understand how well the model handles slightly different IUPAC names, names that did not
match the original were retranslated using OPSIN, and the resulting structures were compared.
Table 6 summarises a few examples:

Table 6: The robustness of the model was evaluated by examining incorrectly predicted IUPAC
names that were retranslated into valid chemical structures.

Original Structure Predicted Structure Tanimoto
Similarity

3,5-dimethyl-4-(1-propan-2-yl
cyclopropyl)-1,2-oxazole

3-methyl-4-(1-propan-2-ylcyclopropyl)-1,2-oxazol
e

0.89

methyl5-[6-hydroxy-8-(2-phen
ylethynyl)-3,4-dihydro-1H-isoq
uinoline-2-carbonyl]furan-2-ca
rboxylate

methyl5-[6-hydroxy-8-(2-phenylethynyl)-3,4-dihyd
ro-1H-isoquinoline-2-carbonyl]pyran-2-carboxylat
e

0.8

[(1R,5S)-3-pentadecan-8-yl-3- [(1S,5R)-3-pentadecan-8-yl-3-azabicyclo[3.2.1]oc

1.0
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azabicyclo[3.2.1]octan-8-yl]cy
anamide

tan-8-yl]cyanamide

N'-(N-benzyl-C-dibenzofuran
-4-ylcarbonimidoyl)-N-methy
lidene-6-phenyldibenzofuran-
1-carboximidamide

N'-benzyl-N-[(methylideneamino)-(6-phenyldib
enzofuran-1-yl)methylidene]dibenzofuran-4-car
boximidamide

1.0

8-[(1R)-1-[[2-[(1,1-dioxo-1,2-thi
azolidin-2-yl)-hydroxymethyl]p
yridin-3-yl]amino]ethyl]-3,6-di
methyl-2-phenylchromen-4-on
e

8-[(1R)-1-[[2-[(1,1-dioxo-1,2-thiazolidin-2-yl)-hydr
oxymethyl]pyridin-3-yl]amino]ethyl]-6-methyl-2-p
henylchromen-4-one

0.99

As shown in Table 6, although the IUPAC names generated by the model are incorrect
compared to the original IUPAC names, the resulting chemical structures are often very similar.
In some cases, they are identical. This indicates that the model makes only minor errors in
predicting the IUPAC names. Upon visual inspection of the depicted structures, these slight
inaccuracies in naming can be readily identified and corrected by a trained chemist. This can
significantly improve the process of naming chemical compounds. This model's capability
makes it a valuable tool in assisting chemists with the often time-consuming task of compound
nomenclature.

Some names failed to retranslate completely due to errors in the predicted names and
limitations within OPSIN. Examples of these errors are listed in Table 7.

Table 7: Examples of OPSIN retranslation errors:
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Original IUPAC Name Predicted IUPAC Name OPSIN error messages

tert-butyl
12-(2-aminoquinolin-8-yl)-13-f
luoro-16-methoxy-8-methyl-9-
oxa-2,5,11,15,17-pentazatricy
clo[8.7.1.014,18]octadeca-1(1
7),10,12,14(18),15-pentaene-
5-carboxylate

tert-butyl
15-(2-aminoquinolin-8-yl)-14-f
luoro-17-methoxy-11-methyl-
10-oxa-2,5,8,16,18-pentazatri
cyclo[7.7.1.013,17]heptadeca
-1(16),9(17),13(17),14-tetrae
ne-5-carboxylate

Could not find the atom with
locant 18.

tert-butyl
(8S)-12-chloro-13-fluoro-16-
methoxy-6,8-dimethyl-9-oxa-
2,5,11,15,17-pentazatricyclo[
8.7.1.014,18]octadeca-1(17),
10,12,14(18),15-pentaene-5-
carboxylate

tert-butyl
(3S)-16-chloro-15-fluoro-13-
methoxy-3,5-dimethyl-2-oxa-
6,9,11,12,14-pentazatricyclo[
8.6.1.015,17]heptadeca-1(16)
,10,12,14-tetraene-6-carboxyl
ate

Atom is in unphysical valency
state! Element: C valency: 5

N'-[[methyl-[1-(6-spiro[1,2-dih
ydrofluorene-9,9'-6,7-dihydro
xanthene]-3'-ylpyridin-3-yl)eth
yl]amino]-phenylmethyl]benze
necarboximidamide

N'-[[methyl-[1-(6-spiro[1,2-dih
ydrotriphenylene-9,9'-6,7-dihy
droxanthene]-3'-ylpyridin-3-yl)
ethyl]amino]-phenylmethyl]be
nzenecarboximidamide

Failed to assign all double
bonds! (Check that indicated
hydrogens have been
appropriately specified)

(7S,10S,13S)-N-[(1S)-1-cyclo
propylethyl]-10-(2-morpholin-
4-ylethyl)-9,12-dioxo-13-(2-ox
opyrrolidin-1-yl)-2-oxa-8,11-di
azabicyclo[13.3.1]nonadeca-
1(18),15(19),16-triene-7-carb
oxamide

(7S,10S,13S)-N-[(1S)-1-cyclo
propylethyl]-13-(2-morpholin-
4-ylethyl)-9,12-dioxo-16-(2-ox
opyrrolidin-1-yl)-2-oxa-8,11-di
azabicyclo[16.3.1]docosa-1(2
1),18(22),19-triene-7-carboxa
mide

Could not find atom that:
<stereoChemistry locant="10"
type="RorS" value="S"
stereoGroup="Abs">10S</ste
reoChemistry> appeared to
be referring to

(4R,6R)-6-[(1R)-1-[[2-[amino(
methanimidoyl)amino]acetyl]a
mino]ethyl]-4-methyl-7-oxo-3-
[(3S,5S)-5-[3-(1,2,4-triazol-4-
yl)azetidine-1-carbonyl]pyrroli
din-3-yl]sulfanyl-1-azabicyclo[
3.2.0]hept-2-ene-2-carboxylic
acid

4R,6R)-4-[(1R)-1-[[2-[amino(
methanimidoyl)amino]acetyl]a
mino]ethyl]-6-methyl-2-oxo-3-
[(3S,5S)-5-[3-(1,2,4-triazol-4-
yl)azetidine-1-carbonyl]piperi
din-3-yl]sulfanyl-1-azabicyclo[
3.2.0]hept-3-ene-8-carboxylic
acid

Suffix: imido does not apply
to the group it was associated
with (type: standardGroup)
according to
suffixApplicability.xml

Table 7 reveals several issues in automated chemical nomenclature using deep learning. While
many predicted names were successfully retranslated, some failed due to errors in the
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generated names and limitations within OPSIN. The errors mentioned above indicate the
complexities of automated IUPAC name generation and interpretation, particularly for intricate
organic molecules. Despite these challenges, the model could generate structurally similar
names in many cases. However, the results underscore the continued importance of expert
verification in deep learning-based chemical nomenclature tasks and point to specific areas for
improvement in name-generation models and parsing software like OPSIN.

STOUT Web Application

https://doi.org/10.26434/chemrxiv-2024-089vs ORCID: https://orcid.org/0000-0003-1066-7792 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-089vs
https://orcid.org/0000-0003-1066-7792
https://creativecommons.org/licenses/by/4.0/


Figure 6: The STOUT web application interface, featuring a home page for single SMILES input
(a), batch processing for up to 50 SMILES strings (b) example (e), the Ketcher editor for drawing
structures (c), and the IUPAC to SMILES translation with structure depiction using CDK (d).

This work also includes a web application designed to support the automated naming of
chemical structures for chemists or chemical database curators. The Web App, leveraging the
STOUT models, allows users to input SMILES strings of the chemical compounds and receive
IUPAC names. It also provides a feature to check whether the compound is already catalogued
in PubChem, displaying the corresponding IUPAC name, if available, and retrieved directly from
PubChem.

The Web App supports bulk submission of up to 50 SMILES strings, facilitating the generation of
IUPAC names for multiple compounds simultaneously. These generated names can be
retranslated using OPSIN and visualised using CDK at the backend, enabling users to compare
the original and predicted structures. The results can be downloaded in HTML, JSON, or text
formats.

It also includes a Ketcher[40] window for drawing chemical compounds and obtaining their
IUPAC names. For IUPAC names to SMILES conversion, users can choose to utilise either
STOUT or OPSIN, with the Web App depicting the resulting structure for visual analysis of the
predictions. This web application is completely containerised, so those who do not want to use
the web application available online can spin up their web application locally using the Docker
container.

Conclusion
This work presents STOUT V2.0, an improved successor for SMILES to IUPAC name
Translator. This work represents a significant advancement in automated deep learning-based
IUPAC name generation. It was, however, only possible due to the availability of IUPAC names
generated by deterministic naming algorithms, in our case, by OpenEye's Lexichem software. A
substantial improvement was achieved by leveraging the transformer-based models for deep
learning.

In terms of tokenisation strategy, it was discovered that character-split tokenisation of IUPAC
names yielded better overall accuracy compared to word-split tokenisation. These
character-split models also demonstrated faster training times and utilised fewer unique tokens.

We conducted large-scale training on a dataset of nearly one billion compounds to improve
model generalisability. While we observed a slight decrease in accuracy on specific test
datasets, the overall performance on a comprehensive benchmark dataset showed significant
improvement. This suggests the increased training data enhanced the model's ability to handle
a wider range of chemical structures. Moreover, a bigger model, such as the Large Language
Model (LLM), could be used along with bigger training data.
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By expanding the input token context window to 700 characters and extending the prediction
window to 1000 characters, STOUT V2.0 can now generate longer, more complex IUPAC
names. This expansion is crucial for accurately naming larger molecular structures.
Furthermore, we leveraged the latest TPU VMs to train the models, significantly reducing
training time for these complex models with extensive datasets. These improvements in training
hardware accelerate the development process and enable one to use more data and complex
model architectures to train and test.

Our user-friendly web application further enhances the accessibility and usability of STOUT
V2.0, which is now accessible to users with limited programming knowledge. The application
includes integrated visualisation features that enable trained chemists to identify and promptly
correct minor errors in generated IUPAC names. This feature not only improves the accuracy of
the output but also serves as a valuable educational tool for understanding the nuances of
IUPAC nomenclature.

By making the model checkpoints, weights, and fully documented source code available as
open-source resources, we aim to promote unrestricted use and encourage further development
within the field. This will allow researchers in this field to build upon our work and adapt it to their
specific needs.

List of abbreviations
BLEU - BilinguaL Evaluation Understudy
CDK - CHemistry Development Kit
CPU - Central Processing Unit
GRU - Gated Recurrent Units
IUPAC - International Union of Pure and Applied Chemistry
LLM - Large Language Model
NLP - Natural Language Processing
OCSR - Optical Chemical Structure Recognition
OPSIN - Open Parser for Systematic IUPAC Nomenclature
REST - REpresentational State Transfer
RNN - Recurrent Neural Networks
SDF - Structure-Data File
SMILES - Simplified Molecular Input Line Entry Specification
STOUT - Smiles TO iUpac Translator
TFRecord - Tensor Flow Record
TPU - Tensor Processing Units
V - Version
VM - Virtual Machine
XML - Extensible Markup Language
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Availability and requirements
● Project name: Smiles TO iUpac Translator
● Project home page: https://github.com/Kohulan/Smiles-TO-iUpac-Translator

○ Web Application: https://github.com/Kohulan/STOUT_WebApp
○ Models and checkpoints: https://zenodo.org/records/13318286

● Current version: v2.0.7
● DOI of the archived current release:
● Operating system(s): Independent
● Programming language: Python 3
● Requirements:

○ API calls:
■ Internet connection and command line interface or a web browser

○ Run locally:
■ Docker - To use the STOUT Web app as a Docker container
■ Conda environment - to use STOUT natively without Docker as a Python

package
○ Dependencies (managed by Docker/Conda):

■ Python packages: uvicorn>=0.15.0,<0.16.0, fastapi>=0.80.0,
fastapi-pagination==0.10.0, fastapi-versioning>=0.10.0,
pystow>=0.4.9, unicodedata2==15.0.0, tensorflow==2.15.0-pjrt,
httpx>=0.24.1

● Licence: MIT
● Documentation:

○ Home page: https://stout.decimer.ai
○ API: https://stout.api.decimer.ai/latest/docs
○ Python docs: https://stout-web-application.readthedocs.io/en/latest/index.html

● Any restrictions to use by non-academics: None
● PyPi Package: https://pypi.org/project/STOUT-pypi/
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Appendix

1. tokenisation:

SMILES tokenisation: The same tokenisation strategy for SMILES strings as outlined in our
previous work[19], utilising the Keras[41] tokeniser for generating the token sequences. The
SMILES strings were split into meaningful tokens according to the following set of rules:

- Each heavy atom (e.g., "C", "Si", "Au") was treated as a separate token.
- Each open and closed bracket (i.e., "(", ")", "[", "]") was tokenised individually.
- Each bond symbol ("=", "#") was considered as a separate token.
- The characters ".", "-", "+", "", "/", "@", "%", and "*" were split into individual tokens.
- Each single-digit number was tokenised separately.

After splitting the SMILES strings into tokens, a "<start>" token was added at the beginning of
each sequence, and an "<end>" token was appended at the end.

DeepSMILES tokenisation: Similar to SMILES tokenisation, the DeepSMILES were also split
into meaningful tokens using the same ruleset.

IUPAC Names tokenisation: IUPAC names were split after certain characters like opening
brackets ("(", "{", "["), closing brackets (")", "}", "]"), dashes "-", periods ".", and commas ",".
Additionally, they were split after specific prefixes and chemical terms like "mono", "di", "tri",
"tetra", "penta", "hexa", "hepta", "octa", "nona", "deca", "oxo", "methyl", "hydroxy", "benzene",
"oxy", "chloro", "cyclo", "amino", "bromo", "hydro", "fluoro", "methane", "cyano", "amido",
"ethene", "phospho", "amide", "butane", "carbono", "sulfane", "sulfino", "iodo", "ethane",
"ethyne", "bi", "imino", "nitro", "butan", "idene", "sulfo", "carbon", "propane", "ethen",
"acetaldehyde", "benzo", "oxa", "nitroso", "hydra" and "iso". This tokenisation approach aimed to
break down the IUPAC name representations into meaningful subunits.

IUPAC Names tokenisation Characterwise: Character-wise tokenisation involved splitting each
IUPAC name into tokens after each character, with spaces also treated as characters. For
example, "benzene" can be tokenised by splitting into meaningful segments or characters,
resulting in different counts of unique tokens. Character-wise splitting would break "benzene"
into 7 tokens with 4 unique tokens.
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2. Experiment 1 - Impact of Dataset Size and Tokenisation on
Model Performance:

The training dataset was obtained from the PubChem database. Of the 110 million compounds
downloaded using the chemfp implementation of the MaxMin algorithm, approximately 51
million were selected.

Training and Test Sets:
● From the 51 million subset, a training dataset of 50 million compounds and a testing

dataset of 1 million compounds were chosen.
● Additionally, an 11 million compound subset was selected using the MaxMin algorithm,

from which a training set of 10 million compounds and a test set of 1 million compounds
were created.

● A final subset of 1 million compounds for training and 250,000 for testing was also
selected from the 11 million subset.

tokenisation Procedures

SMILES tokenisation followed the methods described in Appendix 1.

IUPAC Names tokenisation: The IUPAC names were split into meaningful tokens using the
tokenisation rules from Appendix 1 and were also split into tokens character-wise separately,
resulting in three additional training datasets.

https://doi.org/10.26434/chemrxiv-2024-089vs ORCID: https://orcid.org/0000-0003-1066-7792 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-089vs
https://orcid.org/0000-0003-1066-7792
https://creativecommons.org/licenses/by/4.0/

