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Abstract 

Dimensionality reduction is an important exploratory data analysis method that allows high-

dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively 

applied in the analysis of chemical libraries, where chemical structure data — represented as high-

dimensional feature vectors—are transformed into 2D or 3D chemical space maps. In this paper, 

commonly used dimensionality reduction techniques — Principal Component Analysis (PCA), t-

Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and 

Projection (UMAP), and Generative Topographic Mapping (GTM) — are evaluated in terms of 

neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL 

database. 

keywords: dimensionality reduction, chemical libraries, chemical space, chemography, 

principal component analysis, t-distributed Stochastic Neighbor Embedding, Uniform Manifold 

Approximation and Projection, Generative Topographic Mapping 

 

Introduction 

Dimensionality reduction (DR) is an important machine learning (ML) technique used to 

produce a compressed low-dimensional embedding of a given high-dimensional dataset, serving either 

as a data preprocessing step for further application of other machine learning algorithms or as a tool 

for visualizing human-interpretable 2 or 3 dimensions (2D and 3D).1–3 As a visualization tool DR 

techniques are ubiquitous and are widely used in a variety of fields, including extensive application 

for omics studies4, and chemical space analysis5. In the latter, they have coined the term 
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“chemography” by analogy to geography6. Chemography aims at converting the data on chemical 

structures that are frequently represented as a feature vector of high dimensionality in the form of a 

2D chemical space map. Beyond their illustrativeness and artistic visual appeal7, chemical space maps 

can be combined with other tools, such as deep generative models 8,9 to effectively guide chemical 

space exploration, or accelerate similarity-based virtual screening10. 

Numerous benchmarking studies have been conducted to compare DR methods, both for tasks 

in specific domains and across numerous fields.4,11–13. These studies highlight non-linear DR 

algorithms t-Distributed Stochastic Neighbor Embedding (t-SNE)14, Uniform Manifold 

Approximation and Projection (UMAP)15 as the best-performing methods. However, a linear DR 

method, Principal Component Analysis (PCA), is also very popular and is sometimes reported as more 

efficient16. Therefore, there is no single method that is universally superior; the choice of method 

should be guided by its suitability for a particular set of tasks. While chemical datasets have been 

benchmarked in some studies11,17–19, a detailed discussion of the DR methods' relevance in the context 

of chemical space analysis for medicinal chemistry-relevant small organic molecules is lacking in the 

literature. 

This paper compares dimensionality reduction (DR) techniques for exploring chemical space. 

Specifically, we evaluate the effectiveness of three non-linear methods — t-SNE, UMAP, and 

Generative Topographic Mapping (GTM)—and one linear method, PCA, commonly used for 

visualizing chemical spaces20–22. The analysis utilizes subsamples from the ChEMBL database23, 

focusing on compounds tested against specific biological targets. Various representations of different 

dimensionalities were used to describe chemical compounds and a grid-based search was conducted 

to optimize hyperparameters with neighborhood preservation as the objective. The results confirmed 

the strong performance of the non-linear methods in neighborhood preservation. Additionally, 

scatterplot diagnostics (scagnostics)24 were applied to quantitatively assess the characteristics of the 

chemical space maps that can be relevant to human perception. The strengths and weaknesses of these 

methods are discussed, highlighting their effectiveness and potential limitations. 

 

Methods 

Workflow for comparing dimensionality reduction approaches for 

chemical space analysis 

The dimensionality reduction techniques were assessed in two ways: the accuracy of 

neighborhood preservation and visual interpretability. The general scheme for the comparative 

analysis of DR techniques used in this paper is presented in Figure 1. To optimize hyperparameters, a 

grid-based search was conducted using the percentage of preserved nearest 20 neighbors from the 

high-dimensional space as the optimization metric. The optimized models were then evaluated using 
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additional neighborhood preservation metrics. Additionally, to quantitatively assess the visual 

interpretability of the plots, scatter diagnostics24 (scagnostics) were calculated providing relevance of 

the method's visualization for better human perception. 

 

 

Figure 1. Workflow for comparing dimensionality reduction methods for chemical space 

visualization. Initially, 13 datasets with low intrinsic dimensionality are retrieved from ChEMBL. 

These datasets are then processed using three distinct descriptor types: Morgan count fingerprints, 

MACCS keys, and ChemDist. Subsequently, dimensionality reduction techniques, including t-SNE, 

GTM, and UMAP, are applied, with hyperparameters optimized for neighborhood preservation. A 

comparative analysis focused on evaluating the preservation of neighborhood structures and the visual 

interpretability of the chemical space maps (low-dimensional embeddings) is performed. 

In summary, the objective of this study is to evaluate the performance of various 

dimensionality reduction (DR) methods across different scenarios: 

1. Comparison of Neighborhood Preservation for in-sample DR: This involves assessing how well 

the methods maintain neighborhood relationships within a series of target-specific ChEMBL 

subsets, using the entire dataset for training. 

2. Comparison of Neighborhood Preservation for out-of-sample DR: The neighborhood 

preservation was assessed in a Leave-One-Library-Out Scenario (LOLO). This focuses on 
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evaluating the DR methods when applied to new data, where one library is excluded during 

training. 

3. Quantitative Evaluation of Visualizations: The visualizations generated by the DR methods are 

quantitatively assessed using scagnostics metrics. 

This contribution does not account Neighborhood Behavior25 (NB, the hypothesis that 

structurally similar compounds exhibit similar biological properties). It only focuses on the question 

of the impact of DR on the neighborhood of items, and does not further explore the question whether 

resulting maps are effectively regrouping activity-related molecules. Map NB-compliance is 

expectedly worse than original descriptor space compliance, but this issue has been extensively 

explored at least for one method, GTM, known to support highly NB-compliant property 

“landscapes”26,27. Therefore, the biological properties of the compounds were not included into the 

analysis. 

 

Data collection and preprocessing 

Subsets of chemical compounds were retrieved from a pool of preprocessed target specific 

subsets from ChEMBL version 33 database,23 prepared according to an in-house protocol as 

previously described 28,29. The selection of datasets was based on two criteria: each subset contains 

more than 400 compounds, and the intrinsic dimensionality, calculated using Fisher’s separability 

algorithm30 on the data represented as Morgan count fingerprints (see below) shall cover a wide range 

of values. In addition to these target-specific subsets, three random subsets of sizes 500, 1500, and 

9269 were also retrieved from ChEMBL.  

 

Descriptor calculation 

Descriptors were calculated using the RDKit (v.2022.09.5) library31. Compounds were 

represented as Morgan count fingerprints with radius 2 and fingerprint size 1024. For each dataset, all 

zero-variance features were removed, and the remaining features were standardized. 

Three types of descriptors with varying number of dimensions were used: Morgan count 

fingerprints32, MACCS keys33, and embeddings from deep neural network34 (ChemDist). 

Morgan count fingerprints and MACCS keys were calculated using the RDKit (v.2022.09.5) 

library31. For Morgan count fingerprints radius 2 and fingerprint size 1024 were used. Default RDKit 

parameters were used to generate MACCS keys. 

ChemDist embeddings were obtained using the pretrained network34. The default parameters 

were used. 
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For each dataset, all zero-variance features were removed, and the remaining features were 

standardized before applying a dimensionality reduction algorithm. 

 

Dimensionality reduction methods 

The following implementations of dimensionality reduction algorithms were used: the PCA 

algorithm implemented in scikit-learn (version 1.4.1.post1); the t-SNE algorithm from the OpenTSNE 

(version 1.0.1) library35; the UMAP algorithm from the umap-learn (version 0.5.5) library15; and an 

in-house algorithm for GTM, which is available upon request36. 

 

Defining “Neighbors” in descriptor and latent space respectively. 

In latent space (on the maps) the first k neighbors of an item i are found by calculating the 

Euclidean distances between the projection of i and all the projections of the remaining set members 

and ranking the latter. 

In descriptor spaces, “default” neighbor definition used the same approach, based on 

respective Euclidean distances. However, an alternative definition of distance as the complement of 

the Tanimoto similarity score (1-T) was also employed. No normalization of descriptors was 

undertaken for calculating Tanimoto similarity values. 

 

Neighborhood preservation analysis 

As a primary metric of the neighborhood preservation for the optimization, an average number 

of nearest neighbors preserved between the original and the latent spaces was used11: 

𝑃𝑁𝑁(𝑘) =  ∑
𝑆𝑖𝑘

𝑘×𝑁

𝑁
𝑖=1 , (1) 

where 𝑃𝑁𝑁(𝑘) is the neighborhood preservation score, 𝑘 represents the number of considered 

nearest neighbors, 𝑆𝑖𝑘 is the number of the shared 𝑘-nearest neighbors of the i-th compound from the 

N populating the latent space and original spaces. 

Additionally, the following metrics for evaluating neighborhood preservation suggested in the 

literature were calculated37: co-k-nearest neighbor size (QNN) (2), an area under QNN curve AUC(QNN) 

(3), local continuity meta criterion (LCMC) (4), the local (Qlocal) (5) and global (Qglobal) (6) properties, 

trustworthiness (7), continuity (8). 
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The calculation of the metrics is based on building co-ranking matrix (Q) (Figure 2). The 𝑄𝑘𝑙 

elements of the matrix Q count how many samples of rank k became of rank l37. The off-diagonal 

elements of Q are being used to calculate all the metrics. In the case of ties in the ranking, the ranks 

were selected randomly. 

 

Figure 2. Metrics used for the analysis of neighborhood preservation (a) The descriptor space 

and the corresponding latent space are compared through (i) distances between data points that are 

then (ii) converted into a ranking of the nearest neighbors for each instance. The co-ranking matrix Q 

with elements (Qkl) is calculated based on the ranking matrices. (b) The illustration of the calculation 

of metrics based on the co-ranking matrix and equations (2)-(9). 

 

Co-k-nearest neighbor size 

𝑄𝑁𝑁(𝑘) =
1

𝑘𝑚
∑ ∑ 𝑄𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1          (2), 

where k is a row and a column index, m – number of rows/columns in the coranking matrix, 

Qij - elements of the co-ranking matrix Q. 
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This measures the number cases where the neighborhood is preserved in a given tolerance, up 

to rank k. It corresponds to the green region in the Q matrix represented in Figure 2b. 

 

Area under the QNN curve 

𝐴𝑈𝐶 =
1

𝑚
∑ 𝑄𝑁𝑁(𝑘)𝑚

𝑘=1          (3), 

where k is a row index, m – number of rows/columns in the co-ranking matrix Q, QNN(k) – co-

k-nearest neighbor size as calculated by the equation 2. 

AUC characterizes the global neighborhood preservation based on the QNN curve as shown in 

Figure 2b. 

 

 

Local Continuity Meta Criterion (LCMC) 

𝐿𝐶𝑀𝐶(𝑘) = 𝑄𝑁𝑁(𝑘) −
𝑘

𝑚−1
         (4), 

where k is a row index, m – number of rows/columns in the co-ranking matrix Q, QNN(k) – co-

k-nearest neighbor size as calculated by the equation 2. 

LCMC is a normalized (by the number of neighbors (
𝑘

𝑚−1
) that can be retrieved randomly) 

version of QNN. 37 

 

LCMC maximum point𝑘𝑚𝑎𝑥 = arg max
𝑘

𝐿𝐶𝑀𝐶(𝑘)      (5), 

where k is a row index in the co-ranking matrix Q, LCMC (k) – local continuity meta criterion 

as calculated by the equation 4. 

The inflection point of the LCMC curve corresponding to the number of neighbors  (Figure 

2b). 

 

Local and global property metric 

𝑄𝑙𝑜𝑐𝑎𝑙 =
1

𝑘𝑚𝑎𝑥
∑ 𝑄𝑁𝑁(𝑘)𝑘𝑚𝑎𝑥

𝑘=1          (6), 
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𝑄𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑚−𝑘𝑚𝑎𝑥
∑ 𝑄𝑁𝑁(𝑘)𝑚−1

𝑘=𝑘𝑚𝑎𝑥
        (7) 

where kmax is an inflection point in LCMC curve as calculated by the equation 5, k is a row 

index, m – number of rows/columns in the co-ranking matrix. 

Qlocal and Qglobal represent local and global neighborhood preservation, respectively, as 

calculated from the LCMC curve (Figure 2b). These correspond to the green and red areas in Figure 

2b when k equals kmax. 

 

Trustworthiness and continuity 

T(k) = 1 −
2

mk(2m−3k−1)
∑ ∑ Qij × (i − k)k

j=1
m
i=k       (8), 

C(k) = 1 −
2

mk(2m−3k−1)
∑ ∑ Qij × (j − k)m

j=k
k
i=1       (9), 

where k is a row index, m – number of rows/columns in the co-ranking matrix Q, Qij - elements 

of the co-ranking matrix. 

Trustworthiness and continuity correspond to hard intrusions (bottom left corner in Figure 2b) 

and hard extrusions (top right corner in Figure 2b), respectively. Hard intrusions occur when data 

points (compounds) that are distant in the descriptor space appear close in the latent space. Hard 

extrusions happen when compounds that are close in the descriptor space appear far apart in the latent 

space. 

 

Quantitative assessment of chemical space visualization using 

scagnostics 

To quantitatively evaluate the interpretability of the visualization we used scagnostics 

(scatterplot diagnostics)24,38 – visual representation quality metrics, which map a visual pattern to a 

real number and are frequently used to found visualizations that contain interesting patterns in an 

automated manner39. Scagnostics were calculated using an R package scagnostics40 (version 0.2-6). 

The scagnostics were calculated according to equations 10-19 as suggested in the original 

publications by Wilkinson et al.24,38. In brief, scagnostics are calculated using three principle 

geometric concepts: the minimum spanning tree, the convex hull, and the alpha hull (Figure 3). 
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Figure 3. Three fundamental geometric constructs utilized in the calculation of scagnostics: 

the Minimum Spanning Tree (MST), the Alpha Hull, and the Convex Hull. The MST (left panel) 

represents the shortest possible tree that connects all points. The Alpha Hull (middle panel) provides 

a nuanced boundary of the point set by incorporating concavities, thus capturing more detailed 

structural features and revealing local patterns that the convex hull might overlook. The Convex Hull 

(right panel) represents the smallest convex polygon encompassing all points, offering a broad 

overview of the dataset's outer boundary. 

 

In the following equations (10-19), H stands for the convex hull, A stands for the alpha hull, 

and T stands for the minimum spanning tree. 

The Outlying scagnostic is calculated based on the minimum spanning tree T and measures 

the ratio of outlying dots, i.e., dots that are relatively far from others in the plot. It is defined as the 

proportion of the total edge length of the minimum spanning tree T that is accounted for by the total 

length of edges adjacent to these outlying points38: 

coutlying =
length(Toutliers)

length(T)
         (10), 

where length(T) is the total edge length for the MST graph, length (Toutliers) is the total edge 

length for the outliers in the MST graph.  

An outlier is defined to be a vertex with degree 1 and associated edge weight greater than w, 

where w is calculated using equation (11): 

𝑤 = 𝑞75 + 1.5(𝑞75 − 𝑞25)        (11), 

where q75 and q25 are the 75th and 25th percentiles of the MST edge lengths. 

 

Several following metrics (12-15) characterize the shape of the set of scattered points. 
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The Convex scagnostic characterizes the convexity of the 2D point distribution's shape is 

calculated as the ratio of the area of the alpha hull and the area of the convex hull 

cconvex =
area(A)

area(H)
          (12), 

where area(A) and area(H) are the areas of the alpha hull and the area of the convex hull 

respectively. 

 

Skinny scagnostic evaluates the ratio of perimeter to area of a polygon: 

cskinny = 1 −
√4πarea(A)

perimeter(A)
         (13), 

where area(A) and perimeter (A) are the area and the perimeter of the alpha hull respectively. 

 

The Stringy scagnostic defines how “path-like” is MST and is calculated using the equation 

14: 

cstringy =
diameter(T)

length(T)
          (14), 

where diameter(T) and length(T) are the diameter and length of all MST edges. 

 

Straight scagnostic is defined as the Euclidean distance between the points at the ends of the 

longest shortest path of the MST divided by the diameter: 

cstraight =
dist(tj,tk)

diameter(T)
          (15), 

where tj and tk are the vertices in T on which the diameter is defined. 

 

Monotonic scagnostic is defined as the square of Spearman correlation coefficient (rspearman) 

between coordinates and characterizes the presence of a clear trend on the plot: 

cmonotonic = rspearman
2          (16), 

 

Skewed scagnostic evaluates the relative density of points in a scattered configuration: 
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cskew =
(q90−q50)

(q90−q10)
          (17), 

where q90, q50, q10 are quantiles of the MST edge lengths. 

 

Clumpy scagnostic characterizes the presence of clusters and is calculated as: 

cclumpy(T) = max
j

[1 − max
k

length(ek)

length(ej)
],       (18) 

where j indexes edges in the MST and k indexes edges in each runt set derived from an edge 

indexed by j. The runt set corresponds to an edge that is the smaller of the two subsets of edges that 

are still connected to each of the two vertices in e j after deleting edges in the MST with lengths less 

than length(ej). 

 

Striate scagnostic assesses the presence of multiple parallel lines and defined as: 

cstriate(T) =
1

|V(2)|
∑ |cos θe(v,a)e(v,b)|v∈V(2) ,       (19) 

V(2) ⊆V be the set of all vertices of degree 2 in V. 
 

The metrics used in this study are summarized in Table 1. 

Table 1. List of measures used to assess the neighborhood and scagnostics of dimensionality 

reduction techniques. 

Name Range Comment Equation 

Neighborhood preservation metrics 

Neighborhood 

preservation score (PNN) 

0-1 

(1 – all neighbors 

preserved at given k, 0 

– no neighbors 

preserved at given k) 

Real-valued metric: 

Characterizes the 

preservation of 

neighbors without 

considering their ranks 

in the descriptor and 

latent spaces. 

(1) 
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Co-k-nearest neighbor 

size (QNN (k)) 

0-1 

(1 – ideal 

neighborhood 

preservation at given 

k) 

Real valued metric: 

Evaluates the 

preservation of 

neighbors at a given 

nearest neighborhood 

size k, considering their 

ranks in both descriptor 

and latent spaces. 

(2) 

Area under the QNN 

curve (AUC) 

0.5-1 

(1 – ideal 

neighborhood 

preservation)  

Real-valued metric: 

Summarizes the global 

preservation of 

neighbors based on 

QNN. 

(3) 

Local Continuity Meta 

Criterion (LCMC (k)) 

0-1 

(1 – all neighbors 

preserved at given k, 0 

– no neighbors 

preserved at given k) 

Real valued metric: 

QNN (k) value is 

normalized by the 

number of neighbors 

that can be drawn 

randomly for a given k 

(4) 

kmax 

1-N, 

where N – the number 

of data points in the 

dataset (larger kmax 

values signify larger 

preserved local 

neighborhoods) 

Integer: The maximum 

value point of the 

LCMC curve. 

(5) 

Qlocal 

0-1 

(1 – high local 

neighborhood 

preservation, 0 – low 

local neighborhood 

preservation) 

Real number: Metric 

characterizing local 

neighborhood 

preservation based on 

LCMC for (k<kmax) 

(6) 

Qglobal 0-1 

(1 – high global 

Real number: Metric 

characterizing global 

(7) 
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neighborhood 

preservation, 0 – low 

global neighborhood 

preservation) 

neighborhood 

preservation based on 

LCMC for k>kmax 

Trustworthiness 

0-1 

(1 – no hard 

intrusions, 0 – large 

number of hard 

extrusions) 

Real number: Indicates 

the presence of hard 

intrusions. 

(8) 

Continuity 

0-1 

(1 – no hard 

extrusions, 0 – large 

number of hard 

extrusions) 

Real number: Indicates 

the presence of hard 

extrusions. 

(9) 

Scagnostics 

Outlying 0-1 

Characterizes the 

presence of outlying 

data points on a scatter 

plot. 

(10) 

Convex 0-1 

Characterizes various 

aspects of the shape 

distribution of data 

points on a scatter plot. 

(12) 

Stringy 0-1 (13) 

Straight 0-1 (14) 

Monotonic 0-1 

Determines if a clear 

trend can be identified 

on a scatter plot. 

(15) 

Skewed 0-1 (16) 
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Clumpy 0-1 

Provides characteristics 

of the density of the 

data point distribution 

on a scatter plot. 

(17) 

Striated 0-1 
Characterizes the 

coherence of the plots. 
(18) 

 

Optimization of hyperparameters 

The following hyperparameters were optimized for non-linear methods, with a total of 72 

parameters tested for each method. 

The PCA calculations have been performed using scikit-learn v. 1.5.0 software. The 

implementation is based on the singular value decomposition. The default (’auto’) parameter of 

‘svd_solver’ was used. Only the 2 first principal components are used to project the datasets.  

For t-SNE, the hyperparameters were chosen according to the suggestions from Gove et al.41 

Perplexity values were chosen to be [1, 2, 4, 8, 16, 32, 64, 128]. Exaggeration values were chosen to 

be [1, 2, 3, 4, 5, 6, 8, 16, 32]. The learning rate was kept as the default of OpenTSNE, since t-SNE is 

more robust to changes in learning rate around our empirical hyperparameter guideline than to changes 

in perplexity or exaggeration.35 Fast Fourier Transform accelerated interpolation method was used to 

calculate gradients. 

For UMAP, the parameter grid included 9 values for nearest neighbors (n_neighbors): [2, 4, 

6, 8, 16, 32, 64, 128, 256] and 8 values for minimal distance (min_dist): [0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 

0.8, 0.99].  

The GTM parameter grid encompassed configurations such as the number of nodes set to 225, 

625, and 1600; the number of basis functions set to 100, 400, and 1225; regularization coefficients 

(reg_coeff) of 1, 10, and 100; and basis widths of 0.1, 0.4, 0.8, and 1.2. 

 

Intrinsic dimension analysis 

Intrinsic dimension analysis with Fisher separability algorithm was performed using scikit-

dimension library (v. 0.3.3).42 
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Results 

 

Neighborhood preservation analysis 

Neighborhood preservation analysis for in-sample dimensionality reduction 

Although numerous chemical datasets are available for benchmarking supervised machine 

learning methods43–45, to our knowledge there are no datasets designed to evaluate the quality of DR 

neighborhood preservation and visualization. In this study, we focused on small organic molecules 

tested against specific ChEMBL targets. Following observations on the importance of low intrinsic 

dimension for achieving meaningful visualization11,16,42, these datasets were chosen to cover a wide 

range of intrinsic dimension values as assessed by the Fisher separation method using Morgan count 

fingerprints as features30. In total, 103 datasets with the number of compounds from 406 to 4376 were 

selected (Supplementary Figure SF1) and intrinsic dimensionality ranged between 3 and 26.  

One of the most common methods to evaluate the usability of a visualization obtained using a 

DR technique is to assess how well close neighbors in the original space are preserved in the latent 

space2. While numerous metrics have been suggested for this type of evaluation, in this work, we 

focused on one of the simplest: the number of k-neighbors preserved in the latent space, also known 

as the neighborhood hit11. To optimize hyperparameters, a grid-based search was conducted using the 

percentage of preserved nearest 20 neighbors from the high-dimensional space as the optimization 

metric. All non-linear techniques were able to retrieve, on average, 40% to 75% of the 20 closest 

neighbors depending on the descriptor set, outperforming PCA by 20% or more (Figure 4a, 

Supplementary Table ST1). On average, a lower dimensionality of the ambient space data corresponds 

to a higher preservation score (Figure 4), while the relative performance of the methods remains 

consistent across different descriptor sets. 

Consistently, all non-linear methods demonstrated similar trends in other neighborhood 

preservation metrics, avoiding significant intrusions and exclusions—cases where compounds 

positioned far apart in the original space appear close on the map, and vice versa, where compounds 

far apart on the map are actually close in the original space (Figure 4). For non-linear methods, co-k-

nearest neighbor size (QNN) and Local Continuity Meta Criterion (LCMC) exhibited a sharp increase 

for low k-values, indicating their strong performance in preserving the closest neighbors (Figure 4). 

In contrast, PCA demonstrated a more uniform performance across various values of k.  
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Figure 4. Average neighborhood preservation metrics for optimized models across 59 

ChEMBL subsets for various feature sets (Morgan fingerprints, MACCS keys, ChemDist 

embeddings). The models' hyperparameters were selected to maximize the preservation of neighbors 

among the 20 nearest ones (Euclidean distance in the original space was used). Color scheme: PCA – 

blue, t-SNE – orange, UMAP – green, GTM – red. The ratio of nearest neighbors (PNN) preserved at 

different k-values, trustworthiness, continuity, co-k-nearest neighbor size (QNN), and Local Continuity 

Meta Criterion (LCMC) as functions of the k-nearest neighbors are shown. Standard deviation values 
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calculated across datasets are shown as bars or filled areas. Corresponding AUC, Qlocal, Qglobal, k-max 

values can be found in Supplementary Table ST1. 

While all the methods were able to preserve a significant number of neighboring compounds 

for the aforementioned datasets, the percentage of the preserved neighbors for nine randomly selected 

ChEMBL datasets was significantly lower (Supplementary Table ST1, Supplementary Figure SF2) 

for all considered descriptor spaces. As was shown before, this discrepancy suggests that the 

effectiveness of these DR can vary considerably depending on the dataset's characteristics16,42. If the 

data inherently resides in a high-dimensional space, traditional dimensionality reduction methods 

might struggle to preserve the neighborhood structure accurately16,42. Therefore, assessing the intrinsic 

dimension of the datasets is important for evaluating the applicability of the DR for the particular 

dataset. The correlation between intrinsic dimension and ID was observed in datasets using Morgan 

fingerprints and MACCS keys as features (Figure 5, Supplementary Figure SF3, SF4). To put this into 

a chemical perspective, congeneric organic compound series are much less dimensional than random 

collections. Random sets of a few thousand ChEMBL compounds consist almost entirely of 

singletons, compounds for which the nearest neighbor being very distant. Therefore, neighborhood 

preservation scores are meaningful only when there are items within a relevant neighborhood. 

However, further investigation is required to draw more solid conclusions across various dataset sizes 

and feature sets. 

 

Figure 5. The figure illustrates the negative correlation between the adjusted neighborhood 

preservation (P*NN), normalized by the number of neighbors that can be selected randomly, and the 

intrinsic dimension (ID) calculated using the Fisher algorithm. This correlation is observed across 

different dimensionality reduction techniques (PCA, t-SNE, UMAP, GTM) utilizing Morgan 

fingerprints as features. The size of the data points reflects the number of compounds in the dataset. 

The random ChEMBL subsets are shown as red crosses.  

 

There were not many datasets with large sizes and low intrinsic dimensions (Figure 6, 

Supplementary Figure SF1). To assess the possibility of having a relatively large dataset with low 

intrinsic dimension, we selected 18 partially overlapping datasets (low-ID datasets, Supplementary 

Table ST1, Supplementary Figure SF5). Each dataset contained between 411 and 1756 compounds 

and had an intrinsic dimension of less than 6 when represented as Morgan count fingerprints. When 
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combined into a single dataset, there were 16287 unique compounds, and the intrinsic dimension was 

equal to 7.5. The results for the fused dataset were similar to those for the individual datasets: in both 

cases, all non-linear methods significantly outperformed PCA in terms of preserving neighborhood 

behavior, exhibiting performance similar to that observed in the case of the individual libraries 

(Supplementary Table ST1, Supplementary Figure SF5). Among non-linear methods, t-SNE and 

UMAP outperformed GTM in preserving the closest nearest neighbors in all descriptor spaces. 

The similarity between chemical compounds is typically analyzed using the Tanimoto score 

rather than Euclidean distance46. These metrics do not necessarily produce the same neighborhoods, 

and numerical transformation of the descriptors can significantly alter the results. We assessed 

whether the neighborhood preservation metrics would differ if the methods were optimized while 

keeping track of nearest neighbors in the descriptor space with Tanimoto similarity for the low-ID 

ChEMBL datasets. All methods preserved more nearest neighbors when using Tanimoto similarity to 

evaluate neighborhoods in the descriptor space (Supplementary Table ST1). Since the Tanimoto 

kernel can be used in combination with all methods as a distance metric in the original space (for 

example, as in kernel PCA2 and GTM47), its usage presents a promising avenue for further enhancing 

neighborhood preservation. 

Neighborhood preservation for out-of-sample dimensionality reduction 

While standard dimensionality reduction techniques can be straightforwardly applied to small 

and medium-sized libraries, their application to large (millions to tens of millions) and ultra-large 

(over 1 billion) datasets remains challenging because it is time-consuming, and resource-intensive and 

often necessitates the use of certain approximations48,49. To handle such large volumes of data, a 

common approach is to select a subsample of the entire dataset, often referred to as a frameset or 

reference set, and then project the remaining data points onto the map built using this subset of the 

original data22,50. In this case, the DR algorithm should be able to project new (out-of-sample) data 

onto already built embedding. We assessed the algorithms for the effectiveness of out-of-sample 

projection using a leave-one-library-out (LOLO) scenario. In this scenario, a library was removed 

from the pool of 18 low-ID ChEMBL libraries, the method was fitted to the remaining data (the 

frameset), its parameters optimized towards neighborhood preservation, the removed (out-of-sample) 

library was projected onto the built embedding and neighborhood preservation metrics were 

calculated. On average, GTM demonstrated more robust out-of-sample neighborhood preservation 

compared to other non-linear methods (Supplementary Table ST1, Figure 6), preserving more 

neighbors in 2 out of 3 descriptor spaces. 
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Figure 6. Average Nearest Neighbor (PNN) preservation metric for leave-one library-out 

(LOLO) setup. As with the in-sample case (Figure 4), non-linear methods outperform PCA in 

neighborhood preservation for Morgan FP and MACCS keys, albeit with lower PNN values. Among 

them, GTM demonstrated the most robust performance. The models' hyperparameters were selected 

to maximize the preservation of neighbors among the 20 nearest ones using Euclidean distance in the 

original descriptor space with Morgan fingerprints, MACCS keys and ChemDist embeddings used as 

feature sets. Color scheme: PCA – blue, t-SNE – orange, UMAP – green, GTM – red. The ratio of 

nearest neighbors (PNN) preserved at different k-values, trustworthiness, continuity, co-k-nearest 

neighbor size (QNN), and Local Continuity Meta Criterion (LCMC) as functions of the k-nearest 

neighbors are shown. Standard deviation values calculated across datasets are shown as bars or filled 

areas. Corresponding AUC, Qlocal, Qglobal, k-max values can be found in Supplementary Table ST1. 
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Quantitative analysis of chemical space maps visualization using 

scagnostics 

While neighborhood preservation is an important parameter for assessing the quality of a low-

dimensional embedding, the primary goal of DR-based visualization is to present the data in a form 

that can be easily understood by humans. Such visualizations should reveal data patterns within the 

dataset. For instance, chemical space maps built in this work show that neighborhood preservation is 

not evenly distributed across them: in some areas, nearly all of the 20 closest neighbors are preserved, 

while in other areas, the percentage of preserved neighbors is much lower (Figure 7). 

While individual data points can be mostly recognized in smaller datasets (Figure 7a), larger 

datasets (Figure 7) present a challenge as most zones are too dense to explore effectively on a static 

image. To alleviate this problem we use a hexagonal grid to render the density of data points covered 

by the grid. Alternatively, one can apply interpolation techniques such as kernel density estimation or 

Voronoi diagrams51,52. In contrast to other methods, grid-based visualization is a built-in feature of 

the GTM, allowing data to be visualized not only as scatter plots but also as grid-based landscapes 

without the need for auxiliary binarization tools, which can be especially attractive for the 

visualization of large-scale datasets. 
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Figure 7. Scatter and hexbin plot visualizations of chemical space using PCA, t-SNE, UMAP, 

and GTM using Morgan count fingerprints as descriptors. These visualizations are shown for one out 

of 18 low-ID datasets (CHEMBL3638344) (a) and the combined dataset of 18 low-ID ChEMBL 

subsets (b). The color scheme corresponds to PNN (k=20): black indicates all neighbors are preserved, 

while pale brown indicates none are preserved. 
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An orthogonal approach to neighborhood preservation for comparing DR techniques is to 

assess the interpretability of the visualization, specifically how effectively a human can comprehend 

the patterns shown on the map.53 The analysis of factors influencing human perception of statistical 

pattern visualization is an active and evolving area of research39,54,55. One of the most frequently used 

metrics to assess the ease of visualization for scatter plots are scatterplot diagnostics, commonly 

known as scagnostics39,54–56. Scagnostics provide a quantitative way to evaluate the visual 

characteristics of scatterplots, such as shape, density, skewness, and the presence of outliers and can 

help to determine which plots are more likely to be easily understood by human observers56. For 

example, they were found to be aligned with human perception of correlations, clusters, and trends39. 

Scagnostics were calculated for all low-dimensional embeddings built in this work (Figure 8, 

Supplementary Figure SF6). They show high variance in the obtained values, indicating that even 

with similar neighborhood scores, one method may be preferred over another in terms of visualization 

quality. For instance, scagnostics calculated for embeddings of the dataset CHEMBL3638344 (Figure 

8a) highlight different characteristics of GTM, t-SNE, and UMAP-based generalizations. UMAP 

shows clear clustering of compounds, resulting in high Clumpy values, while the GTM plot offers 

complementary more striated representation. Additionally, different descriptors show varying 

scagnostic values across different methods (Supplementary Figure SF6), providing further options for 

choosing the most relevant representation for visualization. 

 

 

Figure 8. Radar chart representation of scagnostics calculated for scatter plot visualizations of 

chemical space using PCA, t-SNE, UMAP, and GTM with parameters optimized for preserving the 

20 nearest neighbors using Morgan count fingerprints as descriptors (as shown in Figure 7). These 

visualizations are shown for CHEMBL3638344 dataset (a) and the combined dataset of 18 low-ID 

ChEMBL subsets (b). Color scheme: PCA – blue, t-SNE – orange, UMAP – green, GTM – red. 
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Discussion 

Benchmarking dimensionality reduction methods for chemical space 

exploration 

Representing chemical structure data embedded in chemical libraries in a manner suitable for 

chemist comprehension poses a significant challenge. Among the various approaches, one can use 

similarity heatmaps20, network-based approaches57,58, scaffolds59, and DR techniques. The latter 

represents one of the main strategies, especially in the context of big data36,49. When used properly, 

DR methods can provide valuable insights into the inner structure of chemical spaces, as demonstrated 

in numerous studies20,21. While reducing complex data to two dimensions may result in information 

loss, this information can potentially be recovered by chemists analyzing the maps, as can be seen 

when combining “human intuition” with machine learning.60,61 However, to be maximally useful for 

a chemist, a good dimensionality reduction method should have the following features2,62,63 : 

• The produced projections should be a sufficiently accurate lower-dimensional (2D or 

3D) representation of the input data; 

• The method should provide options for projection of new data points to facilitate 

library comparison and large chemical space data analysis. 

• The method should be big-data compatible, ensuring fast training and new data 

projection with minimal resources. 

The findings of our study in this context are summarized in Figure 8. Among the 

dimensionality reduction algorithms benchmarked, all non-linear methods proved effective in 

neighborhood preservation, outperforming PCA. t-SNE demonstrated the strongest performance in 

preserving the closest neighbors, which is not surprising since it is designed to maximize this criterion. 

On the other hand, GTM offers more robust out-of-sample performance and out-of-the-box big-data 

compatible visualization due to its grid-based nature. Therefore, the choice of method should be based 

on the specific task at hand. For example, if one wants to analyze a small chemical library, t-SNE 

might be preferred for its performance. On the other hand, for visualizing large libraries and 

potentially projecting new compounds onto them, GTM might be the better choice. 

 

Figure 8. Visual representations of data reduced by PCA, t-SNE, UMAP, and GTM are 

displayed. The performance of each technique is assessed based on several criteria: the necessity for 
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hyperparameter tuning, neighborhood preservation quality, interpretability of hyperparameters, 

robustness of out-of-sample neighborhood preservation, and suitability for out-of-the-box big data 

visualization. 

Conclusions 

In this work, the effectiveness of commonly used dimensionality reduction techniques for the 

visualization of chemical space was assessed across three case studies commonly encountered in 

practice. It was found that non-linear methods significantly outperformed a linear method (PCA) in 

neighborhood preservation tasks for several subsets of congeneric organic small molecule compounds. 

Among non-linear methods t-SNE was shown to excel at preserving the very closest neighbors. For 

out-of-sample visualization, commonly used methods like t-SNE and UMAP were found to 

demonstrate less robust behavior as compared to the GTM. Additionally, GTM was recognized for its 

out-of-the-box, big-data compatible visualization capabilities. However, this work has some 

limitations, and further improvements can be made to provide a more comprehensive assessment of 

the performance of DR methods in various scenarios. 

 

Limitations of the current work and future outlook 

Data 

The datasets used in this study comprise small organic molecule compounds featuring partially 

overlapping congeneric series of organic molecules, thus covering a very small part of a chemical 

space. Further research is necessary to design datasets with diverse distributions of chemical similarity 

for thorough benchmarking results. 

A significant aspect of this paper is the focus on compounds from a specific region of chemical 

space—namely, small organic molecules derived from published medicinal chemistry data. This 

choice was made deliberately to maintain a clear scope for the study. Consequently, combinatorial 

libraries (e.g., DNA-encoded libraries, Enamine REAL), which typically exhibit a narrower 

distribution of chemical similarities and a more densely populated chemical space, were not explored. 

Additionally, datasets related to materials, polymers, and other chemical entities were not 

investigated. These areas, where DR techniques are increasingly being applied for visualization19,64 , 

present additional layers of complexity and variability. Future studies could expand into these broader 

chemical spaces to further validate and benchmark DR techniques in diverse contexts. 
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Algorithms 

Only close-to-the original versions of the non-linear DR algorithms (t-SNE, UMAP, GTM) 

were tested in this paper, while numerous enhancements have been suggested in the literature1,65. 

These enhanced versions may be more suitable than the "vanilla" algorithms in certain scenarios. For 

example, the question of algorithm run-time was not addressed in our comparison, as multiple 

optimized versions exist that can significantly reduce computation time, including those capable of 

running on graphical processing units66,67 (GPUs). Therefore, benchmarking the original versions in 

terms of time efficiency would not yield solid conclusions on the applicability of the methods in 

general. 

The hyperparameter grid was fixed in our studies for both in-sample and out-of-sample 

scenarios, and we did not specifically attempt to alter the hyperparameter grid for the latter, that can 

potentially be required in such cases41. For example, one can choose to lower learning rate while 

projecting new data onto existing t-SNE embeddings35. Alternatively, one may opt to several 

parametric versions of both UMAP and t-SNE have been proposed for out-of-sample visualizations, 

which can be more efficient than the setups used in this paper. For instance, the parametric t-SNE was 

successfully applied for the analysis of chemical space68. A thorough analysis of the applicability 

domains69 of the DR techniques and, more generally, their out-of-distribution performance70,71 is left 

for future studies. 

 

Methodology 

While the metrics used in this study are widely applied in the analysis of DR results, further 

improvements can be made. For instance, some compounds may have identical or very similar 

distances in the descriptor space, yet they could be ranked differently, impacting the final metrics. 

Although this paper investigates the influence of various distance thresholds on the neighborhood 

preservation score, future research could explore the influence on the other neighborhood preservation 

metrics, as well as the behavior of alternative types of similarity metrics (e.g., graph edit distance). 

A significant challenge posed to dimensionality reduction (DR) techniques for chemical space 

analysis is the rapid expansion of chemical libraries, now encountering up to 1026 virtual compounds72. 

In this case, the maps become "too crowded" and lose specific resolution details, as seen in Figure 3c, 

with too many data points projected onto the same zones. One way to deal with this issue is to organize 

maps in a hierarchical way73–75. Hierarchical versions of all considered methods were developed.28–31 

For example, this approach was applied to build a chemical space atlas77 – a set of hierarchically 

organized GTMs. These approaches are to be benchmarked against more recently suggested DR 

algorithms, such as TMAP18, which were specifically designed to address the challenges of big data. 
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In this work, DR techniques were assessed in terms of neighborhood preservation. The 

visualization of properties on the maps and the use of labeled data, such as biological activity, as an 

optimization parameter was not evaluated in this study. This is left for future studies with the 

evaluation of approaches that incorporate labeled information when building visualizations in a 

supervised or semi-supervised fashion.28,78,79 Additionally, future work could include a thorough 

analysis of the chemical relevance of the obtained maps, such as the distribution and preservation of 

chemical structure patterns like scaffolds80. While metrics like scagnostics can reflect the ease of 

human perception of scatter plots, future studies could explore other chemistry-relevant aspects of 

low-dimensional visualizations.  

Overall, while an ongoing discussion exists about how effective the DR are for revealing 

patterns within datasets81, we believe that these methods, when used properly, represent a promising 

tool for chemical space analysis. The unification of methods under a common theoretical 

framework82,83, along with the development of benchmarking datasets with controlled data complexity 

as well as protocols for evaluating DR algorithms in various scenarios, will enable a more thorough 

understanding of which techniques are best suited for specific scenarios. 

 

Data and source code availability 

The data and code related to the optimization of the hyperparameters, data analysis, and 

visualization are available under the GitHub repository: https://github.com/AxelRolov/cdr_bench 
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Supplementary Table ST1. Neighborhood and distance preservation metrics. Ed – Euclidean distance, Jd – Jaccard distance. LOLO 

– leave-one library-out set up.  

Dataset Method 

Features 

Morgan fingerprints 

(radius 2, fp size 1024) 
MACCS keys ChemDist embeddings 

P20NN 

(%) 
AUCQNN kmax Qlocal Qglobal 

P20NN 

(%) 
AUCQNN kmax Qlocal Qglobal 

P20NN 

(%) 
AUCQNN kmax Qlocal Qglobal 

All target-

related 
ChEMBL 

subsets 
(Ed 

neighbors) 

PCA 19±8 0.56±0.03 62±111 0.19±0.06 0.58±0.06 28±9 0.69±0.04 168±129 0.36±0.08 0.75±0.04 28±9 0.69±0.04 168±129 0.36±0.08 0.75±0.04 

t-SNE 42±10 0.58±0.03 7±5 0.46±0.05 0.58±0.03 63±8 0.71±0.03 7±5 0.64±0.07 0.71±0.03 63±8 0.71±0.03 7±5 0.64±0.07 0.71±0.03 

UMAP 40±9 0.56±0.03 11±10 0.37±0.05 0.56±0.03 61±7 0.7±0.03 16±9 0.53±0.05 0.7±0.03 61±7 0.7±0.03 16±9 0.53±0.05 0.7±0.03 

GTM 40±8 0.57±0.03 13±7 0.36±0.06 0.57±0.03 60±8 0.68±0.06 20±8 0.54±0.07 0.68±0.06 60±8 0.68±0.06 20±8 0.54±0.07 0.68±0.06 

All target-

related 
ChEMBL 

subsets 

(Jd 
neighbors) 

PCA 26±11 0.64±0.06 121±112 0.31±0.11 0.68±0.07 29±10 0.71±0.05 178±135 0.39±0.08 0.77±0.06 -1 - - - - 

t-SNE 47±12 0.63±0.06 19±25 0.44±0.08 0.64±0.07 59±8 0.7±0.04 10±8 0.58±0.07 0.71±0.04 - - - - - 

UMAP 46±11 0.62±0.06 21±23 0.4±0.08 0.63±0.06 58±9 0.69±0.04 18±10 0.51±0.06 0.7±0.04 - - - - - 

GTM 52±11 0.65±0.06 22±12 0.45±0.08 0.65±0.06 59±9 0.69±0.06 24±11 0.53±0.08 0.7±0.06 - - - - - 

Low-ID 

Merged2 

ChEMBL 

subsets 
(16287 

compounds, 

Ed 
neighbors) 

PCA 5±0 0.56±0.0 63±5 0.1±0.0 0.58±0.0 10±0 0.67±0.0 306±5 0.29±0.0 0.73±0.0 27±0 0.9±0.0 400±8 0.65±0.01 0.95±0.0 

t-SNE 65±0 0.58±0.0 3±0 0.59±0.01 0.58±0.0 67±0 0.65±0.0 3±0 0.63±0.01 0.65±0.0 68±0 0.82±0.0 1±0 0.67±0.01 0.82±0.0 

UMAP 56±0 0.57±0.0 4±0 0.49±0.0 0.57±0.0 59±0 0.64±0.0 4±0 0.51±0.01 0.64±0.0 59±0 0.85±0.0 144±197 0.56±0.04 0.87±0.02 

GTM 40±0 0.52±0.0 9±0 0.4±0.01 0.52±0.0 46±0 0.52±0.0 12±0 0.46±0.0 0.52±0.0 41±0 0.63±0.0 9±1 0.39±0.01 0.63±0.0 

Random 

ChEMBL 
subsets 

average (Ed 

neighbors) 

PCA 3±2 0.56±0.0 954±550 0.36±0.02 0.87±0.01 13±7 0.65±0.0 190±104 0.26±0.01 0.71±0.0 34±15 0.88±0.0 267±142 0.61±0.01 0.93±0.0 

t-SNE 10±2 0.54±0.01 2±1 0.16±0.04 0.54±0.01 38±2 0.68±0.02 1±0 0.48±0.07 0.68±0.02 56±6 0.84±0.01 156±152 0.59±0.01 0.86±0.01 

UMAP 8±2 0.52±0.01 2±0 0.11±0.03 0.52±0.01 34±4 0.68±0.0 50±49 0.33±0.01 0.69±0.01 51±9 0.83±0.01 185±124 0.58±0.02 0.86±0.01 

GTM 9±1 0.52±0.02 38±75 0.1±0.08 0.55±0.09 37±5 0.59±0.06 18±6 0.32±0.04 0.59±0.06 44±12 0.68±0.05 29±7 0.41±0.08 0.69±0.05 

Low-ID 

LOLO 

(Ed 

neighbors) 

PCA 18±6 0.61±0.04 118±63 0.26±0.1 0.67±0.07 29±6 0.68±0.04 137±131 0.37±0.09 0.74±0.07 55±7 0.9±0.01 124±64 0.66±0.03 0.95±0.01 

t-SNE 17±8 0.53±0.04 31±25 0.15±0.07 0.54±0.04 27±7 0.67±0.04 138±80 0.37±0.1 0.73±0.06 50±6 0.85±0.01 138±74 0.6±0.03 0.9±0.02 

UMAP 12±7 0.58±0.04 139±82 0.22±0.09 0.67±0.06 30±6 0.69±0.03 129±88 0.39±0.08 0.75±0.05 57±6 0.88±0.01 101±49 0.64±0.02 0.91±0.01 

GTM 28±6 0.58±0.04 48±34 0.27±0.07 0.61±0.06 36±6 0.6±0.04 58±72 0.36±0.06 0.63±0.06 39±3 0.64±0.02 12±12 0.37±0.03 0.65±0.03 

 

 
1 Tanimoto similarity was not used for the optimization of models built using ChemDist embeddings. 
2 For datasets with more than 2,500 compounds, a subset of 2,500 compounds was randomly selected to calculate the AUC, Qlocal, Qglobal, trustworthiness, and continuity values. This procedure was repeated 3 

times.  
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Supplementary Figure SF1. Distribution of dataset sizes (a) and intrinsic dimension values 

calculated by Fisher method values among selected ChEMBL datasets with Morgan count fingerprints 

(b), MACCS keys (c), ChemDist (d) used as features. 
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Supplementary Figure SF2. Average neighborhood preservation metrics (calculated using 

Euclidean distance) for nine random subsets (3x500 compounds, 3x1500 compounds, 3x9269 

compounds) from ChEMBL. The models' hyperparameters were selected to maximize the 

preservation of neighbors among the 20 nearest ones Euclidean distance in the original space was 

used). Color scheme: PCA – blue, t-SNE – orange, UMAP – green, GTM – red. The ratio of nearest 

neighbors (PNN) preserved at different k-values, trustworthiness, continuity, co-k-nearest neighbor 

size (QNN), and Local Continuity Meta Criterion (LCMC) as functions of the k-nearest neighbors are 

shown. Standard deviation values calculated across datasets are shown as bars or filled areas. 

Corresponding AUC, Qlocal, Qglobal, k-max values can be found in Supplementary Table ST1. 
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Supplementary Figure SF3. The adjusted ratio of 20 nearest preserved neighbors (PNN) as a 

function of intrinsic dimension (ID) calculated by Fisher’s algorithm across different dimensionality 

reduction techniques (PCA, t-SNE, UMAP, GTM) and features (Morgan fingerprints, MACCS keys, 

ChemDist embeddings). The size of the data points reflects the number of compounds in the dataset. 

The random ChEMBL subsets are shown as red crosses. 
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Supplementary Figure SF4. The heatmaps showing Pearson correlation coefficients between 

various neighborhood preservation metrics the adjusted ratio of 20 nearest preserved neighbors 

(P*NN), an area under co-k-nearest neighbor size curve (AUC QNN), Qlocal, Qglobal, k-max values, 

trustworthiness (Trust(20)) and continuity (Cont(20)) values for 20 nearest neighbors), number of 

compounds in the dataset (# of cmpnds.), and intrinsic dimension (ID) calculated by Fisher method 

for different dimensionality reduction techniques (PCA, t-SNE, UMAP, GTM) using various features 

(Morgan fingerprints, MACCS keys, ChemDist embeddings). A color scale from blue (-1) to red (1) 

illustrates the strength and direction of correlations. 
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Supplementary Figure SF5. Neighborhood preservation metrics for the optimized models 

built on 16,287 compounds combining 18 low-ID ChEMBL targets. The models' hyperparameters 

were selected to maximize the preservation of neighbors among the 20 nearest ones Euclidean distance 

in the original space was used). Color scheme: PCA – blue, t-SNE – orange, UMAP – green, GTM – 

red. The ratio of nearest neighbors (PNN) preserved at different k-values, trustworthiness, continuity, 

co-k-nearest neighbor size (QNN), and Local Continuity Meta Criterion (LCMC) as functions of the 

k-nearest neighbors are shown. Standard deviation values calculated across datasets are shown as bars 

or filled areas. Corresponding AUC, Qlocal, Qglobal, k-max values can be found in Supplementary Table 

ST1.
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Supplementary Figure SF6. The figure presents the distribution of scagnostics (scatter plot 

diagnostics) for low-dimensional visualizations across 94 datasets from ChEMBL, optimized to 

preserve the 20 closest neighbors. The subplots correspond to different types of molecular 

representations: Morgan count fingerprints, MACCS keys, and ChemDist embeddings. Color scheme: 

PCA – blue, t-SNE – orange, UMAP – green, GTM – red. 
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